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Alzheimer’s disease (AD) is a great challenge for the world and hardly to be

cured, partly because of the lack of animal models that fully mimic pathological

progress. Recently, a rat model exhibiting the most pathological symptoms of AD

has been reported. However, high-resolution imaging and accurate quantification

of beta-amyloid (Aβ) plaques in the whole rat brain have not been fulfilled due

to substantial technical challenges. In this paper, a high-efficiency data analysis

pipeline is proposed to quantify Aβ plaques in whole rat brain through several

terabytes of image data acquired by a high-speed volumetric imaging approach

we have developed previously. A novel segmentation framework applying a high-

performance weakly supervised learning method which can dramatically reduce

the human labeling consumption is described in this study. The effectiveness of

our segmentation framework is validated with different metrics. The segmented Aβ

plaques were mapped to a standard rat brain atlas for quantitative analysis of the Aβ

distribution in each brain area. This pipeline may also be applied to the segmentation

and accurate quantification of other non-specific morphology objects.

KEYWORDS
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1. Introduction

Alzheimer’s disease (AD) is a progressive degenerative disease of the central nervous system
that causes cognitive decline and extensive neuronal death (Barage and Sonawane, 2015). It
is one of the most common dementias among elderly individuals. Modern society has to
tackle the heavy burden of aging as a result of AD. Extensive explorations in developing
drugs and therapy for AD have failed. One of the major reasons is the lack of animal models
that could fully mimic the pathological features of AD (Scearce-Levie et al., 2020). The most
prevalently used animal models in AD studies are transgenic mice overexpressing amyloid
precursor protein (APP), including PDAPP and Tg2576 (Games et al., 1995; Hsiao et al., 1996).
However, the non-physiological and ectopic expression of APP in transgenic mice has never
been demonstrated in AD patients. Other transgenic mice with both APP and PSEN1 mutations,
including APPswe/PS1M46L, APPswe/PSEN1dE9, and 5× FAD mice, have been widely used in
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AD studies. However, these animal models showed little neuronal
loss, no tau pathology, or even provoked beta-amyloid (Aβ)
pathology in ectopic brain areas that were not present in human AD
patients. Compared to mice, the physiology and behavior of rats are
more similar to those of human beings. Recently, a new AD rat model
was developed by knock-in of App with CRISPR/Cas9, exhibiting
most of the pathological features of AD (Pang et al., 2022). This model
rat shows both Aβ plaques and tau pathology in the brain, which is the
first-ever rodent model demonstrating these two main deficits.

Among many pathological features of AD, the deposition of Aβ

is one of the main phenotypes. The density and distribution of Aβ

plaques are crucial indicators of disease development. Quantitative
analysis of Aβ plaques is critical for studying the spatial-temporal
origin and evolution of the disease (Long et al., 2019). Modern
neuroimaging techniques such as computed tomography (CT),
positron emission tomography (PET) imaging (Koychev et al., 2020),
or magnetic resonance imaging (MRI) (Sheikh-Bahaei et al., 2017),
are widely used in quantifying Aβ accumulation in the brain. These
non-invasive imaging methods have been used for clinical diagnosis.
However, due to the low resolution and specificity, the diagnostic
results are not accurate. Ex vivo studies with model animals could
use immunostaining and microscopic imaging of continuous brain
slices. However, the quantitative analysis of Aβ plaques on whole-
brain image datasets remains a great challenge, owing to the high
consumption of money and time during the acquisition and analysis
of the whole-brain Aβ imaging dataset. With the development of
high-speed volumetric microscopic imaging techniques (Gong et al.,
2016; Wang et al., 2019), rapid microscopic 3D imaging of the whole
mouse brain can be achieved in days or hours. A previous study
proposed a framework for Aβ staining, imaging, and quantification
of the whole mouse brain (Long et al., 2019), but the morphological
characterization of Aβ in the whole rat brain has not yet been
investigated. Meanwhile, the imaging speed was relatively slow, which
makes it quite time-consuming for whole rat brain imaging.

Using the high-speed volumetric imaging method we have
developed (Wang et al., 2019), imaging of the whole rat brain
at micrometer resolution can be completed within 4 h. This
approach will generate approximately 8 TB raw data at a
1 µm × 1 µm × 3.5 µm voxel size with an intact adult rat
brain. A highly efficient pipeline for automatic segmentation and
quantitative analysis of whole-brain Aβ plaques is needed.

Segmentation is a crucial step in assessing the accurate brain-wide
distribution of Aβ plaques. In traditional segmentation methods,
features and parameters need to be set manually, which is not
suitable for automatic and accurate segmentation of morphologically
diverse Aβ plaques in whole-brain 3D microscopic images (Berg
et al., 2019; Chen et al., 2020). With the rapid development of
deep learning in recent years, segmentation methods based on fully
supervised learning have been improved significantly, which requires
large human labeling costs (Ronneberger et al., 2015; Chen et al.,
2018). To reduce the cost of manual annotation, weakly supervised
learning with weak annotations is more appropriate for biological
microscopic images (Jia et al., 2017; Zhao et al., 2018). Here, we
propose a segmentation method based on weakly supervised learning,
only requiring object-level annotations, in which the cost of labeling
is 1/15 of the pixel-level annotations. We adopt the high-resolution
network (HRNet) as the feature extractor (Wang et al., 2020) and
deploy it into a multi-stage object detection framework Faster-RCNN
(Ren et al., 2015). Subsequently, extra visual cues using peak response
mapping (Zhou et al., 2018) are provided for segmentation with

the 2D-OTSU algorithm (Zhang and Hu, 2008) in post-processing.
In addition, a pre-processing method is provided according to the
characteristics of the image dataset, which can reduce the attenuation
of the signal intensity caused by the thickness of tissue slices and
improve the signal-to-noise ratio (SNR).

To quantitatively analyze the distribution of plaques in different
brain areas, we registered the 3D whole-brain dataset to the Waxholm
Space Sprague Dawley (WHS-SD) rat brain atlas (Papp et al., 2014).
Utilizing the deformation field produced during registration to the
Aβ binary mask of the whole brain, all brain areas of the imaged
dataset were aligned to the standard brain map for subsequent
quantification of Aβ plaques.

2. Materials and methods

2.1. Sample preparation

The rat brain was prepared as reported previously (Pang
et al., 2022). Briefly, adult animals were sacrificed by transcardial
perfusion of 40 mL 1× phosphate buffered saline (PBS) and
40 mL 4% paraformaldehyde (PFA) successively. Subsequently,
the sample preparation is followed by the Volumetric Imaging
with Synchronized on-the-fly-scan and Readout (VISoR) imaging
procedure (Wang et al., 2019). The sample was transferred into ice-
cold 4% hydrogel monomer solution (HMS) for post-fixation at 4
degrees for 48 h. After post-fixation, the 4% HMS was replaced with
a mixture of 15 mL 4% HMS and 15 mL 20% bovine serum albumin
(BSA). The solution was degassed in a vacuum pump for 20 min with
ice surrounding the centrifuge tubes. The sample was polymerized
at 37◦C for 4 h and rinsed with PBS three times to remove residual
reagents. Next, the sample was sectioned into 300 µm thick slices. All
slices were cleared with 4% sodium dodecyl sulfate (SDS) solution at
37◦C for 24 h with gentle shaking. The slices were washed with PBS
three times, 1 h for each round. The slices were immune-stained with
anti-Aβ primary antibody (Biolegend No. 803002, 1:500 dilution with
PBS) for 24 h at room temperature and washed with PBS for three
times, 1 h for each round. The secondary antibody (JacksonImmuno
Research No. 715-545-150, 1:200 dilution with PBS) was applied for
6 h at room temperature with gentle shaking and washed out with
PBS for three times, 1 h per round. Finally, all slices were mounted
on a customized slide (100 mm× 100 mm) for imaging (Figure 1A).

2.2. Data acquisition

A modified VISoR microscope described in a previous study was
used for all data collection (Xu et al., 2021). Two-channel imaging
was carried out successively with 488 and 552 nm excitation. The
emission light was collected through an Olympus 10 × 0.3 NA
water immersion objective and filtered with bandpass filters (520/40,
600/50, from Semrock). Images were collected with a sCMOS camera
(Flash 4.0 v3, Hamamatsu) (Figure 1A). All data were collected
with a pixel resolution of 1 µm × 1 µm × 3.5 µm. The collected
images were reconstructed into a dual channel whole rat brain for
further segmentation and quantification (Figures 1B–D). The 3D
reconstruction of the whole brain imaging dataset was the same as
our previous study (Wang et al., 2019). Briefly, it mainly contains
four steps. (i) Flattening the upper and lower surfaces of each brain
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section. (ii) Detecting the edges of adjacent sections and extracting
the correspondences between two opposing surfaces. (iii) Morphing
the correspondences of each section for limiting the morphological
errors. (iv) Warping each section with the extracted and morphed
correspondences.

2.3. Data preprocessing

A preprocessing pipeline of the dataset is presented to calibrate
the brightness of serial brain sections as well as to enhance the
signal-to-noise ratio. This step is crucial for the overall success of
network training and testing. Two preprocessing strategies were
applied successively:

Brightness calibration of the brain slices. The brightness of
the imaging channel varies at different depths of the slices. Two
reasons contribute most: (a) the difference in antibody concentration
at different depths and (b) excitation light absorption by tissue
through the optical propagation path. The brightness over z-axis was
measured and automatically calibrated (Supplementary Figures 1A,
B). Specifically, the corrected brightness of image stacks can be
formulated by:

I(z)
′

=
I (z)

Imean (z) /Imean (zmid)
(1)

I( · ) represent the intensity of each pixel. Imean( · ) indicates
the mean intensity of each image slice. z means the slice index
of the image stacks. The non-brain-slice pixels are excluded while
calculating the mean intensity.

Signal-to-noise ratio (SNR) enhancement. As the Aβ plaques
were labeled by immunofluorescent staining, the intensity of the
fluorescence signal was relatively weak for image segmentation. The
low SNR images will lead to poor performance in network training
for image segmentation. To further enhance the segmentation
performance, 3D Gaussian blur (σx,y,z = 2 for saving more details)
was used to improve the SNR of all brain slices.

Due to the large size of 3D image stacks and the limitation of
computer memory, we partitioned the image stacks into image blocks
with size of 256 × 256 × 75. Image blocks having less than 1% brain
tissue pixels were excluded for network training and testing.

2.4. HRNet structure

Segmentation is a position-sensitive computer vision task. Due
to the high density and small size of Aβ plaques in the whole rat
brain, over-down-sampling of training data in the neural network will
lead to the missing and position offset of small objects. The parallel
structure of HRNet can combine high-resolution features with high-
level semantic information. The high-resolution representations
learned from the HRNet are not only spatially precise but also
semantically strong.

The HRNet is connected in parallel (Figure 2A), which consists
of parallel branches with high-to-low resolution. The resolution of
the rth branch is 1/(2r−1) of the resolution of the first stream, while
the channel number is 2r−1 of the first stream.

The basic module used in each subnetwork contains two
3 × 3 convolutional kernels where each kernel is followed by
batch normalization (BN) and rectified linear unit (ReLU). Skip

connection is used to connect the input and output of the
module (Supplementary Figure 2A). The connection between
different stages consists of transition modules and fusion modules
(Supplementary Figure 2C), which are applied to exchange
information between multi-resolution layers. Two output modes
are provided (Supplementary Figure 2B): (i) HR-keep mode only
outputs the high-resolution representation computed from the high-
resolution convolution stream, (ii) HR-fuse mode combines the
representations from all the high-to-low resolution parallel streams.

2.5. Weakly supervised learning with
object-level labels

The training of neural networks is usually fully supervised
and requires a large number of manual annotations, especially
for image segmentation which requires pixel-level annotation. For
3D microscopic biomedical images, annotation requires extensive
professional knowledge guidance, which undoubtedly leads to high
expenses of money and time. In this paper, object-level weak
annotations are used for pixel-level image segmentation tasks
(Figure 2A). Specifically, we train the object detection framework
with bounding box annotations and then segmentation is carried out
by post-processing methods (Figure 2B and Supplementary Video
1).

Faster-RCNN (Ren et al., 2015) is a widely used object detection
framework that usually consists of conv-body, region-proposal
network (RPN), RoI-pooling, and classifier. In this work, a modified
3D form Faster-RCNN is used for detecting Aβ plaques in the
volumetric image dataset. High-to-low resolution features of the 3D
images are extracted by HRNet. After that, the features are input into
the RPN and classifier to obtain the predicted bounding-box map. In
Faster-RCNN, RPN depends on the default anchor settings, and we
set the anchor size to fit the size range of Aβ plaques.

Subsequently, peak response mapping (PRM) (Zhou et al., 2018)
is used to obtain additional visual cues to improve the segmentation
performance (Figure 2A). The main idea of PRM is to generate a
peak-response map by stimulating peaks in the class-aware map.
Then, the most informative regions of each plaque are identified and
mapped by the back-propagated peaks. Score maps generated from
RPN in the Faster-RCNN framework can be regarded as a class of
peak correspondence maps related to location (Dong et al., 2019).
Therefore, we assume that peaks in the score map represent strong
visual cues for the objects. The peak is back-propagated while the
score map is sent to the classifier for further classification. The peak
back-propagation can be interpreted as a random walk process. Each
location in the bottom layer’s top-down relevance is formulated as its
probability of being visited by the walker.

Consider a convolution layer with a filter size s× h× w. Iijk and
Opqt are the spatial locations of the input and output feature maps,
respectively. The visiting probability P

(
Iijk
)

can be formulated by:

P
(
Iijk
)
=

i+ s
2∑

p = i− s
2

j+ h
2∑

q = j− h
2

k+ w
2∑

t = k− w
2

P
(
Iijk

∣∣ Opqt
)
× P

(
Opqt

)
(2)

where the transition probability is formulated as:

P
(
Iijk

∣∣ Opqt
)
= Zpqt × ÎijkReLU

(
W(i−p)(j−q)(k−t)

)
(3)
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FIGURE 1

Diagram of this study. (A) The pipeline of the whole process, including sample preparation, data acquisition, plaque segmentation, and quantification
analysis. (B) Single slice imaged with micron resolution. (C) The 3D-reconstructed whole rat brain. (D) The raw image of a section in panel (B), green
boxed.

Îijk is the bottom-up activation value during the forward process.
ReLU(W(i−p)(j−q)(k−t)) means excluding negative weights as they
are not helpful in improving the output response. Zpqt is a factor
to ensure

∑
p,q,t Iijk|Opqt = 1. Note that PRM only needs to be

activated during testing rather than training.
Finally, we adopt an advanced 2D-OTSU (Zhang and Hu,

2008) algorithm for segmentation (Figure 2B). Unlike the original
algorithm that uses handcrafted features as the second-dimension
input, alternatively, we use the peak response map extracted from the
neural network, which provides additional information in addition to
grayscale intensity.

2.6. Rat brain atlas registration and
quantitative analysis

To quantitatively analyze the distribution of plaques in different
brain regions, the 3D reconstructed rat brain needs to be registered
to a rat brain atlas reference (Figure 2C). The WHS-SD rat brain
atlas (Papp et al., 2014) is one of the most commonly used digital rat
brain atlases. In this paper, we utilized atlas version 2 from public
resources1, which has 80 brain areas. We modified the images to
remove the skull structures in the T2∗ template images, leaving only
the brain structures.

The reconstructed 3D rat brain image dataset was registered
to the WHS-SD brain atlas. Specifically, we used the WHS-SD rat
brain template, annotation file, and atlas file provided by the public

1 https://www.nitrc.org/projects/whs-sd-atlas

resources (see text footnote 1). The images were then converted to
SimpleITK (Lowekamp et al., 2013) format to achieve fast alignment
with the Elastix (Klein et al., 2009) toolbox. We adopted the non-
rigid B-spline as the transform model. Mutual information (MI)
and rigidity penalty was used as metrics for the similarity measure.
The deformation field was optimized globally by using the stochastic
gradient descent (SGD) algorithm. Order of B-spline interpolation
was set to 3. Subsequently, a neuroanatomy expert was engaged to
fine-tune the borderlines of all brain areas.

2.7. Evaluation metrics

To comprehensively evaluate the accuracy of our weakly
supervised segmentation method, we use three metrics for
quantitative analysis, including the Dice score (DSC), Sensitivity
(SST), and Hausdorff distance (HD). These metrics are defined as
follows:

DSC =
2TP

2TP + FP + FN
(4)

SST =
TP

TP + FN
(5)

where TP denotes the true positive of the predicted pixels. FP denotes
the false positive. FN denotes the false negative.

dH (X,Y) =

max
{
supx∈X inf y∈Yd

(
x, y

)
, supy∈Y inf x∈Xd

(
x, y

)}
(6)
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FIGURE 2

Schematic illustration of the entire analysis pipeline. (A) Weakly supervised segmentation with the high-resolution network. The pipeline is modified from
the Faster-RCNN framework, and the peak response mapping method is embedded in our framework for extracting additional visual cues for
subsequent segmentation. Note that only weak labels (bounding boxes) are required in our pipeline, which are shown as red boxes in the cropped image
block. (B) Post-processing for obtaining whole-brain Aβ segmentation masks. (C) Obtaining the deformation field from the atlas registration process and
then utilizing it to the segmentation masks from panel (B) for quantitative analysis of whole-brain plaques.

where X,Y denote the ground-truth pixel set and segmentation pixel
set in the image segmentation task. sup represents the supremum. inf
represents the infimum. d (·) is the distance metric.

Dice score is sensitive to interior pixels. SST represents the
omission rate. HD is sensitive to boundary pixels. Note that 95%
Hausdorff distance (HD95) is used here to remove the effect of
minimal outliers.

3. Result

3.1. Weakly supervised segmentation
results

We randomly selected 30 cropped blocks from the cerebral cortex
as training data, and each block size was 256 × 256 × 75. Two
experts were engaged to annotate images with bounding boxes. In
addition, 28 blocks were randomly selected from different brain areas
in three categories: cerebral cortex (Cortex), hippocampus (Hippo),
and other brain areas (Other) as test data. All test image blocks
were labeled with pixel-level annotations to evaluate the performance
of our weakly supervised segmentation method. The preprocessing
method was applied to each image block. All experiments were
trained and tested with the PyTorch framework on a workstation with
one NVIDIA Tesla V100S and 768 GB RAM. We carefully set the
anchor sizes in range of [6,28] and the stride of RPN as 4. We used

the SGD optimizer with the learning rate 0.01, the weight decay of
0.0001. The training process was terminated within 3,000 iterations.

We compared the proposed framework with widely used
segmentation methods, including (a) traditional methods based on
artificial features, such as Ilastik (Berg et al., 2019) and Segmenter-
PMP34 (Chen et al., 2020); (b) fully supervised learning methods,
such as U-Net (Ronneberger et al., 2015) and HRNet; and (c)
weakly supervised learning methods with different weak labels,
such as U-Net3D_rect and U-Net3D_grabcut (Khoreva et al.,
2017). Different segmentation methods showed discernible results
(Figures 3A–I). The evaluation metrics of different methods were
calculated in distinct brain areas (Figures 3J–L and Supplementary
Table 1).

Ilastik is a machine learning method based on the random
forest algorithm. The user explicitly marks the features manually
and applies batch processing to segment other images. However,
this grayscale feature-based method showed the worst robustness
through the whole brain, resulting in the poorest performance in
the experiments. In addition, the computational cost of Ilastik is
the highest due to CPU-based implementation. Segmenter_PMP34
is a conventional segmentation pipeline consists of Min-max
intensity normalization, 2D Gaussian smoothing, 2D spot filter,
watershed algorithm and size filter, which requires manual parameter
adjustment while all methods in this experiment were fully automatic.
For fairness, the parameters were adjusted in a cerebral cortex
slice to reach the best performance and then applied to other
brain slices. The metrics of the Hippo and other regions were
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FIGURE 3

(A–I) Visualization of comparing the results of different segmentation methods on an image block of test set. Green: raw image, blue: ground truth, red:
segmentation result. (A) Raw image. (B) Ground truth. (C,D) Classical segmentation methods with the handcrafted label, (C) ilastik, (D)
segmenter-PMP34. (E,F) Fully supervised methods, (E) U-Net3d, (F) HRNet3D. (G,H) Weakly supervised methods labeled with rectangles and Grabcuts,
respectively. (I) Our method. (J–L) Metrics of segmentation performance. (J) Dice score, (K) Sensitivity, (L) HD95. Note that HD95 indicates the distance
between the segmentation mask and the ground truth, lower score indicates better performance.

significantly lower than our method. Interestingly, in the cerebral
cortex region, the HD95 of Segmenter_PMP34 was better than our
method but severely sacrificed SST indicating that many object pixels
had not been detected.

To train the fully supervised network, two experts relabeled
the training dataset with pixel-level labels. The U-Net architecture
consists of an encoding and a decoding part. Encoding part
repeatedly applies two 3 × 3 convolutional layers, each followed by
a batch normalization layer and a ReLU. At each down-sampling
step, the number of features is doubled. Decoding part recovers
the original size by up-sampling the feature map. Every step of up-
sampling consists of an up-sample layer that halves the number of
features, and two 3 × 3 convolutional layers, each followed by a
batch normalization layer and a ReLU. The final layer is a softmax
layer. The HRNet architecture is the same as which used in our
methods and HR-fuse mode is utilized for the best performance.
We used the SGD optimizer with the learning rate 0.01, the weight
decay of 0.0001 and momentum of 0.9. However, fully supervised
segmentation requires a large number of pixel-level labeled image
datasets. U-Net and HRNet produced poor segmentation results,
partly because the training set was relatively small. All metrics were
lower than our method, especially in SST.

We generated pixel-level labels through weakly labeled bounding
boxes and then trained the semantic segmentation network iteratively
(Khoreva et al., 2017). U-Net_3D_rect treats the pixels inside the
3D bounding box as pseudo labels. U-Net_3D_grabcut utilizes the
GrabCut (Rother et al., 2004) algorithm inside the 3D bounding

box to obtain the initial pseudo labels. We used these two pseudo
labels to train the U-Net, respectively. The network architecture and
parameter settings were the same as fully supervised network. The
SST of these two methods was slightly better than our method, but
Dice and HD95 were worse than ours as these methods treated too
many background pixels as object pixels.

Furthermore, we clustered the plaques into three different
categories according to their volumes, (a) small (<300 voxels), (b)
medium (300–1,500 voxels), and (c) big (>1,500 voxels). The voxel
size used here is 4 µm × 4 µm × 4 µm. We evaluated the
performance of our method to analyze plaques of different sizes
(Supplementary Figure 3 and Supplementary Tables 3, 4).

Our method only needed the bounding boxes as the weak
labels. Almost all metrics achieved state-of-the-art performance. In
addition, the ablation study was completed to verify the effectiveness
of each module in our framework (Supplementary Table 2), which
proved that HRNet (including fuse output mode), PRM, and 2D-
OTSU all contributed to improving the segmentation performance.

3.2. Quantification of Aβ plaques in the
whole rat brain

To quantitatively analyze the distribution of Aβ plaques in the
whole rat brain, segmented image blocks were montaged into brain
slices and then reconstructed into the whole brain (Supplementary
Videos 2, 3). Then we utilized a registration process to align the
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whole brain to the WHS-SD rat brain atlas (Figure 2C). The
implementation of the registration method was based on SimpleITK
(Lowekamp et al., 2013) and Elastix toolbox (Klein et al., 2009),
performed on a workstation with 384 GB of RAM. The initial
deformation field was subsequently obtained and fine-tuned by
an expert. After registration, we applied the deformation field to
the Aβ whole-brain segmentation binary masks. 3D rendering was
performed for visualization of Aβ plaque distribution in the whole rat
brain of several brain areas, including the cortex, hippocampus, and
thalamus (Figures 4A–D). Aβ plaque maximum intensity projection
in the coronal plane from the olfactory bulb to the caudal end
revealed plaque density diversity in different brain areas or nuclei
(Figure 4E). Finally, the Aβ plaque distribution was accurately
calculated based on segmentation and registration by 61 brain regions
that excluded several brain areas from the original atlas which did not
contribute to our quantitative analysis, such as nerves, decussations,
and commissures (Figure 5).

Most plaques were found in the neocortex, followed by the
thalamus, brainstem, striatum, and other brain regions (Figure 5A).
Due to the lack of a high-resolution rat brain atlas, we could not
analyze our segmentation results by more fine-grained hierarchical
brain areas or subregions. The total volume of segmented plaques
in each region was similar to the tendency of total plaque counts
(Figure 5B). We also measured the volume ratio of total plaque

volume to the brain region volume by each brain region, and found
that the volume ratio is higher in the frontal association cortex than
in others (Figure 5C). We further calculated the plaque count density
and the average plaque volume in each brain region (Figures 5D,
E). Very few vascular-associated amyloid depositions were found in
the early stage AD rat brain imaging data. Since we do not intend to
distinguish these vascular-associated amyloid depositions from non-
vascular amyloid depositions by our deep learning-based analysis
pipeline, the segmentation result involves all kinds of amyloids.

4. Discussion

In this study, we presented a pipeline for systematic quantitative
analysis of whole rat brain Aβ plaque distribution. First, we applied
the high-throughput volumetric imaging method VISoR to the newly
developed AD rat model brain and acquired micron-resolution 3D
images of Aβ plaques of the whole brain. Then, we developed a weakly
supervised framework for the segmentation of Aβ plaques. Finally, we
registered the segmentation results to the WHS-SD rat brain atlas for
quantitative analysis of Aβ plaques in each brain area.

The high-throughput volumetric imaging method VISoR used in
this study demonstrated fast tissue immunostaining and high-speed
microscopic imaging of rat brains. Traditionally, whole rat brain

FIGURE 4

Whole rat brain rendering of segmented Aβ plaques. (A) The Aβ plaque distribution in the whole brain of a 3-month-old rat. Different colors represent the
Aβ plaque distribution in different brain regions. Red: cortex, green: hippocampus, blue: thalamus. (B–D) Enlarged view of the Aβ plaque distribution in
the cortex, hippocampus, and thalamus. (E) Aβ plaque distribution in 300 µm thick brain slices at different coronal planes.
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FIGURE 5

Quantitative analysis of the Aβ plaque distribution in different brain areas. (A–D) The total volume, total counts, volume ratio, and the count density of Aβ

plaques in different brain areas. (E) The volume variation of Aβ plaques in distinct brain areas.

imaging with the confocal microscope of serial cryo-sections may
take months, not even to mention the high risk of losing 10 µm
thick sections during experiments or reconstructing thousands of
serial images into a complete brain. The VISoR method can image
a 300 µm thick section by a single scan, which dramatically increases
the thickness of the section from dozens of micrometers to hundreds
of micrometers. Therefore, the section number of each brain required
is significantly decreased, e.g., 85 slices for the brain of a 3-month-old
rat. Since the thickness of each brain slice is 300 µm, it takes only 24 h
for tissue clearing and following 39 h for immunostaining. This is the
most efficient whole rat brain tissue clearing and immunostaining
approach to our best knowledge. Tissue clearing of thick sections
is the key for fast immunostaining and high-throughput whole
brain imaging. Immunostaining is capable of labeling the diffuse
plaques, while the direct staining with methoxy-X04 dye, the most

commonly used staining method for Aβ plaques in previous studies,
could only label the dense-core plaques (Whitesell et al., 2019). In
addition, the thick slice provides higher stiffness and mechanical
integrity, which makes the 3D dataset of serial slices much easier to
be reconstructed into an intact brain. One major limitation of this
method is that 300 µm thickness increased the difficulty of antibodies
to penetrate uniformly through the whole slice in comparison to
immunostaining on thin sections, e.g., most commonly used 10 µm
cryo-sectioned slices. This could be further improved with more
experiments on optimizing the conditions of tissue clearing and
immunostaining. Another limitation is that mechanical sectioning
method inevitably results in signal loss, we verified this by calculating
the percentage of small plaques over total plaques between adjacent
sections. The small plaques percentage in inter-sections is lower
than inner-sections that means the missed detection of small plaques
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(Supplementary Figure 4). Our thick section method could reduce
less miss-detection of small plaques than thin section. Since all slices
were immune-stained under the same conditions, we observed a
consistent signal intensity distribution through depth on all slices,
which means we could calibrate the signal before any quantitative
analysis. In addition, this high-throughput imaging method has
already been successfully used in whole mouse brain and whole
monkey brain imaging (Wang et al., 2019; Xu et al., 2021).

The high-dynamic-range volumetric microscopic fluorescence
image is difficult to be segmented by traditional intensity-based
algorithms. Deep neural networks could achieve better segmentation
performance by learning texture features and semantic information
of images. Meanwhile, the computation efficiency of deep learning-
based methods implemented on the GPUs prevailed the most
traditional methods implemented on CPUs. To achieve high-
precision segmentation of Aβ plaques for quantitative analysis
in the whole rat brain, this study proposes a weakly supervised
segmentation framework based on HRNet and Faster-RCNN. To
our knowledge, although HRNet and Faster-RCNN are widely
used in diverse applications of artificial intelligence, there are
few researchers using them in weakly labeled biomedical image
segmentation tasks, especially in whole-brain 3D microscopic images
of different biomarkers.

High-resolution network is the backbone for feature extraction in
this framework, which connects the high-to-low resolution branches
in parallel rather than in series, allowing high-resolution features to
be maintained. This parallel structure can avoid the distortion of
features during the up-sampling process in a serial structure such
as U-Net. Therefore, the features are spatially precise. In addition,
the repeated multi-resolution fusion modules make the high-to-
low resolution features semantically strong. Furthermore, due to the
high requirement of annotated image dataset of fully supervised
learning method, we alternatively adopt the weakly supervised
learning method, which only requires little human-labeling cost
for network training and whole-brain Aβ plaque segmentation.
Since Faster-RCNN is a multi-stage object detection network,
our weakly supervised segmentation network would increase the
computational complexity in comparison with other semantic
segmentation networks which had been trained for classifying each
pixel of the image. Peak response mapping introduces additional
information into the network, with each peak representing a strong
visual cue of the object. The peak response maps can also be
used as the second-dimension input of the 2D-OTSU algorithm
to improve the segmentation accuracy. However, the segmentation
accuracy on small plaques (smaller than 6 pixels in diameter) is
lower than medium and big plaques, as small object detection is
a longstanding challenge in deep learning field (Supplementary
Figure 3 and Supplementary Tables 3, 4).

Previous studies have reported several Aβ plaque analysis
methods for mouse brain, but there is no such a study of analyzing
the whole rat brain. Liebmann et al. (2016) proposed a pipeline
for 3D study of AD pathologies in mouse brain hemispheres and
human brain sections. They have demonstrated that tissue clearing
and immunostaining of large samples enables high-throughput
quantitation of complicated 3D-pathological features. They mainly
focused on the individual plaque properties rather than the brain-
wide plaque distribution. Whitesell et al. (2019) constructed a
pipeline for mapping the spatial patterns of Aβ plaques in the
whole mouse brain. Spatial patterns of Aβ deposits in the whole
mouse brains were compared extensively among three transgenic

animal lines at different ages. However, the dye methoxy-X04
could only label the dense-core plaques which might underestimate
the plaque density. Nguyen et al. proposed a supervised learning
method for quantifying Aβ plaques in the whole mouse brain with
the random forest algorithm (Nguyen et al., 2019). This ilastik-
based supervised learning method trained with few training data
is not suitable for large-scale 3D whole-brain images with high
dynamic range. Our deep learning-based method benefited from the
rich semantic features extracted from the deep neural network is
capable of analyzing the high-dynamic-range 3D whole brain images.
Meanwhile, only a small size labeled training dataset is needed
for network training makes deep learning-based analysis of the Aβ

plaques in the whole brain more accessible.
Through this study, we have developed a systematic toolset for

high-resolution imaging of the whole rat brain after labeling by
pathological biomarkers. This toolset achieves high accuracy and
requires lower consumption for the segmentation of immuno-labeled
objects in 3D microscopic images and quantitative analysis of such
objects by brain areas. We demonstrated the method with the first
ever Aβ distribution atlas of the whole rat brain. Since this weakly
supervised method greatly reduces the cost of manual labeling and
the segmentation performance is almost state-of-the-art, this method
could be commonly used in the segmentation and quantification of
objects labeled with different biomarkers, such as cell bodies and
protein aggregates.
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