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In transferable black-box attacks, adversarial samples remain adversarial across

multiple models and are more likely to attack unknown models. From this view,

acquiring and exploiting multiple models is the key to improving transferability. For

exploiting multiple models, existing approaches concentrate on di�erences among

models but ignore the underlying complex dependencies. This exacerbates the issue

of unbalanced and inadequate attacks on multiple models. To this problem, this

paper proposes a novel approach, called Relational Graph Ensemble Attack (RGEA),

to exploit the dependencies among multiple models. Specifically, we redefine the

multi-model ensemble attack as a multi-objective optimization and create a sub-

optimization problem to compute the optimal attack direction, but there are serious

time-consuming problems. For this time-consuming problem, we define the vector

representation of the model, extract the dependency matrix, and then equivalently

simplify the sub-optimization problem by utilizing the dependency matrix. Finaly, we

theoretically extend to investigate the connection between RGEA and the traditional

multiple gradient descent algorithm (MGDA). Notably, combining RGEA further

enhances the transferability of existing gradient-based attacks. The experiments using

ten normal training models and ten defensive models on the labeled face in the wild

(LFW) dataset demonstrate that RGEA improves the success rate of white-box attacks

and further boosts the transferability of black-box attacks.

KEYWORDS

multi-model ensemble attack, multi-objective optimization, deep facial recognition,

adversarial transferability, graphs

1. Introduction

The graph embedding model (Scarselli et al., 2009; Cui et al., 2019) demonstrates the

expressive potential of deep learning on graph-structured data, and has shown promise in

several applications including the classification of structural roles (Tu et al., 2018), biological

analysis (Hamilton et al., 2017), financial monitoring (Paranjape et al., 2017), and the prediction

of molecular features (Duvenaud et al., 2015). However, recent research (Dai et al., 2018;

Zügner et al., 2018; Bojchevski and Günnemann, 2019) reveals that numerous types of graph

embedding techniques, such as Graph Convolutional Networks, DeepWalk, etc., are susceptible

to adversarial attacks. Therefore, A lot of attention has been paid to generating adversarial

examples, called adversarial attacks, because they may be used to estimate the robustness of

various models (Rauber et al., 2020; Tramer et al., 2020) and boost their robustness through

adversarial training (Xu et al., 2017; Kurakin et al., 2018b; Mehrabi et al., 2021).

Additionally, adversarial examples often exhibit good transferability across the models

(Liu et al., 2016; Papernot et al., 2016; Dong et al., 2019; Chen et al., 2021), i.e., examples
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created for one model can still deceive other models. Several attack

techniques (Szegedy et al., 2013; Carlini and Wagner, 2017; Kurakin

et al., 2018b; Madry et al., 2018) treat the adversarial example

generation process as an iterative optimization and exhibit high

attack performance in a white-box setting (Goodfellow et al., 2014).

Nevertheless, in an unknown black-box environment (Papernot et al.,

2016), these approaches suffer from a serious lack of transferability.

Previous studies (Dong et al., 2018, 2019; Lin et al., 2019;

Xie et al., 2019) attributed the lack of transferability to overfitting

surrogate models. Therefore, various techniques have been proposed

to mitigate overfitting, including advanced gradient methods (Dong

et al., 2018; Lin et al., 2019; Wang and He, 2021; Zou et al.,

2022), ensemble multi-model attacks (Liu et al., 2016; Dong et al.,

2018; Li et al., 2020), input transformations (Dong et al., 2019; Xie

et al., 2019; Wang X. et al., 2021), and model-specific methods (Wu

et al., 2019; Guo et al., 2020). Almost experiments (Dong et al.,

2018; Zhao et al., 2021) and top entries in competitions (Kurakin

et al., 2018a) shows that ensemble multi-model attacks and input

transformations (e.g., random resizing and padding, transformations,

scaling, etc.) are among the most effective methods. Moreover, Lin

et al. (2019) suggested that the input transformation can be conceived

as a model augmentation to attack more models. As well, Li et al.

(2020) suggested dynamic erosion of certain intermediate structures

of the surrogate model to the same end. In conclusion, acquiring and

utilizing multiple models is key to achieving better transferability, yet

investigations on utilizing multiple models are quite lacking.

For utilizing multiple models, we find that, compared to the two-

by-two orthogonality among classification models, facial recognition

models have more complex relationships among models. Recall

that some real-world tasks, such as recommendation (Fan et al.,

2019; Tan et al., 2020), urban data mining (Dai et al., 2020;

Wang et al., 2020), and multi-task learning (Chen et al., 2019;

Cao et al., 2022), enhance the utilization of information by using

graphical representations to capture and exploit pairwise dependent

relationships. This perspective leads us to consider the following

question: Can we enhance the utilization of multiple models

by capturing and exploiting the dependent relationships among

the models?

For this purpose, we propose a novel method, called the

Relational Graphs Ensemble Attack (RGEA), to improve the

transferability. Specifically, 1) To exploit the complex dependencies

among models, we redefine the multi-model ensemble attack

as multi-objective optimization, and construct Sub-optimization

problem 1 to find the optimal attack direction in the iteration; 2)

Since the high dimensionality of the images causes a serious time-

consuming problem. To eliminates the time-consuming problem, we

define the vector representation of the model and the dependency

relationships among the models, and build the equivalent Sub-

optimization problem 2. 3) Furthermore, we theoretically prove the

equivalence between the Sub-optimization problem 1 and 2, as well as

analyze the association between RGEA and MGDA (Désidéri, 2012).

4) Extensive experiments on the LFW facial dataset show that RGEA

improves the benchmarking methods in a black-box setting, which

indicates that RGEA can effectively exploit the dependencies among

models to reliably improve transferability.

The remainder of this paper is organized as follows: Section 2

summarizes the related work. Section 3 describes RGEA in terms

of motivation, details, and theoretical analysis. Section 4 reports

the experimental results and comparisons. Section 5 gives some

concluding remarks.

2. Related work

In this paper, we choose the more challenging targeted attack,

as well as consider the widely studied perturbation constraint of the

infinite norm Linf = ‖·‖inf .

2.1. Optimization model of adversarial
attacks

Suppose {Fi (x) |i = 1, · · · ,m } is a set of pre-trained deep facial

recognition models and the corresponding loss function:

Lossi
(

x, xtarget
)

= cos
(

Fi(x), Fi(xtarget)
)

, (1)

where x is the input facial image, xtarget is the corresponding

target facial image,
{

Fi (x)
∣

∣i = 1, · · · , k
}

is surrogate models being

attacked, and
{

Fi (x)
∣

∣i = k+ 1, · · · ,m
}

is unknown black-box

models being tested.

For an arbitrary facial example x and a target face xtaget , we

find the corresponding adversarial example xadv, i.e., maximizes

the objective
k
∑

i=1
Lossi

(

xadv, xtarget
)

on the surrogate models, but

still keeping the ǫ imperceptibility constraint, as the following

constrained optimization problem:

xadv = argmax
xadv : ||xadv−x||inf

k
∑

i=1

Lossi
(

xadv, xtarget
)

(2)

2.2. The gradient-based methods

In this section, we introduce a series of gradient-based methods

which have been developed to improve transferability. Iterative Fast

Gradient Sign Method (I-FGSM) (Kurakin et al., 2018b; Madry

et al., 2018) was used as the backbone of the gradient methods with

Linf bounded. This iterative approach, given an input x and the

corresponding target xtarget , calculates the perturbation output xT by

applying T steps of the following updated steps (with x0 = x):

xt+1 =
∏

Binf (x,ε)
(xt + αst) , st =

∏

∂Binf (0,1)

(

∇xtLoss
(

xt , xtarget
))

,

(3)

Where
∏

s is the projection into the set S, Binf (x, ε) is the Linf ball

of radius ǫ around x, α is the step size, ∂U is the boundary of a set

U, and st is the maximum inner product projection of the gradient

∇xtLoss
(

xt , xtarget
)

at xt onto the unit Linf ball.

Since (Goodfellow et al., 2014) proposes that DNNs have linear

properties, st can be interpreted as the maximum inner product

projection of ∇xtLoss
(

xt , xtarget
)

in the local region to enhance the

attack ability of adversarial samples after a finite number of iterative

attacks. Note that, in the case of the Linf norm, We can convert

(Equation 3) to the following form:

xt+1 = Clipxε
(

xt + α · sign
(

∇xtLoss
(

xt , xtarget
)))

. (4)
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Momentum Iterative Method (MIM) (Dong et al., 2018)

improves the transferability by introducing momentum terms in the

attack process, given as:

mt = µ ·mt−1 +
∇xtLoss

(

xt , xtarget
)

||∇xtLoss
(

xt , xtarget
)

||1
,

xt+1 = Clipxε
(

xt + α · sign (mt)
)

, (5)

Where mt denotes the accumulated gradient at (t)th iteration, and µ

is the decay factor.

The Nesterov accelerated gradient (NIM) (Lin et al., 2019) is

integrated into the I-FGSM-based attack method to improve the

sensitivity of the momentum method when the current gradient has

a large gap in the direction of momentum, and further increases the

transferability of adversarial examples, given as:

xnest = xt + α · µ ·mt ,

mt = µ ·mt−1 +
∇xnest

Loss
(

xnest , xtarget
)

||∇xnest
Loss

(

xnest , xtarget
)

||1
,

xt+1 = Clipxε
(

xt + α · sign (mt)
)

. (6)

Scale-Invariant Method (SIM) (Lin et al., 2019) uses scale

replicates of the input image to further enhance the transferability.

However, SIM uses a lot more resources and running time, given as:

xt+1 = Clipxε

(

xt + α · sign

(

1

m

m
∑

i=1

∇xtLoss
(xt

2i
, xtarget

)

))

. (7)

The Diversity Input Method (DIM) (Xie et al., 2019) applies

random resizing and padding to adversarial examples with

probability p in each iteration to further improve the transferability

of the adversarial examples, given as:

xt+1 = Clipxε
(

xt + α · sign
(

∇xtLoss
(

T(xt , p), xtarget
)))

, (8)

where T
(

·, p
)

indicates that the input transformation is performed

with probability p.

Translation-Invariant Method (TIM) (Dong et al., 2019)

generates adversarial examples that are insensitive to the

discriminative region of the surrogate models by translation

invariance and uses predefined convolution kernels instead of

translation operations to improve efficiency, given as:

xt+1 = Clipxε
(

xt + α · sign
(

W ⊗∇xtLoss
(

xt , xtarget
)))

, (9)

whereW is the pre-defined convolution kernel and ⊗ represents the

convolution operation.

In conclusion, current approaches analogize transferability to

generalizability andmove the strategies for enhancing generalizability

to gradient-based attack methods. However, they ignore the complex

relationships among models, which limits the transferability of

generated adversarial samples. Inspired by multi-relational graphs,

we find optimal descent directions by solving sub-optimization

problems based on relational graphs in iterative attacks, further

improving transferability.

2.3. Graph-based modeling

Notably, several recent works use graphs to capture and

extract dependencies between entities, enhancing the performance of

existing models and algorithms. For example, in traffic prediction,

ST-GCN (Yu et al., 2018) and ST-MGCN (Geng et al., 2019)

propose to model the dependencies among regions by using

graph convolutional networks, and then combine the dependencies

to further enhance the model prediction. In anomaly detection,

SCAN (Xu et al., 2007) captures and extracts the dependencies

among entities through graphs, and then detects anomalous

entities by looking for anomalous dependencies among them.

Likewise, in multi-task learning, ML-GCN (Chen et al., 2019)

proposes capturing and exploring dependencies among multiple

labels based on graphs, and combining this dependency to improve

recognition performance. In addition, RMTL (Cao et al., 2022)

proposes capturing data-data and task-task dependencies by building

knowledge graphs that connect data points and tasks, and combining

these dependencies to achieve more accurate predictions for new

tasks. Motivated by these works, we propose the Relational Graphs

Ensemble Attack (RGEA), which combined the dependencies among

models to facilitate the exploitation of multiple models. It has not

been explored in existing attack methods.

3. Methodology

In Section 2.2, we systematically introduce the existing gradient-

based methods. Remarkably, combining several methods can further

improve the transferability of the adversarial samples. Thus, we give

the current general attack framework in Figure 1A by combining

multi-model ensemble attacks with advanced gradient methods and

input transformations. In this framework, RGEA focuses on the

second step, as shown in Figure 1B, where we first construct a

multi-model graph; then extract the dependency matrix of the

model from the constructed graph; finally, find the final descent

direction by constructing a Optimization problem based on the

dependency matrix.

Given that our proposed approach is for multi-model ensemble

attacks, we first discuss the problems of ensemble attack, then

introduce our motivation and elaborate on the proposed RGEA

algorithm, and finally provide a comprehensive theoretical analysis

of the RGEA algorithm.

3.1. The problem of ensemble attack

Intuitively, adversarial examples is more likely to transfer attack

capabilities to other models, if it remains an adversary to multiple

models. Based on this insight, acquiring and utilizingmultiplemodels

is the key to obtaining better transferability. For exploiting multiple

models, earlier studies (Dong et al., 2018; Che et al., 2020) focused on

uniform fusing the outputs of different layers of DNNs. For example,

Liu et al. (2016) pioneered the study of multi-model ensemble attacks

and proposed uniform fusion loss, Dong et al. (2018) proposed

two uniform fusion strategies for logit or probabilistic outputs of

models, and Che et al. (2020) proposed uniform fusion intermediate

features. However, they ignore inter-model differences, thereby He

et al. (2022) proposed a gradient normalized ensemble attack to
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FIGURE 1

(A) An attack framework that combines multi-model ensemble attacks with existing attack methods which are advanced gradient optimization

techniques and input transformation techniques. (B) The overall RGEA calculation process, where the set of surrogate models is {Fi (x) |i = 1, · · · , 6 }.

address inter-model gradient magnitude differences, and Xiong et al.

(2022) proposed a stochastic variance reduction ensemble (SVRE)

attack to tackle inter-model gradient variance.

Nevertheless, differences among models only one-sidedly reveal

complex dependencies, and we find that the dependencies among

deep facial recognition models are more complex than those of

classification models. Specifically, Figure 2 shows that multiple deep

facial recognition model gradients have larger and more complex

cosine similarities, compared to the classificationmodels. In addition,

there is a complex inherent similarity between different subsets of

surrogate models, as shown in Figure 2B, where the similarity among

the top sixmodels is much greater than others. In conclusion, existing

approaches only one-sidedly consider the differences among models,

and ignore the complex dependencies behind them. It leads to an

unbalanced and inadequate attack on multiple models such that it

limits transferability black-box attacks. This inspired us to exploit the

complex dependencies among models to improve the transferability

of the generated adversarial samples.

In essence, existing approaches fail to exploit complex

dependencies among models, which stems from their treating

multiple models as one complex multivariate model and using

single-objective optimization. For this reason, this paper redefines

the multi-model ensemble attack as multi-objective optimization,

defined as follows:

argmax
xadv

{Ji (xadv)}i=1,··· ,k,

s.t. D (x, xadv) ≤ ε, (10)

where Ji (xadv) ∈ R is a continuous function measuring the attack of

the adversarial sample relative to the model Fi, usually choosing the

loss function Loss
(

Fi(xadv), xtarget
)

. D (x, xadv) ∈ R is a continuous

function that mainly measures the amount of perturbation in the

sample, usually choosing the Lp norm, i.e., ||x − xadv||p, and ǫ is the

maximum disturbance distance.

Inspired by MGDA, we performed a theoretical analysis based

on the first-order Taylor approximation. Assume that at xn is the

n iteration of the adversarial sample, g∗n is the final direction of

descent, gin(i = 1, · · · k) is the gradient of the objective function

Ji(x) computed on xn, and α is the iteration step size. Under the

assumptions, we have xn+1 = xn + αg∗n and ∇Ji (xn) = Ji (xn+1) −
Ji (xn). When the step size is small enough, the following approximate

transformations are available:







∇J1 (xn)

· · ·
∇Jk (xn)






≈







α
〈

g1n , g
∗
n

〉

· · ·
α

〈

gkn, g
∗
n

〉






= α||g∗n ||







||g1n||2 cos
(

g1n , g
∗
n

)

· · ·
||gkn||2 cos

(

gkn, g
∗
n

)






,

(11)

Where ||g1n||, · · · , ||gkn|| is deterministic and ||g∗n ||, α is constant, then

the effect of each objective’s descent in each iteration is primarily

influenced by cos
(

g1n , g
∗
n

)

, · · · , cos
(

gkn, g
∗
n

)

.

In summary, we cam eliminate the problem of unbalanced and

inadequate attacks by finding the final descent direction which

cos
(

g1n , g
∗
n

)

, · · · , cos
(

gkn, g
∗
n

)

is as equal and large as possible. We

translate this idea into solving the following optimization problems:

argmin
g

||g||2 ,

s.t.

{

g

∣

∣

∣

∣

∣

argmin
g

||Gg − e||, e = (1, · · · , 1)T
}

, (12)

where G =
(

g1n
/

||g1n||2, · · · ,
gkn
/

||gkn||2
)T

∈ Rk×N is a Jacobi matrix, k

is the number of models andN is the image dimension. Optimization

problem in Equation (12) will be referred to as Optimization problem

1 in the discussion that follows.
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FIGURE 2

The cosine similarity of the gradients of the sampled photos on the di�erent models is depicted in the figure, where (A) is the visualization result of

multiple classification models, and (B) is the visualization result of multiple deep facial recognition models.

3.2. Relational graphs ensemble adversarial
attack

Since Optimization problem 1 is built based on the high-

dimensional space of images, which causes serious time-consuming

problems. However, the number of surrogate models employed is

much smaller than the image dimension due to the large number of

computational resources required to load the models. It stimulates

us to explore building a new optimization problem based on the

dependencies among the models.

In this paper, we use a graph to extract the dependencies among

models, which is a flexible way to capture the topology of the

model space. Specifically, we represent each node of the graph as an

embedding vector of the model. For better theoretical analysis, we

simplify the vector representation and define the embedding vector

of model Fi on xn to be represented as gin
/

||gin||2. As well as the

dependencies among the models are expressed in the following form:

〈

Fi, Fj
〉

xn
= cos

(

gin, g
j
n

)

. (13)

For characteristics of the solution to Optimization problem 1, we

have the following proposition.

Proposition 1. If g∗n the solution of Optimization problem 1, then there

exists w∗ such that g∗n = GTw∗.

Proof. Suppose d1 · · · , dr is the orthogonal bases of the subspace

spaned by g1 · · · , gk, as well as dr+1 · · · , dn and d1 · · · , dr are the

orthogonal bases of Rn. Therefore, there exist w∗
1 ∈ Rr and w∗

2 ∈
Rn−r with g∗n =

(

d1, · · · , dr
)

w∗
1 +

(

dr+1, · · · , dn
)

w∗
2 , such that the

following equation holds.

Gg∗n = G
(

d1, · · · , dr
)

w∗
1 (14)

furthermore, Optimization problem 1 takes
∥

∥g
∥

∥

2
to be extremely

small, so it follows that g∗n =
(

d1, · · · , dr
)

w∗
1 . From this, there exists

w∗ such that g∗n = GTw∗.

By this proposition, we can denote g∗n as a linear combination of

eachmodel embedding vector, i.e., g∗n = GTwn wherewn is the weight

vector of the linear combination, and we can transform the equation

in Equation (11) as follows:







∇J1 (xn)

· · ·
∇Jk (xn)






≈







α
〈

g1n , g
∗
n

〉

· · ·
α

〈

gkn, g
∗
n

〉







= α









〈F1, F1〉xn . . . 〈F1, Fk〉xn
...

. . .
...

〈Fk, F1〉xn · · · 〈Fk, Fk〉xn









k×k







||g1n||2w1
n

· · ·
||gkn||2wk

n






,

(15)

further, associating (Equations 11, 15) and simplifying them yields

the following equation:







cos
(

g1n , g
∗
n

)

· · ·
cos

(

gkn, g
∗
n

)






=

1

||g∗n ||2









〈F1, F1〉xn . . . 〈F1, Fk〉xn
...

. . .
...

〈Fk, F1〉xn · · · 〈Fk, Fk〉xn









k×k







w1
n

· · ·
|wk

n






,

(16)

hence, we establish the connection between

cos
(

g1n , g
∗
n

)

, · · · , cos
(

gkn, g
∗
n

)

and dependency among models.

With this connection, we can transform Optimization problem 1

as follows, and the proof of equivalence transformation is given in
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Section 3.3.

argmin
w

||Aw− e||2 ,

where A = GGT =









〈F1, F1〉xn . . . 〈F1, Fk〉xn
...

. . .
...

〈Fk, F1〉xn · · · 〈Fk, Fk〉xn









k×k

, e = (1, · · · , 1) ,

(17)

where A is a multi-relationship matrix transformed from a multi-

model diagram, and the ultimate direction of descent g∗n is equal to

GTw∗
n, where w

∗
n is the solution to the optimization issue in Equation

(17). Optimization problem in Equation (17) will be referred to as

Optimization problem 2 in the discussion that follows.

Theoretically, RGEA can be used with a variety of currently

used iterative gradient-based attack strategies. An explanation of

the integration of RGEA and I-FGSM is provided by Algorithm 1.

Because the descent direction determined by solving optimization

problem 2 maintains the optimal angle to multiple objective

gradients. In Algorithm 1, we replace the symbolic operation of the

I-FGSM algorithm with the normalization method as follows:

g∗ =
g∗ ·

√
N

||g∗||2
, where g ∈ RN . (18)

We perform ablation experiments on this in Section 4.2.2 to

investigate the effect of this operation on the transferability of the

generated adversarial samples.

3.3. Theoretical analysis of RGEA

According to Section 3.2, the key core of RGEA is Optimization

problem 2, and we next present a detailed theoretical analysis of

Optimization problem 2. We first demonstrate that Optimization

Problems 2 and 1 are equivalent, after which we discuss the

relationship between MGDA and RGEA.

Continuing with the notation in Section 3.2, we next state the

proposition on the equivalence between Optimization problem 2 and

Optimization problem 1, and proof it.

Proposition 2. The assumption is that G ∈ Rk×N is a matrix and

A = GGT is a matrix belonging to Rk×k. Then for arbitrary b, there

is an equivalence between Optimization problem 2 and Optimization

problem 1.

Proof. Let A∗ and G∗ be the Moore-Penrose generalized inverse

matrices of A and G, respectively, then we get the following equation:

G∗GG∗ = G∗,GG∗G = G,
(

GG∗)T = GG∗,
(

G∗G
)T

= G∗G,A∗ = G∗T G∗. (19)

Given that A∗ is the Moore-Penrose generalized inverse matrices,

the general solution to Optimization problem 2 can be formulated as

w∗ = A∗b + (I − A∗A)y, where y ∈ Rk is arbitrary. The following

will demonstrate that GTw∗ is a solution to problem 1, where w∗ is

the general solution to Optimization problem 2:

Input: A benign example x and its label y, a set of k

surrogate models, corresponding losses {J1, · · · , Jk}, the

perturbation bound ǫ, number of iterations T, and

the iteration step α.

Output: An adversarial example xadv that fulfills ||xadv −
x||∞

1: Initialize xadv0 = x;

2: for t = 0 to T − 1 do

3: Get the loss of the models
{

J1

(

xadvt

)

, · · · , Jk
(

xadvt

)}

;

4: Calculate the gradient of the models
{

g1t , · · · , gkt
}

:

git = ∇xadvt
J
(

xadvt , y
)

;

5: Get the Jacobi matrix of multiple objectives:

G =
(

g1t , · · · , g
k
t

)T
;

6: Calculate the solution of Optimization problem 2

w∗
t :

w∗
t = argmin

w
||Aw− (1, · · · , 1)T ||;

7: Calculating the final direction of descent g∗t :

g∗t = GTw∗
t ;

8: Update xadvt+1 = Clipε
x

{

xadvt + α · g∗t ·
√
N

||g∗t ||2

}

9: end for

10: return xadv = xadvT

Algorithm 1. The RGEA-I-FGSM attack algorithm

GTw∗ = GT
(

A∗b+
(

I − A∗A
)

y
)

= GTA∗b+
(

GT − GTA∗A
)

y

= GT G∗T G∗b+
(

GT − GT G∗T G∗GGT
)

y

= G∗b+
(

GT − G∗GGT
)

y

= G∗b+
(

GT − GT G∗T GT
)

y

= G∗b+
(

GT − GT
)

y = G∗b

In summary, for the generic solutionw∗ of Optimization problem

2, we have GTw∗ = G∗b, and G∗b is the unique solution to

Optimization problem 1, then solving Optimization problem 1 can

be equivalently converted to solving Optimization problem 2.

To facilitate the discussion of the association between the

optimization problem of finding the optimal descent direction in

Désidéri (2012) and ours, we first introduce that optimization

problem of MGDA in Equation (20) and the definition of Pareto-

stationary point in Definition 1. For the optimization problem

of MGDA, we chose standard normalization to better balance,

geometric properties and theoretical analysis. Optimization problem
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in Equation (20) will be referred to as Optimization problem 3 in the

following discussion.

argmin
g

||g||22 ,

s.t.







g

∣

∣

∣

∣

∣

∣

g =
k
∑

i=1

ci
gi

||gi||2
, ci ≥ 0

(

i = 1, · · · , k
)

,

k
∑

i=1

ci = 1







. (20)

Definition 1. Let x0 be a point at the center of an open ball in

the feasible domain �, k smooth objective functions Ji(x)i=1,··· ,k with

gi = ∇xJi (x0) being the gradient. A point x0 is said to be Pareto stable if

there exists a convex combination of gradient vectors
{

gi
}

i=1,··· ,k equal

to zero:

k
∑

i=1

cigi = 0, ci ≥ 0
(

i = 1, · · · , k
)

,

k
∑

i=1

ci = 1. (21)

Under certain conditions, the solution to Optimisation Problem

3 is in the same direction as Optimisation Problem 1, and I will state

and prove this proposition below.

Proposition 3. The solution to Optimisation Problem 3 is in the same

direction as Optimisation Problem 1, if the solution g∗ =
k
∑

i=1
c∗i

gi
||gi||2 of

Optimization problem 3 has c∗i > 0
(

i = 1, · · · , k
)

and g∗ 6= 0.

Proof. Let g∗ =
k
∑

i=1
c∗i

gi
||gi||2 is the solution of Optimization problem

3 with c∗i > 0
(

i = 1, · · · , k
)

,
k
∑

i=1
c∗i = 1. Since c∗i > 0

(

i = 1, · · · , k
)

,

none of the inequality constraints is saturated. Consequently, g∗ is

also a optimal solution to the following optimization problem:

argmin
g

||g||22 ,

s.t.







g

∣

∣

∣

∣

∣

∣

g =
k
∑

i=1

ci
gi

||gi||2
,

k
∑

i=1

ci = 1







. (22)

Consequently, using the vector c ∈ Rk as the finite-dimensional

variable and c∗ =
(

c∗1 , · · · , c∗k
)T
. The Lagrangian writes as L (c, λ) =

||( g1
||g1||2 , · · · ,

gk
||gk||2 )c||

2
2+λ

(

k
∑

i=1
ci − 1

)

, and for all indices i, calculate

the partial derivatives for ci:

∂L

∂ci
=

∂||( g1
||g1||2 , · · · ,

gk
||gk||2 )c||

2
2

∂ci
+ λ = 2

〈

gi

||gi||2
,

k
∑

i=1

gi

||gi||2
ci

〉

+ λ.

(23)

Since the optimality condition, ∂L
∂ci

= 0, ∂L
∂λ

= 0, is satisfied at the

vector c∗ , we have
〈

gi, g
∗〉 = − λ

2 ||gi||2
(

i = 1, · · · , k
)

, then there are

the following equations:









〈

g1
||g1||2 , g

∗
〉

· · ·
〈

gk
||gk||2 , g

∗
〉









= −
λ

2







1

· · ·
1






(24)

From lemma 2.1 in Désidéri (2012), for all gi
(

i = 1, · · · , k
)

:
〈

gi, g
∗〉 ≥ ||g∗||22; therefore:−

λ
2 > 0. Since c∗∗ = − 2

λ
c∗ is the optimal

solution to Optimisation Problem 2, it is proved that the solution

to Optimisation Problem 3 is in the same direction as Optimisation

Problem 1.

Proposition 3 illustrates that Optimization Problem 2 is capable

of determining the common descent direction for multiple objectives,

effectively resolving the issue of insufficient attacks on multiple

models. Additionally, we offer a simple geometric explanation

for MGDA.

From previous papers (Chen et al., 2021; Zhao et al., 2021),

it is argued that more iterative attacks and larger perturbations

can effectively improve the transferability of adversarial samples. As

well, studies such as Dong et al. (2018) and Wang and He (2021)

propose to increase perturbations by stabilizing the update direction

and effectively improving transferability. From the definition of the

Pareto-stationary point and Optimization problem 3, the MGDA

algorithm stops at the Pareto-stationary point, inapplicable for

transferability black-box attacks. Conversely, our approach at the

Pareto-stationary point can also attack in a direction that is

synthetically effective against multiple objectives.

4. Experiments

4.1. Experimental setup

4.1.1. Dataset
We conducted experiments on the LFW (Huang et al., 2007)

dataset, which is the most widely used benchmark for image

face verification, contains 13,233 face images from 5,749 different

individuals, and includes faces with a variety of poses, expressions,

and illuminations. The unrestricted external data protocol with

labels includes 6,000 pairs of faces, of which 3,000 pairs have

the same identity and 3,000 pairs have different identities. We

performed targeted transferability attacks on the 3,000 pairs that have

different identities.

4.1.2. Facial recognition models
For our experiments, we used five surrogate models for the

ensemble attack, where the pre-training parameters for the models

were obtained from the open-source library in the paper (Wang Q.

et al., 2021). The number of unknown black-box models tested was

twenty, with ten normally trained models and ten defensive models,

and the pre-training parameters for the models were obtained from

the open-source library of RobFR (Yang et al., 2020). We tabulate the

full model information in Table 1, which includes the name of the

models, as well as the best threshold of discrimination (Threshold)

on the LFW dataset and the accuracy (Acc) concerning it. Among

all the defense models, the top three defense models adopt the

defense transform methods (BR, Xu et al., 2017; RP, Xie et al., 2018;

JPEG, Dziugaite et al., 2016), and the next seven are adversarially

trained models.

4.1.3. Baselines
The baseline methods to compare are the extensively studied

gradient-based attack method, including I-FGSM (Madry et al.,

2018), TI-FGSM (Dong et al., 2019), DI-FGSM (Xie et al., 2019), DI-

TI-MI-FGSM, and SI-DI-FGSM (Lin et al., 2019). For the baseline

approach, we used SVRE and Ens as ensemble methods, where Ens is

a uniform fusion of the losses from different models.
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4.1.4. Evaluation metric
Given an attack method Aǫ

(

x, xtarget
)

under the Linf norm, an

adversarial example xadv = Aǫ

(

x, xtarget
)

is generated for the input x

and the target image xtarget . Following the previous face recognition

(Wang Q. et al., 2021) and targeted attack settings (Yang et al., 2020;

Zhao et al., 2021), the evaluationmetric is the attack success rate (Asr)

on the face recognition model Fi (x), defined as follows.

Asr (Fi,Aε) =
1

N

N
∑

j=1

I

(

cos
(

Fi

(

x
target
j

)

, Fi

(

xadvi

))

> δi

)

, xadvi

= Aε

(

xj, x
target
j

)

(25)

where
(

xi, x
target
i

)N

i=1
is the paired test set, I (·) is the indicator

function, and δi is the best threshold corresponding to Fi.

4.1.5. Hyper-parameters
Following previous work (Dong et al., 2018; Lin et al., 2019; Xie

et al., 2019; Yang et al., 2020), we set the maximum perturbation to

ǫ = 8, the range of pixel values for each image to [0, 255], the number

of iterations was 20, and the step size was α = 0.6. For MIM, we set

the decay factor µ = 1. For TIM, we used a Gaussian kernel of size

7 × 7. For DIM, the transition probability p was set to 0.8. For SIM,

we set the number of copies m = 4. For SVRE, we set the internal

update frequency M to four times the number of ensemble models,

the internal step size β is set 0.6 and the internal decay factor µ2 is

set to 1.0. For RGEA, we set the step size α = 1, since our method

removes the sign function, resulting in much smaller perturbations at

each iteration than Ens. For fairness, we also verified the disturbance

distance l2(x) = ||x||2/
√
d, x ∈ Rd of RobFR (Yang et al., 2020) in

Table 2.

4.2. Ablation study

The ablation study is conducted to verify the benefits of RGEA

and to determine the effects of key parameters. Specifically, we first

tested the effect of parameters in existing methods on RGEA and then

investigated the effectiveness of Optimization Problem 2.

4.2.1. E�ect of parameters
In this section, we explore the impact of p in DI and µ in MI for

RGEA using five normally trained models (M-6, M-7, M-8, M-9, and

M-10).

On the decay factor µ in RGEA-MI-FGSM: We investigate the

influence of the decay factorµ of the RGEA-MI-FGSM on the success

rate.We combine theMI-FGSM attack with the RGEA, and the decay

factor µ has a granularity of 0.1 and runs from 0 to 1. RGEA-MI-

FGSM degrades to the RGEA-I-FGSM attack method if µ = 0.

Figure 3A displays several networks’ success rates and their average

values. In contrast to the experimental results in Dong et al. (2018),

we observe that the attack success rate of RGEA-MI-FGSM increases

as µ rises and reaches a maximum around µ = 0.4, after which

the success rate significantly decreases. It is possible that too large µ

destroys the optimal direction of descent for the current calculation,
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TABLE 2 Perturbation distance (l2) for the adversarial examples and success rate (%) of attacks on the normal model for Ens, SVRE, Ens-l2 and RGEA, where

the adversarial examples were all crafted on the surrogate models.

Base Attack M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 M-10 Average l2

I-FGSM Ens 49.07 38.73 49.80 59.23 70.73 57.93 71.87 70.17 68.57 65.07 60.12 5.21

SVRE 14.50 7.43 17.30 15.17 22.17 10.57 21.07 19.33 18.53 19.07 16.51 3.43

Ens-l2 52.87 42.23 53.70 61.57 73.20 60.73 74.23 73.47 70.57 68.10 63.07 4.24

RGEA 57.70 45.23 57.63 66.77 76.93 65.23 78.93 79.33 77.30 73.20 67.83 4.44

DI-FGSM Ens 50.47 41.10 51.83 61.70 71.93 62.33 73.33 72.50 70.60 67.47 62.33 4.47

SVRE 18.57 10.37 23.03 22.53 30.87 18.03 29.50 28.37 25.97 26.50 23.37 3.11

Ens-l2 57.03 47.70 58.80 67.33 77.57 68.27 78.13 77.97 75.43 72.40 68.06 4.02

RGEA 64.43 54.40 64.87 74.17 81.97 74.03 83.70 84.27 82.90 79.07 74.38 4.39

DI-TI-FGSM Ens 52.07 43.60 53.63 64.07 73.43 64.80 74.93 73.70 72.47 69.33 64.20 4.59

SVRE 21.67 12.67 26.13 25.77 35.53 21.60 33.90 32.13 29.70 30.63 26.95 3.23

Ens-l2 58.53 49.23 59.57 69.00 77.83 69.77 78.93 78.60 76.80 73.90 69.22 4.11

RGEA 65.17 56.00 65.67 75.43 82.70 74.80 84.60 84.77 84.03 79.63 75.28 4.44

DI-TI-MI-FGSM Ens 51.70 45.20 52.97 66.77 73.30 66.83 76.13 75.60 75.03 71.47 65.50 7.00

SVRE 64.73 59.23 65.83 77.20 81.97 77.20 85.00 84.20 82.97 79.77 75.81 7.25

Ens-l2 58.30 51.20 59.12 72.14 78.23 72.15 80.20 80.12 80.41 75.12 70.69 4.56

RGEA 67.77 58.43 67.50 77.40 83.43 76.56 86.00 86.20 85.20 80.86 76.93 4.83

SI-DI-FGSM Ens 59.57 52.00 58.43 72.40 77.97 73.33 80.40 80.10 80.47 76.40 71.11 5.55

SVRE 36.50 27.53 42.50 47.50 57.40 44.70 55.87 54.57 51.43 51.30 46.93 3.73

Ens-l2 62.70 55.03 61.90 73.83 79.37 74.33 81.73 81.93 81.17 77.77 72.98 4.32

RGEA 67.67 59.43 66.10 77.77 82.30 77.73 84.93 85.33 85.33 81.40 76.80 4.88

The bold values are the best.

FIGURE 3

Success rate of RGEA-MI-FGSM (A) and RGEA-DI-FGSM (B) when the corresponding parameters are changed.
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FIGURE 4

The adversarial perturbation noise images for Ens and Ens-l2 with I-FGSM.

TABLE 3 The black-box attack success rates (%) against three models with the defense transform methods (BR, Xu et al., 2017; RP, Xie et al., 2018; and JPEG,

Dziugaite et al., 2016).

Base
Attack

Surrogate models Defense black-box models

M-21 M-22 M-23 M-24 M-25 Average M-11 M-12 M-13 Average

I-FGSM

Ens 100.00 99.70 99.97 100.00 99.97 99.93 71.77 65.97 67.6 68.44

SVRE 73.10 43.20 43.53 51.27 55.50 53.32 20.90 16.53 15.97 17.80

RGEA 100.00 99.60 99.80 100.00 100.00 99.88 78.57 74.5 75.73 76.27

DI-FGSM

Ens 99.97 93.37 95.60 99.77 99.73 97.69 73.4 69.8 70.03 71.08

SVRE 74.97 39.67 34.63 67.70 52.23 53.84 29.60 25.50 24.27 26.46

RGEA 99.93 96.20 97.93 100.00 99.83 98.78 83.37 81.27 81.7 82.11

DI-TI-FGSM

Ens 99.97 93.37 96.40 99.70 99.77 97.84 74.57 71.27 71.87 72.57

SVRE 80.97 45.70 37.27 66.27 51.07 56.25 33.83 30.80 29.00 31.21

RGEA 99.97 95.83 97.97 100.00 99.87 98.73 84.33 82.5 82.63 83.16

DI-TI-MI-FGSM

Ens 99.97 90.80 94.90 99.87 99.67 97.04 76.3 73.4 74.73 74.81

SVRE 100.00 96.40 98.63 100.00 99.90 98.99 85.00 82.97 83.47 83.81

RGEA 100.00 98.40 99.16 100.00 99.90 99.49 85.87 83.67 84.03 84.52

SI-DI-FGSM

Ens 99.97 93.03 97.63 99.93 99.90 98.09 80.27 78.17 78.37 78.93

SVRE 91.60 63.77 66.00 88.10 78.73 77.64 55.90 53.47 51.73 53.70

RGEA 100.00 94.20 97.93 99.57 99.73 98.29 84.6 83.03 82.9 83.51

The adversarial examples are generated on the surrogate models, i.e., M-21, M-22, M-23, M-24, and M-25. The bold values are the best.

resulting in a significant decrease in transferability. In the following

experiments, we will set µ = 0.4 for RGEA.

On the probability p in RGEA-DI-FGSM: We then study the

influence of the transformation probability p on the success rates

under black-box settings. The transformation probability p varies

from 0 to 1 and RGEA-DI-FGSM degrades to RGEA-I-FGSM if

p = 0. We show the success rates on various networks and their

average values in Figure 3B. Similar to the experimental results in the

paper (Xie et al., 2019), the black-box success rate of RGEA-DI-FGSM

is higher as p increases. Furthermore, the black-box success rate can

be significantly increased if p is small, i.e., if only a small number of

transformed inputs are used. In the following experiments, we will set

p = 0.8 for RGEA.

4.2.2. E�ect of optimization problem 2
In this section, ablation experiments are conducted to evaluate

the efficacy of Optimization Problem 2. Specifically, we drop

Optimization Problem 2 for finding the optimal descent direction in

RGEA, but we keep the normalization approach in equation (18) and

name it as Ens-l2. Then, on the normally trained model, compared

the transferability of RGEA and Ens-l2.

In Section 4.3.1, the findings reveal that RGEA outperforms Ens-

l2 in all experiments, where on DI-FGSM, DI-TI-FGSM, DI-TI-MI-

FGSM, and SI-DI-FGSM, the average success of RGEA is increased

by 6.32, 6.06, 6.24, and 3.82%, respectively. The results show that

Optimization Problem 2 in RGEA can effectively exploit the complex

inter-model dependencies and improve transferability.
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TABLE 4 The black-box attack success rates (%) against seven adversarially trained models.

Base Attack M-14 M-15 M-16 M-17 M-18 M-19 M-20 Average

I-FGSM

Ens 9.27 10.40 17.33 13.37 13.80 11.73 12.63 12.65

SVRE 8.03 8.87 11.90 11.93 12.80 10.37 9.70 10.51

RGEA 9.60 10.83 19.37 13.70 13.77 12.03 13.73 13.29

DI-FGSM

Ens 9.23 10.60 17.77 13.33 13.87 11.53 12.73 12.72

SVRE 7.87 9.00 12.27 11.97 12.80 10.30 9.67 10.55

RGEA 9.97 11.47 21.00 13.87 14.20 12.07 14.93 13.93

DI-TI-FGSM

Ens 9.50 10.90 18.43 13.47 14.00 11.73 13.30 13.05

SVRE 8.10 9.30 12.60 12.23 13.13 10.70 10.17 10.89

RGEA 10.03 11.77 21.33 14.13 14.17 12.27 15.40 14.16

DI-TI-MI-FGSM

Ens 10.20 11.63 19.67 14.10 14.40 12.33 14.27 13.80

SVRE 10.87 12.53 22.53 14.70 14.97 12.90 16.30 14.97

RGEA 10.26 12.00 21.93 14.20 14.43 12.33 15.67 14.40

SI-DI-FGSM

Ens 10.27 12.00 20.93 14.07 14.67 12.50 15.23 14.24

SVRE 8.87 10.17 15.30 13.10 13.57 11.13 11.73 11.98

RGEA 10.57 12.30 22.43 14.37 14.87 12.70 16.33 14.80

The bold values are the best.

Furthermore, we found that Ens-l2 outperformed Ens in all

experiments. It may be that targeted transferability relies on

activating target semantic features, yet this is different from non-

targeted transferability, which attacks the activated features. The

result is that targeted transferability attacks need a more precise

attack direction during each iteration. For this observation, we

further visualize the adversarial perturbation noise images of Ens and

Ens-l2. In Figure 4, we can see that the adversarial perturbation noise

image generated by Ens-l2 has more semantical information about

the target face.

4.3. Comparisons with state-of-the-art
methods

4.3.1. Attack normally trained models
We first compared the transferability capabilities on normal

training models. Specifically, adversarial samples were generated

on multiple surrogate models by Ens, SVRE and RGEA combined

with various basic methods and then tested for l2 perturbation

distance and the attack success on normal trainingmodels. The attack

performance of the normal training models is displayed in Table 2.

In general, RGEA performed better than Ens and SVRE in almost

experiments. Especially in DI-FGSM and DI-TI-FGSM, RGEA is

higher than Ens by 12.05 and 11.08%, and 1.12% higher than SVRE

in TI-DI-MI-FGSM. The disturbances of RGEA are smaller than Ens,

which indicates that rather than just increasing the perturbation,

the RGEA improved transferability from successfully utilizing the

complex dependencies among the models. Furthermore, we find that

compared with Ens, RGEA-I-FGSM combined with DI shows fewer

changes in disturbances, which indicates that RGEA can effectively

alleviate the instability problems caused by DI.

For SVRE, except DI-TI-MI-FGSM, it is significantly lower than

Ens and RGEA in targeted transferability black-box attack tests.

Regarding this phenomenon, we attribute it to three aspects: 1)

SVRE embeds an inner loop in the iterative attack, where the inner

loop iteratively randomly selects models to compute gradients for

internal updating to correct the average gradient in the iterative

attack. However, SVRE chooses the inner loop’s last update direction

as the iterative attack’s update direction, and the update step size

of both is the same large. This causes the iterative attack’s update

direction loses the current iteration point’s local information, which

destroys the effectiveness of the iterative attack method. Meanwhile,

with the same normalization operation and step size, the perturbation

of SVRE is much smaller than Ens, which strongly supports the view.

2) For MI, SVRE also uses the momentum method in the inner loop

and updates the iterative attack’s momentum using the inner loop’s

momentum. This skillfully overcomes the ineffective forward-looking

of the momentum method and also stabilizes the update direction.

This perspective is supported by the fact that for DI-TI-MI-FGSM,

the SVRE outperforms Ens by 10.31 and the perturbation up to 7.25.

3) SVRE only considers non-target attacks, however target attacks are

more sensitive to the precision of the update direction compared to

non-target attacks.

4.3.2. Attack advanced defense models
To more comprehensively verify the effectiveness of RGEA,

experiments were conducted on models with defensive capabilities.

Specifically, Ens, SVRE and RGEA were combined with various basic

methods to generate adversarial samples and then tested on input

transformations and adversarially trained defense models.

For the defense model with input transformation, shown in

Table 3, the results indicate a significant advantage of RGEA over

Ens and SVRE for all tests. In particular, the average attack success

rate of RGEA is 11.03% higher than Ens on DI-FGSM, and is 0.71%

higher than SVRE on DI-TI-MI-FGSM. In addition, the results of

the white-box attack are shown in Table 3, RGEA improves the
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performance of the attack in most cases. This indicates that RGEA

exploits the dependencies among the models while not destroying the

attack capability.

In Table 4, RGEA exhibits gains in all tests for the adversarial

training model, except DI-TI-MI-FGSM. In addition, the

transferability impacts of all approaches are all below 23%. It

suggests that there is a significant amount of space for advancement

in RGEA for target transferability attacks on adversarial training

models and deserves further investigation.

Additionally, we conduct a comparative analysis referring to

Tables 3, 4. The input-transformed defense model exhibited worse

defense compared to the adversarial training model. Probably,

the input transformation only partially disrupts the adversarial

perturbation, but it does not change the recognition pattern of the

model. Contrarily, adversarial training makes the model acquire a

completely different recognition pattern compared to the normally

trained model.

5. Discussion and conclusion

In this paper, we propose the Relational Graphs Ensemble

Attack (RGEA) to enhance the transferability of black-box attacks.

Specifically, We find that facial recognition models, compared to

classification models, have more complex correlations. This inspired

us to exploit the complex dependencies among models to improve

the transferability of the generated adversarial samples. To this

end, we designed a suboptimization problem based on a multi-

model relationship graph to obtain a more transferable descent

direction. Extensive experiments show that RGEA significantly

improves the transferability of almost baseline methods in a black

box environment.

For the transferability black-box attacks, we provide a new

perspective to enhance the adversarial transferability, i.e., to

facilitate the transferability of adversarial samples by efficiently

extracting the complex dependencies among models by graphs.

Additionally, our experimental results show that: for targeted

transferability attacks on adversarially trained models, there is still

significant room for improvement in RGEA and existing methods.

We will continue to develop more effective methods to extract

complex dependencies among models to overcome this challenge in

the future.
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