
TYPE Original Research

PUBLISHED 12 December 2022

DOI 10.3389/fnins.2022.1093071

OPEN ACCESS

EDITED BY

Chenwei Deng,

Beijing Institute of Technology, China

REVIEWED BY

Shengjun Zhang,

Chongqing University, China

Shexiang Hai,

Lanzhou University of

Technology, China

*CORRESPONDENCE

Ke Xiao

xiaoke@ncut.edu.cn

SPECIALTY SECTION

This article was submitted to

Perception Science,

a section of the journal

Frontiers in Neuroscience

RECEIVED 08 November 2022

ACCEPTED 21 November 2022

PUBLISHED 12 December 2022

CITATION

Li C, Bai M, Zhang L, Xiao K, Song W

and Zeng H (2022) ACLMHA and FML:

A brain-inspired kinship verification

framework.

Front. Neurosci. 16:1093071.

doi: 10.3389/fnins.2022.1093071

COPYRIGHT

© 2022 Li, Bai, Zhang, Xiao, Song and

Zeng. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

ACLMHA and FML: A
brain-inspired kinship
verification framework

Chen Li1, Menghan Bai1, Lipei Zhang1, Ke Xiao1*, Wei Song1

and Hui Zeng2

1School of Information, North China University of Technology, Beijing, China, 2Shunde Innovation

School, University of Science and Technology Beijing, Foshan, China

As an extended research direction of face recognition, kinship verification

based on the face image is an interesting yet challenging task, which aims

to determine whether two individuals are kin-related based on their facial

images. Face image-based kinship verification benefits many applications

in real life, including: missing children search, family photo classification,

kinship information mining, family privacy protection, etc. Studies presented

thus far provide evidence that face kinship verification still o�ers many

challenges. Hence in this paper, we propose a novel kinship verification

architecture, the main contributions of which are as follows: To boost the

deep model to capture various and abundant local features from di�erent

local face regions, we propose an attention center learning guided multi-

head attention mechanism to supervise the learning of attention weights and

make di�erent attention heads notice the characteristics of di�erent regions.

To combat the misclassification caused by single feature center loss, we

propose a family-level multi-center loss to ensure a more proper intra/inter-

class distance measurement for kinship verification. To measure the potential

similarity of features among relatives better, we propose to introduce the

relation comparison module to measure the similarity among features at a

deeper level. Extensive experiments are conducted on the widely used kinship

verification dataset—Family in the Wild (FIW) dataset. Compared with other

state-of-art (SOTA) methods, encouraging results are obtained, which verify

the e�ectiveness of our proposed method.

KEYWORDS

brain-inspired, relation comparison network, multi-head attention, facial kinship

verification, deep learning

Introduction

As an extended and novel research branch of face recognition, kinship

verification has received an increasing amount of attention (Hu et al., 2017;

Lu et al., 2017; Wu et al., 2018; Dahan and Keller, 2020) in the recent 10

years. The purpose of kinship verification is to offer verdict whether people

with different identities have kinship or not based on their facial information.

Face image-based kinship verification benefits many applications in real life,

including: kinship information mining (Robinson et al., 2021), missing children

search (Robinson et al., 2020), family photo classification (Xia et al., 2012), family

privacy protection (Kumar et al., 2020), etc. Generally, kinship can be divided
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into three generations containing 11 types. The same-

generation: Brother-Brother (B-B), Sister-Sister (S-S),

and Brother-Sister (SIBS). The first-generation: Father-

Son (F-S), Father-Daughter (F-D), Mother-Son (M-S),

and Mother-Daughter (M-D). The second-generation:

Grandfather-Grandson (GF-GS), Grandfather-Granddaughter

(GF-GD), Grandmother-Grandson (GM-GS), and

Grandmother-Granddaughter (GM-GD).

Meaningful achievement in kinship verification has been

delivered. The earliest solution toward kinship verification is to

construct proper handcraft features and then to calculate the

similarity between features to verify the kinship of two face

images. In recent years, with the development of deep learning

which draws inspiration from the neurobiological mechanisms

of the human brain, many data-driven kinship verification

methods based on deep learning have been applied to solve the

problem of face kinship verification. However, the achievements

in kinship verification are relatively less inspirational compared

to general face recognition or verification, due to the following

challenges put forth:

1. Face datasets with family relationships are scarce. The scale

of kinship verification dataset is incomparable to that of the

general face recognition dataset. Therefore, data deficiency

and imbalance invalidate many data-driven methods and

pose great challenges for kinship verification. It is still very

challenging to tackle the issue of how to boost its verification

ability through limited data like the human brain.

2. Feature expressions of the latent similarity among family

members are quite different compared to that of a single

individual. To illustrate this issue, nine face images from

Family in the Wild (FIW) dataset (Robinson et al., 2018) are

shown in Figure 1, in which, faces in line A, line B, and line

C belongs to three different families. And the first column

are faces of fathers, the second column are faces of sons, the

third column are faces of mothers. The similarities among

those faces are calculated by adopting features extracted by

the pretrained FaceNet. The face images in Figure 1A are

those of a couple and their son. Due to gender differences,

the calculated similarity between the son and his mother

is lower than the similarity between him and fathers from

other families, which is quite different with the human brain.

Similarly, due to the differences in skin color, in group B,

the faces of the son and the other father with white skin are

also very similar. Therefore, feature expression for kinship

verification is still very challenging.

Measurement of feature distance for kinship verification is much

more complicated, compared to general face recognition. The

main idea behind the face recognition problem is to reduce the

intra-class distance between different samples of each individual

and to expand the inter-class distance between samples of

different individuals. However, deep learning-based models

cannot handle the validation problem across multiple samples

as well as the human brain, because there are usually gender

differences and there is a large age gap lying between the relative

samples, which make it very difficult to narrow down the intra-

class distance with general hand-designed metric functions.

Besides, a family usually contains several members with different

feature representations. Simply adopting a single center for all

the different family members generates an improper intra/inter-

class distance for kinship verification. For instance: inter-

distance between husband and wife is closer than their intra-

class distance, which leads to a wrong verification of kinship.

To address these challenges in kinship verification, we

propose an efficient and practical automatic kinship verification

architecture inspired by the perspective of the human brain

in processing visual information about relatives. The main

contributions toward this article are as follows:

(1) To boost the deep model to capture various and abundant

local features from different local face regions, we

propose an attention center learning guided multi-head

attention mechanism to supervise the learning of attention

weights and make different attention heads notice the

characteristics of different regions. And then, the captured

local features are combined with the global feature as the

final feature expression.

(2) To combat the misclassification caused by single feature

center, we propose a family-level multi-center loss to ensure

that the learned model can map different facial features

of individuals with kinship to similar positions in the

feature space.

(3) To measure the potential similarity of features among

relatives better, we propose to introduce the relation

comparison module to measure the relationship between

features at a deeper level, instead of using a hand-designed

metric function.

The rest of the article is organized as follows: In section

Related work, recent influential works on kinship verification

are reviewed. In section Methodology, the proposed novel

methods are elaborated. In section Experimental results,

extensive experiments are conducted and experimental results

demonstrate that our approach achieves state-of-the-art results

compared to other methods. Lastly, we summarize the main

ideas and contributions of this paper.

Related work

According to the challenges discussed before, kinship

verification methods based on facial features are roughly

divided into local feature-based methods and metric learning-

based methods.

For local feature-based methods, the key issue one needs

to solve is how to abstract discriminative local features. In

Zhang et al. (2015), the face image is cropped into multiple
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FIGURE 1

(A–C) The figure above shows the face features extracted by using the pretrained FaceNet (Schro� et al., 2015), and the similarity is calculated.

overlapping patches, and then shallow convolutional networks

are used to learn the local features between relatives’ face pairs

for kinship verification. Dibeklioglu (2017) proposes an Age

Uniform Network (AUN) to convert faces of relatives into the

same age range for reducing the age features learned by the

Verification Network (VFN) to be intrusive. In a similar work,

a variety of artificially designed feature descriptors and deep

network feature descriptors are used to extract the local and

global features of the face, and the two tasks of face verification

and kinship verification are combined to improve the accuracy

of kinship verification (Kohli et al., 2016). In Zhang et al. (2020),

adversarial loss and verification loss are added to the feature

extraction process of face patches to learn the potential features

of relatives’ faces. Local features are used to enhance global

features, which result in more effective features for kinship

verification. By combining the face identification network and

the face landmark prediction network, the extraction of facial

appearance features and shape features is completed, and then

the comparison scores of these two features are combined to

finally obtain the kinship verification score (Zhang et al., 2019).

In addition, in Goyal and Meenpal (2020), Dual-Tree Complex

Wavelet Transform (DTCWT) is used to select a more effective

patch pair for kinship verification, so as to make full use of

the face patch to improve the effect of kinship verification.

In Zheng et al. (2021), Residual Factorization Module is used

to decompose facial features into identity and gender features,

and then the adversarial training is used to reduce the negative

impact of gender features on kinship verification. Indeed, local

features have a positive effect on the verification of facial

kinship. However, most existing local feature extractionmethods

rely heavily on the accuracy of facial patch crop or face

landmark prediction.

To address this issue further, researchers began to introduce

a non-local attention module as a complement. Visual attention

is a subjective or objective mechanism of visual information

selection by the brain, which concentrates on a limited amount

of information and ignores other perceivable information

(Cohen et al., 2012;Wang et al., 2022). It allows the human brain

to be selective in processing visual input from the outside world

(Yarbus, 2013), as well as enables the brain to quickly extract
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different parts of interest from complex scenes and process

them separately (Higgins et al., 2021). Aiming to simulate

the information processing mechanism of the human brain,

researchers have widely discussed the topic of attention in deep

neural network. Non-local attention (Wang et al., 2018) is an

attention mechanism that captures the relationship between

distant pixels. After fusing the information of the global feature,

an autocorrelation matrix is generated to weigh the original

feature map to obtain the final attention feature. This attention

model represents the importance of local regions better. Many

improvements have been made on the basis of a non-local

attention mechanism. DANet (Dual Attention Network) (Fu

et al., 2019) increases channel attention on the basis of spatial

attention in non-local attention. CCNet (Criss-Cross Network)

(Huang et al., 2019) uses the cross multiplication method to

reduce the computation of non-local attention. OCNet (Object

Contact Network) (Yuan et al., 2018) is used to obtain the

pixel-level similarity of different objects in the image to obtain

the target semantic information in the image better. ABD-Net

(Attentive but Diverse Network) (Chen et al., 2019) uses a

non-local attention model with channel and spatial attention in

person re-identification model to enhance the effectiveness of

local features. It has been proven that non-local attention has

a good effect in extracting the importance of the image region.

NLA-FFNet (Non-local Attentional Feature Fusion Network)

(Zhou et al., 2022) is proposed to enhance the robustness

of feature extraction by representing the relationship between

features with non-local attention through a multi-layer non-

local attention mechanism. At the same time (Fu et al., 2017;

Zheng et al., 2017), have shown that different channels of image

features can represent specific visual patterns, and grouping

them can get different regions in the image. Due to the powerful

feature representation capability for Siamese models with shared

weights, the Siamese networks have been used by scholars to

extract global features of different images (Han et al., 2022). At

present, how to boost the attention module to capture various

and abundant local features from different local face regions

automatically as the human brain and how to make full use of

local as well as global features are worth being discussed.

Metric learning has shown a promising performance for face

verification and face recognition task, which provides a positive

inspiration for kinship verification. In Feng and Ma (2021),

a contrastive loss function suitable for kinship comparison is

proposed, and a dual-path autoencoder network is used to

generate another member of the family to verify kinship pairs.

In Li et al. (2017), a sampling strategy of face image triples based

on family relationship information is proposed. Compared with

triples based on family tags, this method is more suitable for

optimization on family relationship data. At the same time,

there are also studies using quadruple sampling to find more

effective training pairs in kinship pairs (Zhou et al., 2019), but

it is a time-consuming and labor-intensive process to construct

a more suitable quadruple. In these works (Rehman et al., 2019;

Nguyen et al., 2020; Yu et al., 2020), the dual-path structure

network with shared or unshared weights is used to extract the

face features, and various splicing methods are introduced for

feature fusion, then the distance between the features is used for

kinship verification. Recently, some works have started to focus

on modifying the measurement method. In Wei et al. (2019),

the traditional Euclidean distance or Mahalanobis distance

measurement method is replaced by the adversarial learning

method. In Wu et al. (2021), the framework of Mahalanobis

remote metric learning is used to learn multiple distances

from training data metrics. In Zhu et al. (2022), Distance and

Direction based Deep Discriminant Metric Learning (D4ML)

modifies and designs two loss functions to learnmultiple metrics

by making full use of the discriminative information contained

in facial images of parents and children for minimizing the

distance between relatives’ faces. In conclusion, how to extract

more effective shared features between kinship faces and learn

the relationship between metrics is still a great challenge for

metric learning-based kinship verification.

Methodology

In section Motivation, the motivation behind the proposed

method is detailed. In section Proposed architecture, the

overall structure of the proposed network is described. In

section Attention center learning guided multi-head attention

mechanism, the proposed novel attention center learning guided

multi-head attention mechanism is detailed. In section Family-

level multi-center loss, the introduced kinship relation compare

module is illustrated, and in section Relation compare module,

the novel family-level multi-center loss is elaborated.

Motivation

Multiple attention modules are introduced to extract local

features under different channels in existing studies, however,

the relationship between different attention modules is ignored,

resulting in the inability to learn feature variability under

different channels. To tackle this issue, we propose to conduct

grouping at the channel level of the feature map, and then

input it into a well-designed multi-headed attention module

to extract local features of the face. The human brain, when

processing visual information, is able to quickly focus on a few

salient visual objects or multiple features, allowing for a broader

range of visual information, whereas computer image processing

is concerned with only a small fraction of the entire image.

Therefore, to ensure the difference in various features to obtain a

wider range of facial information as the human brain, we design

the attention center learning module. The module is used to

supervise the multi-head attention to learn diverse local features

from different local regions.
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FIGURE 2

Overview of the kinship network structure.

Simply aggregating facial features of all family members

to a single center generates an improper intra/inter-class

distance, for example: inter-distance between husband and

wife is closer than their intra-class distance, which leads to a

wrong verification of kinship. The visual system of the human

brain deals with the features of different individuals separately.

Inspired by this reasoning, we believe that it is inappropriate to

treat different members of the whole family as the same label for

metric learning. Hence, we introduce a brain-inspired family-

level multi-center loss so that the family feature center is not

limited to one, and it is more useful to use the local area of the

face to perform auxiliary metric learning.

In kinship verification, feature distance measurement is

quite different and more challenging due to the existing data

deficiency, gender difference, age gap, skin color, etc. Narrowing

the intra-class distance with a general hand-designed metric

function may not yield promising results. To handle the

validation problem across multi-samples like the human brain,

we propose to use a relational reasoning-based method to

measure the similarity between relatives, instead of being limited

to amanually set measurement function. Therefore, a non-linear

relation comparable module is introduced to make the distance

measurement more suitable for kinship verification.

Proposed architecture

In this section, we describe the proposed kinship verification

framework. The overall structure, which consists of three main

parts, is shown in Figure 2, in which the two input images are

example images from FIW dataset (Robinson et al., 2018).

As shown above, the Siamese network is introduced as

a feature extraction network architecture. The first part is a

BaseNet module used for global feature extraction. It adopts

a ResNet-50 network. To train the BaseNet better, the large-

scale face dataset CASIA-WebFace (Yi et al., 2014) is introduced,

and both SoftMax and center loss are applied. The second part

is the attention center learning guided multi-head attention

mechanism, also denoted as ACLMHA. It adopts the multi-

head attention module to generate the local attention features

of the face, during which, the proposed attention center learning

mechanism is used to supervise the attention matrix. This helps

to boost the deep model to capture various and abundant local

features from different local face regions, and therefore improve

the network’s feature extraction ability for local areas. To capture

small-scale local features better, we make full use of the feature

maps (conv3_x, conv4_x, conv5_x) output by three different

convolution blocks of ResNet, specifically, we perform bilinear
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FIGURE 3

Overview of the structure of the ACLMHA (attention center learning guided multi-head attention mechanism).

FIGURE 4

Overview of the structure of the attention center learning (ACL).
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upsampling operation for C5, use 1∗1 convolution for down-

channel for C4, and downsample for C3. Finally, three feature

maps with a size of 14∗14∗512 are obtained., and then we get

a 14∗14∗1,536 feature map after splicing in the channel layer,

which is input into the ACLMHA model to extract the features

of the local module. Besides, the brain-inspired family-level

multi-center loss is proposed to address the feature distance

expression further. The third part is the relation compare

module introduced to measure the complex feature distance for

kinship verification. The features obtained by splicing the global

and local features of different faces are fed into the module to

measure their similarity, and finally the kinship between face

pairs is arrived at.

Attention center learning guided
multi-head attention mechanism

Attention module has been widely discussed to simulate the

critical areas discovering process of the human brain. The non-

local attention network expresses the importance of each pixel in

the feature map through an autocorrelation matrix calculated by

the correlation between the pixels of the feature map. To boost

the attention module to focus on different critical regions of face

images as human brain further, we propose an attention center

learning mechanism to supervise the learned attention matrix. It

guides the multi-head model to pay attention to different local

features of the face image.

Structure of the ACLMHA

As shown in Figure 3, considering that different channels

often learn different visual modes of the image, we propose

to extract the features of different regions by performing

channel grouping on the convolved feature maps. To be specific,

the feature maps of different scales obtained by the deep

convolutional network are combined, and then channel shuffling

is applied to mix the channel maps of different scales, so

that the information of different scales can be merged. After

that, the mixed combined features are divided into k groups,

and subsequently convolution operations are performed on the

features through k different convolutional layers. In this paper,

k is set as 4. Then, the output is fed into the spatial-channel

attention (SCA) network for spatial attention learning, during

which the proposed attention center learning mechanism is

applied to supervise the learned attention matrix to focus on

different critical regions of face images as the human brain.

The SCA network can be represented as a triple (K, Q, V), as

shown in Equation (1):

Ki = θ(Mi),Qi = φ(Mi),V i=ψ(Mi) (1)

where M ∈ RH×W×C is the feature map fed to the attention

module, H,W,C are the width, height, and channel of the

feature map separately. θ ,φ,ψ are three different 1 × 1

convolution layers. We use 1 × 1 convolution kernel to reduce

the channel number C to C
m . In this paper, m = 4, the feature

map Ki is reshaped into R(Ki)∈RHW× C
m after passing through

the 1∗1 convolutional layer, the feature map Q is reshaped into

R(Qi)T∈R
C
m×HW after passing through the 1∗1 convolutional

layer and then transposed further. The autocorrelation matrix

is obtained by multiplying Ki and Qi, and then the Softmax is

performed row by row to get the final patch location attention

matrix Ai which is represented as shown in Equation (2):

Ai = SoftMax(R(Ki) • R(Qi)T) (2)

where R is the reshape operation, T is the transpose operation,

and • represents the matrix multiplication operation. Then Ai

and R(V i) are matrix multiplied and the residual M
′
is added

to obtain the final local attention feature Mi
a, as shown in

Equation (3):

Mi
a = R(V i) • Ai+M

′
(3)

Attention center learning module

The combination of different local features and global

features of human faces has significant advantages over only

global features. However, in most of the previous methods,

features of different regions are extracted through facial

landmark detection-based region location, which is not suitable

for relatives, since the local similarities among relatives’ faces are

not limited to specific landmarks. Therefore, we developed an

attention model that can automatically locate the salient areas

between relatives, so that different attention matrices can learn

different regions. We propose a feature center-based learning

method to supervise the non-local attention correlation matrix.

As shown in Figure 4, the location attention matrix is the

result processed by the SoftMax function row-wise. We denote

FIGURE 5

To understand the distribution of facial features in the feature

space, the figure on the left shows the case of a single center

(A), each light color dot represents di�erent family members’

face samples, and the dark dot with the star represents the

characteristics of the family id center, and the figure on the right

shows the distribution of features with multiple centers (B).
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the operation of summing Ai by column as S, and then reshape

it into A′
i∈R

H×W , as shown in Equation (4):

A′
i = R(S(Ai

l)) (4)

The maximum value of Ai after threshold operation is set

as the center of the attention matrix, which is expressed in

Equations (5)–(7):

A′′
i = T(A′

i) (5)

Tθ (a) =

{

ai if ai≥ θ

0 otherwise
(6)

CenterAi=max
(

A′′
i
)

(7)

where T is the threshold operation to make sure only the area

with larger attention weight is kept. To make θ ∈ (0, 1) A′
i

is normalized.
To gather attention to the center, we proposed the LA(com).

We introduce the reciprocal of the distance between each pixel in
the matrix and the center is introduced to weight the point-to-
point attention matrix value difference. So that pixels far from
the center have smaller weights, and pixels closer to the center
have larger weights. At the same time, for those pixels near the
center point, their attention values are more close to that of the

FIGURE 6

Examples of Family in the Wild (FIW) dataset (Robinson et al., 2018).
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center point. LA(com) is represented as Equations (8) and (9):

LA(com) =

H
∑

x = 0

W
∑

x = y

(

1
∥

∥(x,y)−(Cx,Cy)
∥

∥

2

2

•
∥

∥A′′
i(Cx,Cy)−A′′

i(x,y)
∥

∥

2

2

)

(8)

and A′′
i(x,y) 6= 0 (9)

The purpose of LA(dis) is to separate the attention centers from

each other, which helps to extract the attention feature maps

of different positions on the face. LA(dis) is represented as

Equation (10):

LA(dis) =−

k
∑

i = 0

k
∑

j 6=i

∥

∥

∥
(Cix,C

i
y), (C

j
x,C

j
y)
∥

∥

∥

2

2
(10)

Finally, the loss function LA of the ALMACL part is obtained by

adding the above two loss functions, as shown in Equation (11).

LA = LA(com)+LA(dis) (11)

Family-level multi-center loss

Different from the previous kinship verification method, in

this paper we propose a family-level multi-center loss, which

is a combination of the SoftMax function and the designed

multi-center loss. Inspired by SoftTriple loss (Qian et al., 2019),

as shown in Figure 5A, simply mapping the feature of father,

mother, and child to the same feature center is improper,

because, although children have latent similarities with their

parents, fathers andmothers do not have such similarities. Single

feature center will lead to improper intra/inter-class distance for

kinship verification. To combat this issue, we design multiple

feature centers for each family label, which we call family-

level multi-center loss. As shown in Figure 5B, the features of

different family members can be aggregated to the nearest center

point by extending out multiple centers, which helps to separate

the feature boundaries of different members. The family-level

multi-center loss function Lfid−c is specified by the following

Equation (12):

Lfid−c =
1

2Nm

N
∑

i = 1

m
∑

k = 1

∥

∥

∥
αi−ckβi

∥

∥

∥

2

2
(12)

where N is the number of samples in each minibatch, m is the

number of each family center, and ck
β i

is the category center, and

the updated equations of the category center are as follows:

∂Lfid − c

∂αi
=

1

Nm

m
∑

k = 1

(αi−ckβi ) (13)
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1Cj =

∑N
i = 1 δ(βi = j)(cj−αi)

ε+
∑N

i = 1 δ(βi = j)

(14)

C
′
= Cj−a1Cj (15)

where αi denotes the sample, βi denotes the corresponding label,

ε is used to prevent the denominator from being zero when

updating the calculation of categories with multiple feature

centers, and δ() indicates that the value corresponding to

the sample in the current training batch is 1 and the value

corresponding to other samples is 0.

As shown in Figure 2, to ensure that the effective face

features can be extracted, we propose a classification loss

function Lcls, which includes two parts: Lfid−CE and Lpid−CE,

as shown in Equations (16) and (17), and the total loss is shown

in Equation (18).

Lfid = Lfid−CE+Lfid−c (16)

Lcls = λLfid−CE+βLpid−CE (17)

Ltotal = Lcls+LA+Lfid (18)

Relation compare module

As shown in Figure 2, 2∗K groups of facial local features

extracted from the input image pair are combined to generate

K∗K features and then spliced with the global features. The

obtained final features are fed into the perceptron layer, followed

by an element-level addition operation, the output of which is

used for family relationship learning. Finally, the kinship/non-

kinship score of the face pair are acquired through the sigmoid

activation function, as shown in Equation (19).

score= g(sum(f (cat(Mi
a(X1),M

i
a(X2),Z(X1),Z(X2)))) (19)

Among them, X1 represents the input image of the child,

X2 represents the input image of the parents, cat represents

concatenation operation, and Z represents the mapping of the

BaseNet network, which is used to extract global features. In

addition, we use binary cross entropy (BCE) loss for training

here. This module is similar to a learnable metric function.

Through training, it can learn the feature relationships of faces

among different family relationships. Therefore, it can overcome

the limitations of hand-designed metric functions and learn the

potential relationships between features better.

Experimental results

Datasets

The face kinship verification Family in the Wild (FIW)

dataset (Robinson et al., 2018) is adopted for experiments in this

paper. FIW is the largest dataset whose distribution is closest

to the real data. As shown in Figure 6, the dataset contains

1,000 families and 10,676 individuals. It can be formed into

690 thousand pairs, including all the 11 kinds of kinship: B-

B, S-S, SIBS, F-D, F-S, M-D, M-S; GF-GD, GF-GS, GM-GD,

and GM-GS.

Training details

First, the CASIA-WebFace database is used to train the

BaseNet, during which the combination of SoftMax and center

loss is employed. We notice that, at the initial stage of training,

if center loss is assigned with larger weight, it will lead to a

very slow or difficult convergence. So, we propose to introduce a

similar warm-up strategy that can dynamically adjust the weight

of the center loss. Specifically, we start with a relatively small

weight at the beginning of the training stage. In this paper,

we set it to 0.5. After 200 thousand iterations, the weight of

FIGURE 7

Receiver operating characteristic (ROC) curve of brother-brother (B-B), sister-sister (S-S), and brother-sister (SIBS).
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FIGURE 8

Receiver operating characteristic (ROC) curve of father-daughter (F-D), father-son (F-S), mother-daughter (M-D), and mother-son (M-S).

every five thousand iteration is 1.5 times of the original, until

the iteration is completed. Second, we migrate the pretrained

BaseNet on FIW. Only the last fully connected layer is left and all

the parameters are frozen to learn the subsequent kinship model

with a small learning rate. When the network is iterated to 200

thousand times, we unfreeze all the network layers and then fine-

tune the entire network. Finally, in the verification phase, two

face images are input into our model to verify their kinship.

Ablation experiments

To explore the effectiveness of our relationship model

for latent feature learning among facial relatives, we design

a group of comparative experiments between the multi-layer

perceptron model (MLP), the relation compare model (RCM),

and the relation compare module combined with ACLMHA.

It should be noted that for the first two methods, the adopted

features are the combination of the global and local features,

which are extracted through MTCNN (Multi-task Cascaded

Convolutional Networks)-based key points detection.

As shown in Table 1, the verification accuracy of RCM is

increased by about 7% compared to the traditional MLP. In

addition, ACLMHA combined with RCM achieves the highest

result, which is a further 2% improvement. It shows that the

proposed ACLMHA can enhance further the discrimination

of local features compared to those. In addition, the average

accuracy of each generation is 80.7, 78.4, and 75.3% separately,

which shows that kinship verification of the second generation

is the most challenging task.

Comparative experiments

To demonstrate further the advantages of our algorithm,

the proposed algorithm is compared with other advanced

algorithms published so far, and the specific comparison results

are shown as follows.

Experiments of 11 different kinship verifications

are conducted. Figures 7–9 show the receiver operating

characteristic (ROC) curve of the proposed method on the

FIW dataset. The higher the AUC (area under curve) value,
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FIGURE 9

Receiver operating characteristic (ROC) curve of grandfather-granddaughter (GF-GD), grandfather-grandson (GF-GS),

grandmother-granddaughter (GM-GD), and grandmother-grandson (GM-GS).

TABLE 2 Results of brother-brother (B-B), sister-sister (S-S), and brother-sister (SIBS) on family in the wild (FIW).

Method B-B S-S SIBS Avg

LBP (Ahonen et al., 2006) 55.5 57.5 55.4 56.1

SIFT (Dalal and Triggs, 2005) 57.9 59.3 56.9 58.0

VGG-face (Parkhi et al., 2015) 69.7 75.4 66.5 70.5

ResNet20 (Wen et al., 2016) 65.6 69.7 60.1 65.1

SphereFace (Liu et al., 2017) 71.9 77.3 70.2 73.1

ResNet50 (Hörmann et al., 2020) 66.4 65.3 76.0 69.2

ResNet50+ feature fusion (Yu et al., 2020) 75.1 74.4 72.0 73.8

InsightFace (Shadrikov, 2020) 80.2 80.4 77.3 79.3

Dual-VGGFace-v2 (Rachmadi et al., 2021) 66.3 73.2 67.2 68.9

AIAF+ IFW (Liu et al., 2022) 73.8 85.5 77.6 78.9

Ours 81.3 82.1 78.6 80.7

the higher the prediction accuracy. It can be seen that the

same-generation kinship verification achieves the best effect,

followed by the first-generation kinship. The second-generation

kinship verification is the most challenging task.

Tables 2–4 show the comparison results of the proposed

method and the current state-of-the-art (SOTA) methods. As

shown, for the proposed method, the average verification

accuracy of the same-generation is 80.7%, which is 1.4%

higher than the best results of other comparable algorithms.

The average accuracy of the first-generation kinship is 78.4%,

during which the M-D kinship verification achieves the

highest result among all the mentioned methods. The average

accuracy of the most challenging second-generation kinship

is 75.3%, which is 3.5% higher than the best results of other
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TABLE 3 Results of father-daughter (F-D), father-son (F-S), mother-daughter (M-D), and mother-son (M-S) on family in the wild (FIW).

Method F-D F-S M-D M-S Avg

LBP (Ahonen et al., 2006) 55.1 53.8 55.7 54.7 54.8

SIFT (Dalal and Triggs, 2005) 56.4 56.2 55.1 56.5 56.1

VGG-face (Parkhi et al., 2015) 64.3 63.9 66.4 62.8 64.4

ResNet20 (Wen et al., 2016) 59.5 60.3 61.5 59.4 60.2

SphereFace (Liu et al., 2017) 69.3 68.5 71.8 69.5 69.8

ResNet50 (Hörmann et al., 2020) 76.9 80.1 76.7 78.2 78.0

ResNet50+ feature fusion (Yu et al., 2020) 75.5 81.8 74.7 75.2 76.8

InsightFace (Shadrikov, 2020) 75.2 80.8 77.7 74.4 77.0

Dual-VGGFace-v2 (Rachmadi et al., 2021) 65.3 64.1 67.3 66.3 65.8

AIAF+ IFW (Liu et al., 2022) 79.1 78.2 76,1 86.5 79.9

Ours 77.3 80.5 78.4 77.4 78.4

TABLE 4 Results of grandfather-granddaughter (GF-GD), grandfather-grandson (GF-GS), grandmother-granddaughter (GM-GD), and

grandmother-grandson (GM-GS) on family in the wild (fiw).

Method GF-GD GF-GS GM-GD GM-GS Avg

LBP (Ahonen et al., 2006) 55.8 55.9 54.0 55.4 55.3

SIFT (Dalal and Triggs, 2005) 57.3 55.4 57.3 56.7 56.7

VGG-face (Parkhi et al., 2015) 62.1 63.8 57.4 61.6 61.2

ResNet20 (Wen et al., 2016) 55.4 58.1 59.7 59.7 58.2

SphereFace (Liu et al., 2017) 66.1 66.4 64.6 65.4 65.6

ResNet50 (Hörmann et al., 2020) 70.0 73.4 63.9 60.3 66.9

ResNet50+ feature fusion (Yu et al., 2020) 72.5 72.7 67.3 67.6 70.0

InsightFace (Shadrikov, 2020) 77.9 69.4 75.8 59.8 70.7

Dual-VGGFace-v2 (Rachmadi et al., 2021) 60.5 59.1 61.6 60.6 60.5

AIAF+ IFW (Liu et al., 2022) 69.3 69.3 70.5 78.3 71.8

Ours 78.5 74.1 76.4 72.2 75.3

algorithms, which however achieves much higher performance

compared with other optimal algorithms. The results show

that the kinship verification evaluation of our method shows

a greater improvement compared to the existing algorithm,

especially for the most challenging second-generation kinship

verification task.

Conclusions

In this paper, we propose a novel brain-inspired network

with ACLMHA and FML to address the challenging feature

expression, complex similarity measurement issues, and the

misclassification due to single feature center in kinship

verification. First, we propose an attention center learning

guided multi-head attention mechanism to supervise the

learning of attention weights and make different attention

heads notice the characteristics of different regions to boost

the deep model to capture various and abundant local features

from different local face regions. Second, a family-level multi-

center loss is proposed to ensure that the learned model

can map different facial features of the same family to

similar positions in the feature space. Finally, the feature

relation compare module is introduced to measure the

potential similarity of features among relatives. Extensive

comparison experiments are conducted on the FIW dataset.

Among them, the proposed method achieves a promising

performance, especially in the verification of grandparents and

grandchildren, which is significantly better than other state-

of-art (SOTA) methods. The topic of how to combat data

scarcity and better utilize the existing face dataset to improve

the accuracy of facial kinship verification needs to be discussed

in the future.
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