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Objective: The deep medullary veins (DMVs) can be evaluated using susceptibility-

weighted imaging (SWI). This study aimed to apply radiomic analysis of the DMVs

to evaluate brain injury in neonatal patients with hypoxic-ischemic encephalopathy

(HIE) using SWI.

Methods: This study included brain magnetic resonance imaging of 190 infants with

HIE and 89 controls. All neonates were born at full-term (37+ weeks gestation). To

include the DMVs in the regions of interest, manual drawings were performed. A Rad-

score was constructed using least absolute shrinkage and selection operator (LASSO)

regression to identify the optimal radiomic features. Nomograms were constructed

by combining the Rad-score with a clinically independent factor. Receiver operating

characteristic curve analysis was applied to evaluate the performance of the different

models. Clinical utility was evaluated using a decision curve analysis.

Results: The combined nomogram model incorporating the Rad-score and clinical

independent predictors, was better in predicting HIE (in the training cohort, the area

under the curve was 0.97, and in the validation cohort, it was 0.95) and the neurologic

outcomes after hypoxic-ischemic (in the training cohort, the area under the curve

was 0.91, and in the validation cohort, it was 0.88).

Conclusion: Based on radiomic signatures and clinical indicators, we developed a

combined nomogram model for evaluating neonatal brain injury associated with

perinatal asphyxia.

KEYWORDS

magnetic resonance imaging, deep medullary veins, hypoxic-ischemic encephalopathy,
radiomics, neonatal

1. Introduction

Susceptibility-weighted imaging (SWI) is a three-dimensional gradient-echo magnetic
resonance (MR) imaging technique with high spatial resolution. The clinical importance of
SWI in pediatric patients with neurological disorders has been reported for more than 20 years
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(Tong et al., 2007). SWI can provide additional information for
the evaluation of various pediatric neurologic conditions, such
as the detection of hemorrhagic lesions, better visualization of
vascular malformations, cavernomas, telangiectasias, and Sturge–
Weber Syndrome. SWI can also highlight the increased veins
associated with venous stasis or oxygen extraction. The high
sensitivity of SWI to oxygenated vs. deoxygenated hemoglobin
magnetic susceptibility properties makes it useful in hypoxic and
ischemic conditions (Chalian et al., 2011; Kitamura et al., 2011;
Messina et al., 2013; Kim et al., 2020).

Brain injury in infants with hypoxic-ischemic encephalopathy
(HIE) can impair neurological function (Zaghloul et al., 2020) and
most often occurs in the central gray and white matter (WM) areas
with the most vigorous metabolism (Chang et al., 2020). As a result
of the hypoxic and/or ischemic injury, cellular energy metabolism
is disrupted, ion pumps become dysfunctional, and glutamate
accumulates in cells, leading to excitatory injuries. The oxygen
extraction fraction is increased when the cerebral perfusion pressure
is reduced, which can further increase the deoxy-to-oxyhemoglobin
ratio within the venous blood that drains the injured brain areas.
Prominent hypointense SWI veins may be associated with high
deoxy-to-oxyhemoglobin ratios. Cerebral hypoxia and ischemia can
lead to cerebral venous congestion and increased venous pressure,
which in turn, can easily cause the deep cerebral and cortical veins
to expand to varying degrees (Mukherjee et al., 2021). Neonates with
hypoxic-ischemic brain injury and HIE have recently been reported
to have abnormal, prominent veins (Messina et al., 2013), and there
is a close relationship between the deep medullary veins (DMV) and
WM injury in neonates (Arrigoni et al., 2011; Chen et al., 2020;
Khalatbari et al., 2020; Benninger et al., 2021). In some infants, the
veins are indeed prominent. In contrast, in others, this is not the
case, and veins are not visible. Both scenarios are associated with
a poor outcome (Kitamura et al., 2011). In infants, SWI abnormal
findings are not only associated with sinovenous thrombosis, but also
with WM lesions. Since the prominence of DMVs is associated with
ischemic conditions, assessment is important.

Pathological changes can be observed in SWI, but few objective
methods have been used to quantify its significance. Based on human
perception alone, MRI provides limited information in various
clinical situations. Radiomics involves extracting and analyzing
features from digital medical images and converting them into data
that could be analyzed (Huang et al., 2016; Sarioglu et al., 2022).
Kitamura et al. (2011) used an SWI categorical grading scale to
predict neurologic outcomes after hypoxic-ischemic injuries. In this
study, we explored the potential role of DMVs in HIE-induced brain
injury by developing and validating a combined nomogram model
that integrates radiomic features with clinical characteristics.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate
aminotransferase; AUC, area under curve; BE, base excess; CK-MB, creatine
kinase isoenzyme; DCA, decision curve analysis; D-DI20CN, D-dimer;
DICOM, digital imaging and communication in medicine; DMV, deep
medullary veins; GLCM, gray-level co-occurrence matrix; GLDM, gray-level
dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level
size-zone matrix; HIE, hypoxic-ischemic encephalopathy; ICC, intraclass
correlation coefficient; LASSO, least absolute shrinkage and selection
operator; LBP, local binary mode; LoG, logarithmic transformation; MRI,
magnetic resonance imaging; mRMR, minimum redundancy maximum
relevance; NGTDM, neighborhood gray difference matrix; PACS, picture
archiving and communication system; ROC, receiver operating characteristic;
ROI, regions of interests; SWI, susceptibility-weighted imaging; WM, white
matter.

2. Materials and methods

2.1. Patients and data collection

This retrospective study was approved by our institutional review
board. The requirement for informed consent was waived due to the
retrospective analysis of the anonymized data.

To identify neonates with perinatal asphyxia and HIE, the
neonatology department database was analyzed between January
2018 and April 2022. We used the Queensland Clinical Guidelines
to diagnose infants with HIE if they met all of the following
criteria: (1) Apgar score≤5 at 5 and 10 min after birth; (2)
profound metabolic or mixed acidosis with cord blood gas
(pH <7.0 and/or base excess 12 mmol/L); (3) evidence of
encephalopathy; and (4) multisystem organ failures, such as
renal injury, hepatic injury, hematologic abnormalities, cardiac
dysfunction, metabolic derangements, or gastrointestinal injury
(Queensland Clinical Guidelines, 2021). The inclusion criteria were
as follows: (1) Full-term neonates (gestational age >37 weeks)
who underwent routine MRI scanning including SWI, at 5–
10 days of life, and (2) demographic data, clinical information,
and laboratory values were available. The exclusion criteria were
as follows: (1) Premature infants (gestational age 37 weeks),
(2) MRI scans with motion artifacts, (3) infants with metabolic
disease, and (4) infants with massive intracranial hemorrhage.
Sarnat scores are commonly used to evaluate the severity of
neonatal HIE. Based on the clinical signs and electroencephalograms,
according to the Sarnat criteria, HIE can be mild (stage 1),
moderate (stage 2), or severe (stage 3) (Sarnat and Sarnat,
1976).

Neonates who underwent MRI scans within the first
2 weeks of life to investigate the possibility of congenital
central nervous system malformations formed the control
group. Infants without abnormalities observed on brain
magnetic MRIs were included. The control group included
89 neonates with normal brain MRI, according to the
radiologists’ consensus.

2.2. Image interpretation

For the patients in the HIE group, T1WI, T2WI, DWI,
and SWI were retrospectively evaluated by two radiologists
blinded to the clinical data. If the two radiologists disagreed,
a third radiologist evaluated the images and his assessment
was considered final. MRI abnormalities included abnormalities
in the posterior limb of the internal capsule, basal ganglia,
thalami, and WM.

2.3. Magnetic resonance imaging
acquisition

All brain MRI scans were performed at our hospital using the
3.0 T MRI scanner (MAGNETOM Skyra, Siemens or MAGNETOM
Prisma, Siemens) with an eight-channel head coil, set using the
same MR parameters. The process is presented in detail in the
Supplementary material.
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2.4. Image preprocessing

Before segmentation and feature extraction, the images were
preprocessed to remove potential differences between images that
were acquired from the two different MR scanners. The details can
be found in the Supplementary material.

2.5. Image segmentation and radiomic
feature extraction

Susceptibility-weighted imaging images from each patient were
independently reviewed by two pediatric radiologists (observer 1,
a pediatric radiologist with 5 years of experience, and observer
2, a pediatric radiologist with 10 years of experience) who were
blinded to the clinical data. Any discrepancy between the two
radiologists was resolved by a third pediatric radiologist (a pediatric
radiologist with 25 years of experience). In this study, the DMVs
were assessed and quantified with the created regions of interest
(ROIs) close to the lateral ventricles (Kim et al., 2020). ROIs were
drawn for the right and left WM, involving the DMVs. We selected
two axial slices to draw the ROI at the level where the DMVs
showed a typical fan pattern of drainage into the subependymal vein
(Supplementary Figure 1). When drawing the ROIs, we excluded
the subependymal veins and the large cortical veins. Then, we used
the AK software [Artificial Intelligence Kit v.3.3.0, general electric
(GE) Healthcare] to extract the radiomic features. These included
first-order, shape (shape), gray-level run-length matrix, gray-level co-
occurrence matrix (GLCM), gray-level dependence matrix (GLDM),
gray-level size zone matrix, and neighborhood gray difference matrix.
The selected image transformations were wavelet transformations
(wavelet). Level 1 = logarithmic transformation, parameter sigma
selection 2.0 and 3.0, and local binary mode. Level 2 = radius 1.0 and
subdivision select 1. In total, 1,316 features were identified.

2.6. Reproducibility

Radiomic reproducibility was evaluated by intra- and inter-
observers. Two observers performed the ROI analysis. Sixty patients
were randomly selected and delineated twice by observer 1 to ensure
intra- and inter-observer reproducibility. The same procedure and
delineation were conducted once by observer 2 to calculate the
intra-observer intraclass correlation coefficient (ICC). An ICC 0.75
indicated good agreement. The remainder of the delineation was
completed by observer 1.

2.7. Feature selection and model
construction

First, using a ratio of 7:3, patients were randomly divided into
two cohorts: Training vs. validation. Clinical features from univariate
analyses (p <0.05) were included in the multivariate regression
analysis. Features with p <0.05 in the multivariate regression analysis
were included in the clinical model.

It is important to understand that some features contribute to the
positive performance of classification, whereas others may add noise.
We used the minimum redundancy maximum relevance (mRMR)

approach to eliminate redundant and irrelevant features from our
radiomic model. The least absolute shrinkage and selection operator
(LASSO) was conducted to select effective and predictable features for
high-dimensional low-sample-size data with collinearity problems.
In addition to determining the number of features, features with non-
zero coefficients were chosen based on a 10-fold cross-validation. The
Rad-score was calculated as the sum of the selected features, weighted
by the coefficients.

For the combined model, the clinical signatures from the clinical
model and Rad-score were combined. Figure 1 illustrates the
workflow of the radiomic analysis.

2.8. Model evaluation and validation

Based on the receiver operating characteristic (ROC) curve
and area under the curve (AUC) analysis, the diagnostic efficacy
of different models was analyzed in the training and validation
cohorts. The Delong test was used to test the difference between
the ROC curves. Different predictive models were calibrated and
evaluated in the training and validation cohorts. Calibration curves
were evaluated using the Hosmer–Lemeshow test. The decision
curve analysis (DCA) was used to evaluate the clinical value of the
different models.

2.9. Neurodevelopmental follow-up

Survivors underwent the Child Neurodevelopmental
Psychological Development Table and Gesell Intelligence Test at 6, 12,
and 18 months. The test was administered by a blinded psychologist.
The outcome was dichotomized as “good” (development quotient
scores>85) and “adverse” (death or development quotient
scores≤85).

2.10. Statistical analysis

All statistical analyses were performed using SPSS software1

(Version 26.0) and R software2 (Version 4.1.0). Quantitative data
were compared using Student’s t-test and Wilcoxon Rank test.
Categorical data were compared using the χ2 test. For the analysis of
the mRMR, the “mRMRe” package was used. We used the “glmnet”
package to execute the LASSO and the “pROC” package to plot
the ROC curves. Statistical significance was set at 0.05 for all two-
sided tests.

3. Results

3.1. Clinical characteristics

This study included 279 neonates, including 24 with mild HIE,
166 with moderate-to-severe HIE, and 89 without HIE. According
to the evaluation, 154 of the 190 HIE patients demonstrated a

1 https://www.ibm.com

2 https://www.Rproject.org

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1093499
https://www.ibm.com
https://www.Rproject.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1093499 January 13, 2023 Time: 11:6 # 4

Zhuang et al. 10.3389/fnins.2022.1093499

FIGURE 1

Study flowchart (A) and radiomics workflow (B).

good outcome and 36 showed a poor outcome. At a ratio of 7:3,
each patient was randomly assigned to either the training cohort
or the validation cohort. Blood gas analysis was conducted at birth
and further blood examinations were conducted upon admission to
our hospital. The clinical characteristics and comparison between
the HIE and normal groups are presented in Table 1. The clinical
characteristics of the good vs. poor outcome groups are presented in
Table 2. There was no statistical difference between the training and
validation cohorts (P > 0.05).

3.2. Univariate and multivariate regression
analyses of the clinical characteristics

Multivariate regression analysis incorporated all parameters with
a p-value of 0.05 from the univariate analyses. In the final analysis,
sex, alanine aminotransferase (ALT) level, urea nitrogen level, and
pH were identified as independent predictors of HIE (Table 3). The
gestational time and ALT were identified as independent outcome
predictors (Table 4). A clinical model was established using the
independent predictors.

3.3. Radiological features

Among the 190 patients with HIE, 38 had normal MRI findings
and 152 had abnormal MRI findings. The median day the MRI
was performed was on day seven of life. The patterns of injury

seen were as follows. (1) Eighty-nine infants with injury to the
cortex, subcortical and white matter had short T1 and short T2. (2)
Punctate white matter lesions were seen in 52 infants. (3) Thirty-
four infants had affected bilateral basal ganglia and thalamus with
short T1. Bilateral DMV engorgement on SWI was seen on 65 of
the 152 MRIs. Among the 65 patients, 14 had basal ganglia injury,
32 had watershed injury, and 19 had combined injury of basal
ganglia and watershed.

Among the 190 patients with HIE, 95 patients received
therapeutic hypothermia. From these patients, normal MRI scans
were noted in 30 of the 95 infants.

3.4. Radiomic feature selection and
construction of the rad-score

3.4.1. The HIE group vs. the normal group
In distinguishing the HIE group from the normal group to

build the differentiation model, all radiomic features with non-
zero coefficients in the LASSO logistic regression model were
selected (Supplementary Figure 2). From the 1,316 features in
the training cohort, six potential predictors were selected after
dimensionality reduction (Supplementary Figure 3). The Rad-score
is a new radiomic signature developed using a specific equation
(Supplementary Equation 1). Wilcoxon’s test was used to analyze
differences between the groups. Supplementary Figure 3 shows the
distribution of the Rad-scores for the training and validation cohorts.
The HIE group had higher Rad-scores than the normal group in the
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TABLE 1 Comparison of demographic, clinical, laboratory features between control, and HIE groups.

Variable Training cohort (n = 169) Validation cohort (n = 83)

Total
(n = 279)

Control
(n = 190)

HIE
(n = 89)

P-value Control
(n = 133)

HIE
(n = 63)

P-value Control
(n = 57)

HIE
(n = 26)

P-value

Birth weight
(mean ± sd)

3.3 ± 0.5 3.3 ± 0.4 3.3 ± 0.5 0.689 3.3 ± 0.5 3.3 ± 0.5 0.441 3.3 ± 0.3 3.2 ± 0.5 0.579

Gestational time,
week (mean ± sd)

39.3 ± 1.1 39.2 ± 1.1 39.4 ± 1.1 0.052 39.2 ± 1.2 39.5 ± 1.1 0.051 39.1 ± 1.0 39.3 ± 1.1 0.501

Age, day (mean ± sd) 8.7 ± 4.5 9.1 ± 4.2 8.5 ± 4.7 0.269 9.2 ± 4.3 8.7 ± 5.1 0.504 8.8 ± 4.1 7.8 ± 3.5 0.264

Gender, n%

F 91 (32.6%) 41 (46.1%) 50 (26.3%) 30 (47.6%) 35 (26.3%) 11 (42.3%) 15 (26.3%)

M 188 (67.4%) 48 (53.9%) 140 (73.7%) 0.002 33 (53.4%) 98 (73.7) 0.005 15 (57.7%) 42 (73.7%) 0.229

ALT (mean ± sd) 42.1 ± 62.0 18.6 ± 16.8 53.1 ± 71.7 <0.001 17.1 ± 9.7 52.8 ± 68.6 <0.001 22.2 ± 27.2 53.8 ± 78.9 0.047

AST (mean ± sd) 94.4 ± 966.0 44.7 ± 32.7 117.6 ± 106.6 <0.001 43.7 ± 26.1 116.7 ± 103.8 <0.001 47 ± 45.3 119.9 ± 113.8 0.002

Urea nitrogen
(mean ± sd)

4.7 ± 3.0 3.4 ± 2.0 5.3 ± 3.2 <0.001 3.6 ± 2.1 5.3 ± 3.3 <0.001 3.0 ± 1.8 5.2 ± 2.9 <0.001

Creatinine
(mean ± sd)

58.8 ± 34.3 38.9 ± 18.7 68.1 ± 36.0 <0.001 41 ± 18.1 67.7 ± 36.7 <0.001 33.9 ± 19.3 68.9 ± 34.6 <0.001

CK-MB (mean ± sd) 102.1 ± 108.6 44.3 ± 46.2 129.2 ± 211.3 <0.001 46.1 ± 49.2 130.6 ± 201.6 0.001 40.0 ± 38.4 125.9 ± 234.4 0.064

Procalcitonin
(mean ± sd)

6.1 ± 14.6 1.8 ± 5.4 8.2 ± 17.0 <0.001 1.6 ± 3.6 9.5 ± 18.5 0.001 2.1 ± 8.3 5.3 ± 12.5 0.236

Lactic acid
(mean ± sd)

5.5 ± 2.7 5 ± 1.2 5.8 ± 3.1 0.012 4.9 ± 1.3 5.8 ± 3.1 0.362 5.1 ± 0.9 6.0 ± 3.2 0.182

D-dimer
(mean ± sd)

3.8 ± 6.7 2.3 ± 3.7 4.5 ± 7.6 0.009 2.3 ± 2.7 4.3 ± 7.2 0.027 2.5 ± 5.5 5.0 ± 8.7 0.175

CO2 (mean ± sd) 36.4 ± 12.9 34.8 ± 10.6 37.1 ± 13.8 0.177 36.2 ± 10.6 37.5 ± 14.2 0.541 31.5 ± 10.0 36.2 ± 12.8 0.100

PO2 (mean ± sd) 77.6 ± 35.3 73.4 ± 24.5 79.6 ± 39.2 0.171 70.8 ± 23.7 77.4 ± 30.6 0.130 79.6 ± 25.9 84.6 ± 54.3 0.656

HCO3-ion
(mean ± sd)

21.3 ± 8.0 22.0 ± 4.9 21.0 ± 9.1 0.325 22.1 ± 5.3 21.1 ± 7.5 0.325 21.7 ± 4.0 20.8 ± 12.2 0.695

pH (mean ± sd) 7.2 ± 0.2 7.4 ± 0.1 6.9 ± 0.2 <0.001 7.4 ± 0.1 7.0 ± 0.2 0.003 7.5 ± 0.1 6.9 ± 0.2 <0.001

BE (mean ± sd) −3.5 ± 7.9 −1.7 ± 4.5 −4.3 ± 9.0 0.008 −1.9 ± 4.9 −3.4 ± 8.6 0.211 −1.2 ± 3.0 −6.7 ± 9.3 0.004

The bold values represents that the p-value > 0.05, and the difference is statistically significant.

training cohort (p < 0.001), which was confirmed in the validation
cohort (p < 0.001).

3.4.2. Good outcome group vs. poor outcome
group

In distinguishing the good outcome group from the poor
outcome group to build the differentiation model, all radiomic
features with non-zero coefficients in the LASSO logistic regression
model were selected (Supplementary Figure 2). From the 1,316
features in the training cohort, 14 potential predictors were
selected after dimensionality reduction (Supplementary Figure 4).
The Rad-score is a new radiomic signature developed using a
specific equation (Supplementary Equation 2). Wilcoxon’s test was
used to analyze differences between the groups. Supplementary
Figure 4 shows the distribution of the Rad-scores for the
training and validation cohorts. The poor outcome group had
higher Rad-scores than the good outcome group in the training
cohort (p < 0.001), which was confirmed in the validation cohort
(p < 0.001).

3.5. Nomogram construction

Based on the results of the univariate and multivariate
logistic regression analyses, the independent predictors of clinical

characteristics were combined with the Rad-score to establish the
nomogram (Figure 2 and Supplementary Equations 3, 4).

3.6. Performance and validation of
different prediction models

3.6.1. Hypoxic-ischemic encephalopathy group vs.
normal group

The calibration curves for the clinical, radiomic, and combined
models showed good agreement with the observed values
(Supplementary Figure 5). According to the training cohort,
the AUC of the clinical, radiomic, and combined nomogram models
were 0.86, 0.94, and 0.97, respectively. According to the validation
cohort, the AUC of the clinical, radiomic, and combined nomogram
models were 0.85, 0.93, and 0.95, respectively. The following sets
of ROCs comparisons were all significant. The radiomic model
compared with the clinical model (p-value = 0.009762), the radiomic
model compared with the combined model (p-value = 0.02457),
and the clinical model compared with the combined model (p-
value 0.0001) in the training cohort. The ROCs of the clinical and
combined models also differed significantly in the validation cohort
(p = 0.01834). No significant differences in the ROC were found
between the radiomic and clinical models or between the radiomic
and combined models in the validation cohort (p = 0.1792). The
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TABLE 2 Comparison of demographic, clinical, laboratory features between good, and poor outcome groups.

Variable Training cohort (n = 134) Validation cohort (n = 56)

Total
(n = 190)

Good
(n = 154)

Adverse
(n = 36)

P-value Good
(n = 108)

Adverse
(n = 26)

P-value Good
(n = 46)

Adverse
(n = 10)

P-value

Birth weight
(mean ±sd)

3.3 ±0.5 3.3 ±0.5 3.3 ±0.4 0.458 3.3 ±0.5 3.3 ±0.4 0.560 3.3 ±0.5 3.2 ±0.5 0.560

Gestational time,
week (mean ±sd)

39.4 ±1.1 39.3 ±1.0 39.8 ±1.1 0.008 39.3 ±1.2 39.4 ±1.1 0.022 39.4 ±1.0 39.9 ±1.0 0.171

Age, day (mean ±sd) 9.8 ±5.9 8.5 ±4.7 8.2 ±4.3 0.060 8.1 ±3.9 9.2 ±5.6 0.224 8.3 ±5.2 11.2 ±6.6 0.129

Gender, n%

F 50 (26.3%) 37 (24.0%) 13 (36.1%) 27 (25.0%) 10 (38.5%) 10 (21.7%) 3 (30.0%)

M 140 (73.7%) 117 (76.0%) 23 (63.9%) 0.203 81 (75.0%) 16 (61.5) 0.257 36 (78.3%) 7 (70.0%) 0.883

ALT (mean ±sd) 53.1 ±71.7 46.4 ±64.2 53.1 ±71.7 0.007 48.1 ±69.6 98.8 ±103.9 0.003 42.3 ±49.7 37.6 ±25.6 0.771

AST (mean ±sd) 117.6 ±106.6 112.1 ±102.0 141.3 ±123.3 0.138 109.1 ±99.2 151.3 ±134.1 0.070 119.1 ±109.2 115.3 ±90.0 0.920

Urea nitrogen
(mean ±sd)

5.3 ±3.2 4.8 ±2.5 7.0 ±4.8 <0.001 4.9 ±2.6 7.9 ±5.3 <0.001 4.7 ±2.3 4.8 ±2.2 0.876

Creatinine
(mean ±sd)

68.1 ±36.0 66.1 ±32.1 77.1 ±48.9 0.096 66.4 ±35.3 86.3 ±52.3 0.020 65.3 ±23.4 53.2 ±28.5 0.153

CK-MB (mean ±sd) 129.4 ±211.3 128.4 ±200.8 133.5 ±254.6 0.896 123.1 ±202.7 121.1 ±220.2 0.966 140.9 ±197.8 165.7 ±340.2 0.755

Procalcitonin
(mean ±sd)

8.3 ±16.9 7.0 ±14.7 13.9 ±23.8 0.026 7.0 ±15.2 14.2 ±21.9 0.050 6.9 ±13.6 13.3 ±29.5 0.289

Lactic acid
(mean ±sd)

5.8 ±3.1 5.9 ±3.1 5.7 ±3.3 0.829 5.8 ±3.0 5.6 ±3.3 0.735 5.9 ±3.3 6.1 ±3.5 0.899

D-dimer (mean ±sd) 4.6 ±7.6 4.3 ±6.5 5.6 ±11.3 0.386 4.6 ±7.5 7.0 ±13.0 0.219 3.7 ±3.1 1.9 ±1.6 0.077

CO2 (mean ±sd) 37.1 ±13.8 36.7 ±13.0 38.6 ±17.0 0.466 35.6 ±12.4 36.2 ±11.6 0.824 39.4 ±13.9 44.9 ±26.3 0.348

PO2 (mean ±sd) 79.6 ±39.2 81.4 ±42.0 71.8 ±23.1 0.190 81.2 ±44.1 74.5 ±23.1 0.452 81.7 ±37.1 65.0 ±22.8 0.172

HCO3-ion
(mean ±sd)

21.0 ±9.1 22.9 ±9.6 21.2 ±6.5 0.858 21.2 ±10.5 20.7 ±5.8 0.826 20.3 ±7.4 22.5 ±8.2 0.393

pH (mean ±sd) 6.9 ±0.2 7.0 ±0.2 6.9 ±0.2 0.736 7.0 ±0.2 6.9 ±0.2 0.914 6.9 ±0.2 6.9 ±0.2 0.705

BE (mean ±sd) −4.3 ±9.0 −4.6 ±9.1 −3.4 ±8.6 0.504 −3.9 ±8.9 −3.8 ±7.6 0.929 −6 ±9.4 −2.6 ±11.2 0.318

The bold values represents that the p-value > 0.05, and the difference is statistically significant.

combined model also showed the highest accuracy (accuracy: 0.918,
sensitivity: 0.925, specificity: 0.905, PPV: 0.953, and NPV: 0.851)
(Table 5 and Figure 3). The DCA based on these three models
is shown in Figure 4. The decision curve showed that using the
combined model to predict HIE provided greater benefits than when
using the clinical and radiomic models.

3.6.2. Good outcome group vs. poor outcome
group

The calibration curves for the clinical, radiomic, and combined
models showed good agreement with the observed values
(Supplementary Figure 6). The combined model showed the
highest accuracy (Table 5 and Figure 3). The DCA based on these
three models is shown in Figure 4. The decision curve showed that
using the combined model to predict HIE added more benefits than
using the clinical and radiomic models.

3.7. Reproducibility

In radiomic feature extraction, the ICC for inter-observer
reproducibility was satisfactory. The ICC values of the features
extracted by observers 1 and 2 during their first extraction ranged
from 0.785 to 0.892.

4. Discussion

Hypoxic-ischemic encephalopathy is typically diagnosed based
on clinical presentation, including Apgar score and paired cord blood
gas. Paired cord blood gas can objectively reflect the degree of fetal
hypoxia and is the objective basis for reflecting fetal intrauterine
hypoxia. However, paired cord blood gas examinations are not
comprehensively performed in in China. Furthermore, the Apgar
scores are highly subjective. MRI is used for the assessment of
severity and outcomes. The use of MRI to identify and define HIE
within a short time is particularly challenging because of the different
examination times, injury patterns, and protocols. Furthermore,
some patients can have normal or pseudo-normal MRI findings.

The cerebral venous system consists of two parts: The superficial
cerebral venous system and the deep cerebral venous system.
The superficial cerebral venous system consists primarily of the
cerebral cortical and subcortical veins, including the superficial
cerebral veins, pial veins, cortical veins, and venous sinuses. The
deep cerebral venous system mainly consists of veins of the deep
brain medulla, basal nucleus, internal capsule, diencephalon, and
ventricular choroid plexus in the cerebral hemisphere (Mankad
et al., 2019). A typical fan-like pattern can be seen in the DMVs,
which drain blood from the WM to the subependymal veins
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TABLE 3 Positive results of univariate and multivariate regression analysis
between control and HIE groups.

Univariate regression analysis

Variable Odds ration Lower Upper P-value

Gender 0.393 0.210 0.736 0.004

Urea nitrogen 1.352 1.145 1.598 <0.001

CK-MB 1.012 1.005 1.019 <0.001

Procalcitonin 1.140 1.046 1.242 0.002

Lactic acid 1.158 1.005 1.335 0.043

D-dimer 1.131 1.010 1.268 0.034

pH 0.026 0.002 0.315 0.004

Creatinine 1.042 1.025 1.059 <0.001

ALT 1.074 1.042 1.108 <0.001

AST 1.032 1.019 1.045 <0.001

Multivariate regression analysis

Variable Odds ration CI. 95 P-value

Gender 0.2 0.08–0.49 < 0.001

ALT 1.07 1.02–1.11 < 0.001

Urea nitrogen 1.21 1.00–1.47 0.048

pH 0.01 0.00–0.26 0.007

TABLE 4 Positive results of univariate and multivariate regression analysis
between good and poor outcome groups.

Univariate regression analysis

Variable Odds
ration

Lower Upper P-value

Gestational time 1.618 1.057 2.477 0.027

Urea nitrogen 1.247 1.095 1.420 <0.001

ALT 1.001 1.000 1.011 0.009

Multivariate regression analysis

Variable Odds
ration

CI. 95 P-value

Gestational time 2.46 1.34–4.51 0.004

ALT 1.01 1.00–1.02 0.005

(Filip et al., 2022). SWI was used to determine the difference in
magnetic sensitivity between the different tissues to form an image
comparison and a thin-layer reconstructed gradient-echo imaging
sequence with the three-dimensional acquisition, completed flow
compensation signal, and high signal-to-noise ratio. Due to their
smaller size on SWI, DMVs are better seen when there is increased
intravenous deoxyhemoglobin, venous congestion, or thrombosis,
but not in the MR venography sequences in neonates (Khalatbari
et al., 2020). Compared with conventional MRI sequences, SWI is
superior in delineating cerebral venous structures in both healthy
subjects and patients with HIE. Therefore, it is easier to display the
DMV area on SWI to obtain the ROI more accurately.

There are relatively few studies on neonatal DMVs. DMV
engorgement seen in neonates is thought to be a type of perinatal
venous stroke (Khalatbari et al., 2020). Severe WM injury in preterm
infants may be caused by DMV congestion or thrombosis, which can
later develop into periventricular leukomalacia (Chen et al., 2020).

A scoring system for MR was developed by Kitamura et al. (2011) to
predict neurologic outcomes when DMV congestion and thrombosis
are present. The first application of texture to SWI in infants was
performed by Kim et al. (2020) who showed significant differences
in the DMVs between preterm infants and term infants (Thayyil
et al., 2010). Therefore, SWI may be more sensitive in detecting
abnormalities when the neonatal brain tissues are hypoxic and have a
developmental correlation.

In this study, we used manual segmentation to extract and select
image radiomic features with good predictive values by outlining
the ROI of neonatal SWI images. First, we developed and validated
a radiomic model for an accurate diagnosis of HIE in neonates.
The AUC of the radiomic signatures in the validation cohort was
0.93 [95% confidence interval (CI), 0.733–0.905], and the accuracy,
sensitivity, and specificity were 0.831, 0.807, and 0.885, respectively.
In the training cohort, the AUC of the radiomic signatures was 0.94
(95% CI, 0.829–0.924), and the accuracy, sensitivity, and specificity
were 0.883, 0.857, and 0.936, respectively. Based on the SWI features,
the radiomic model of the DMVs has a higher prediction efficiency
for neonatal HIE than clinical model. We found that the Rad-
score, sex, ALT, urea nitrogen, and pH were important indicators for
differentiating between patients with HIE and controls, and that other
clinical features were not potential predictors. Then, based on the
independent predictors of clinical characteristics, combined with the
Rad-score, we developed and validated a nomogram. The AUCs in
the training and verification cohorts were 0.97 and 0.95, respectively.
Compared with the clinical model (AUC, training: 0.86, validation:
0.85) and radiomic models (AUC, training: 0.94, validation: 0.93),
this model demonstrated a superior predictive effect. A significant
difference was found between the ROCs of the radiomic model and
the combined model using the Delong test, which showed that the
addition of clinical features can significantly improve the predictive
value of the radiomic model in distinguishing the HIE group from
the normal group. The DCA results showed that the combined
model was more effective in predicting neonatal HIE than both
radiomic and clinical models. Our analyses demonstrated that the
Rad-score, gestational age and ALT were important indicators for
differentiating between patients with HIE with good outcomes and
those with poor outcomes. Based on the independent predictors of
clinical characteristics, combined with the Rad-score, we developed
a combined nomogram model. The AUCs in the training and
verification cohorts were 0.91 and 0.88, respectively. The DCA results
showed that the combined nomogram model was more effective in
predicting the neurologic outcomes after hypoxic-ischemic injuries
than both the radiomic and clinical models. Thus, there is clinical
value in assessing the radiomic features of DMVs.

Venule dilation can be observed in SWI images, but conventional
MRI provides limited information based on human perception alone.
In our study, 38 patients showed completely normal MRI findings.
In contrast, 65 of 152 patients showed DMV engorgement on
SWI. We first added a clinically independent factor combined with
radiomic features to establish a nomogram model. The nomogram
model visualizes the radiomic features and clinical predictors and
provides a simple and easy-to-use tool for individualized evaluation
of HIE in neonates.

Textural features can be used to quantitatively differentiate
infants with ischemic injuries. Kim et al. (2020) only used a first-
order histogram analysis to assess feasibility in infants with ischemic
injury. For very few infants, the AUC was 0.865, which was lower
than that in our study. Sarioglu et al. (2022) demonstrated an accurate
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FIGURE 2

(A) Radiomics nomogram (HIE vs. normal). In the training cohort, the nomogram incorporated the Rad-score and gender, ALT, Urea nitrogen, pH. (B) A
radiomics nomogram (good outcome vs. poor outcome). In the training cohort, the nomogram incorporated the gestational age, Rad-score and ALT.

TABLE 5 Accuracy and predictive value between three models.

AUC Accuracy 95% CI Sensitivity Specificity PPV NPV

HIE vs. normal

Training cohort

Clinical model 0.86 0.735 0.667–0.795 0.624 0.968 0.976 0.550

Radiomics model 0.94 0.883 0.829–0.924 0.857 0.936 0.966 0.756

Combined model 0.97 0.918 0.871–0.953 0.925 0.905 0.953 0.851

validation cohort

Clinical model 0.85 0.699 0.588–0.795 0.614 0.885 0.921 0.511

Radiomics model 0.93 0.831 0.733–0.905 0.807 0.885 0.939 0.676

Combined model 0.95 0.867 0.775–0.932 0.877 0.846 0.926 0.759

Good vs. poor outcome

Training cohort

Clinical model 0.82 0.805 0.728–0.869 0.769 0.815 0.500 0.936

Radiomics model 0.85 0.769 0.687–0.837 0.769 0.768 0.444 0.932

Combined model 0.91 0.776 0.696–0.843 0.962 0.731 0.463 0.988

Validation cohort

Clinical model 0.78 0.679 0.540–0.797 0.500 0.717 0.278 0.868

Radiomics model 0.83 0.732 0.596–0.841 0.600 0.760 0.353 0.897

Combined model 0.88 0.786 0.656–0.884 0.800 0.783 0.444 0.947

diagnosis of moderate-to-severe HIE in neonates based on the texture
of the basal ganglia and thalamus. Sensitivity and accuracy were 95
and 94.3%, respectively. In this model, only textural features were
used. While textural features are very useful for identifying target

images with obvious texture features, their main disadvantage is that
when the resolution of the image and the illumination of the target
change, the texture of the target image may produce a large deviation
and affect the classification effect. Furthermore, our study included
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FIGURE 3

Receiver operating characteristic (ROC) curves (HIE vs. normal) for training cohort (A) and validation cohort (B) for tree models. Receiver operating
characteristic (ROC) curves (good outcome vs. poor outcome) for training cohort (C) and validation cohort (D) for tree models.

279 patients, as opposed to the 7–35 patients in previous studies.
Studies with small sample sizes can lead to overfitting and affect the
authenticity of the data.

While it remains unclear how radiomic and nomogram models
reflect the damage found in HIE, we speculate that radiomics
and nomograms can reveal micro-changes in hypoxic injuries. Gas
exchange disturbances occur in neonatal HIE. Early pathological
changes in HIE mainly include nerve cell degeneration, necrosis,
brain edema, intracranial hemorrhage, and cerebellar injury. In
the late stages, encephalomalacia and brain atrophy may occur.
After hypoxia of the brain tissues, cerebral blood flow perfusion
decreases, arterioles show reactive dilation. In order to maintain
oxygen metabolism, cerebral blood flow increases. Hemodynamics at
the level of cerebrovascular histology shows compensatory damage,
which increases the proportion of deoxyhemoglobin in venules
(Shankaran et al., 2012; Goergen et al., 2013). SWI showed that the
sensitivity of intracranial savings and abnormal venous dilatation in
the brains of neonates with HIE was higher than that of routine MRI

sequences, which accurately evaluated the damage in HIE (Kitamura
et al., 2011).

A series of quantitative imaging features can be extracted
from SWI-based DMVs. Wavelet_HHL_gldm_DependenceVariance
and wavelet_HLH_glcm_lmc1 were considered as key parameters
for the accuracy of the proposed SWI model according to
their corresponding coefficients. The GLDM quantifies gray-level
dependencies in an image. Gray-level dependency is defined as the
number of connected voxels within a distance δ that is dependent
on the center voxel. The gray-level band matrix includes features
that describe the distribution of small/large areas and low/high gray
areas. The GLCM is a matrix whose row and column number
gray values and cell contain the number of times the gray value
is in a certain relationship (angle and distance), also known as a
second-order histogram. The features calculated using the GLCM
included entropy, energy, contrast, homogeneity, dissimilarity, and
correlation. Although it is not possible to interpret precisely, we
can infer that a larger value of GLDM and GLCM may indicate
a stronger distribution of high gray areas and gray values, since
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FIGURE 4

(A) Decision curve analysis for the three models (HIE vs. normal). The green line and red line represent the radiomics model and combined nomogram
model. The blue line represents the clinical model. Decision curves showed that combined nomogram model achieved more clinical utility than
radiomics model and clinical model. (B) Decision curve analysis for the three models (good outcome vs. poor outcome). The green line and red line
represent the radiomics model and combined nomogram.

higher results than the threshold value elucidate the HIE, according
to our findings. In addition to predicting neurologic outcomes
after hypoxic-ischemic injuries, the log_sigma_2.0_mm_3D_first-
order_90th percentile and wavelet_HLL_first-order_mean were
considered as key parameters. These characteristics reflect the
symmetry, uniformity, and local intensity distribution changes of
the measured voxels. Statistically, the characteristics of the gray
value of the image can be calculated. We found those first-order
parameters were useful for discriminating between good and poor
neurologic outcomes.

This study has several limitations. First, as this was a single-center
retrospective study, external verification was not possible. As a result,
case selection bias may have occurred, and generalizability may be

limited. Second, manual segmentation was used to delineate the ROI
of the DMVs. However, automatic or semi-automatic segmentation
was not used for comparison and verification. This may have had a
subjective impact. Third, because hypothermia treatment was routine
for severe HIE and thus, could affect the radiological images and
metabolite values on MRI, we did not exclude neonates treated with
hypothermia. Fourth, further studies are needed to confirm that this
subject can be used to develop a model showing differences in the
degrees and stages of ischemia. Finally, the timing of imaging, which
may affect the outcome of HIE patients, may also have an impact on
the radiomics. Therefore, further studies with different scan times
are needed to validate our results. These deficiencies need to be
addressed in the future.
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5. Conclusion

A combined nomogram model incorporating Rad-scores and
independent clinical factors, as well as a radiomic model, can
be a reliable and effective tool for evaluating HIE. Despite not
being visibly detectable, objective features may indicate differences
in the DMVs on SWI. Considering the results of this study, we
suggest that the radiomic analysis of SWI can be a useful tool
for identifying infants with HIE. It also laid a foundation for
predicting the stage and prognosis of HIE by using radiomics-
based of DMWs of SWI.
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