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Editorial on the Research Topic

Advances in bioelectronics and stimulation strategies for next
generation neuroprosthetics

Recent technological advances have expanded our understanding of how artiĕcial
stimulation interacts with the living nervous system (Riva and Micera, 2021; Saha et al.,
2021; Walter, 2021; Ahmed et al., 2022; Chen et al., 2022; Yao et al., 2022). is Research
Topic, contributed to by electrophysiologists, biomedical engineers, computational
neuroscientists, and neuropsychologists, provides a state-of-the-art overview of advances
in neural stimulation technologies, ranging from recent progress in functional electrical
stimulation (FES) to new understanding of howweak electric ĕeld (EF) stimulation affects
cellular properties. e submissions to this Research Topic can be grouped into four key
areas: (A) non-invasive stimulation, (B) optimal implantation location, (C) advances in
stimulus parameter identiĕcation, and (D) the inĘuence of neural ultrastructures under
EF. It is helpful to provide four quotes from Sun Tzu’s e Art of War1 to represent the
theme of each section:

1 The Art of War is an ancient Chinese military treatise written in 5th century BC. It remains the

most influential strategy text used in military thinking, business tactics, legal strategy, politics, sports,

lifestyles and beyond.
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“The greatest victory requires no
bleeding” — Chapter. Strategic
attack《孙子兵法 ·谋攻篇》

Signiĕcant research efforts have focused largely on
developing non-invasive or minimally invasive stimulation
techniques (Boes et al., 2018; Sun et al., 2018; Guo et al., 2020; Su
et al., 2021, 2022; Lu et al., 2022; Ren et al., 2022). For example,
transcranial direct current stimulation (tDCS) allows reversible
region-speciĕc modulation (Filmer et al., 2014). Liu S. et al. offer
valuable insights into how prefrontal tDCS affects the attention
bias by detecting electroencephalographic characteristics in
response to rest and emotional oddball tasks. In this clinical
study, tDCS caused increased brain neural activities related
to emotion regulation and distinguished electrical signatures
following positive targets and negative distracters, indicating
great potential for tDCS in the treatment of depression. Another
non-invasive neuromodulatory technique is that of trans-spinal
direct current stimulation (tsDCS). Song and Martin found
that cathodal tsDCS can selectively target voltage-dependent
calcium channels to modulate motoneuron activity, informing
therapeutic treatment strategies to achieve rehabilitation goals
aer injury; in particular, to increase muscle force.

In addition, motor imaginary (MI)-based brain-computer
interface (BCI) must overcome multiple issues to be
commercially usable, especially related to signal quality
and subject-variation (Singh et al., 2021). Sensory threshold
somatosensory electrical stimulation (st-SES) has been recently
used to guide participants in motor imaginary tasks (Corbet
et al., 2018; Vidaurre et al., 2019; Zhang et al., 2022). Chen
et al. suggest that st-SES can only improve brain-switch BCI
performance in those subjects with higher classiĕcation accuracy
(high performers) in discriminating the MI condition from
rest. Moreover, they showed that st-SES inĘuences functional
connectivity of the fronto-parietal network, but through
different frequency bands for different subjects. ese ĕndings
can potentially help to optimize guidance strategies to adapt to
different types of MI-BCI users.

“Choose the favorable terrain before
the war starts” — Chapter. Terrain
《孙子兵法 ·地形篇》

An optimal implantation region improves not only
stimulation performance but also the long-term stability of
implantable microelectrodes, as well as reducing side effects
(Wang et al., 2020; Song et al., 2022; Zhao et al., 2022). Urdaneta
et al. describe a somatosensory cortex layer-dependent long-term
stability in intracortical microstimulation. eir results suggest
a more consistent stimulation efficiency and less foreign body
response when the electrodes were implanted in L4 and L5 of
the somatosensory cortex, indicating the critical role of interface

depth in the design of chronic implants. Another example
of optimizing electrode placement is for electroconvulsive
therapy (ECT) for severe treatment-resistant depression. Steele
et al. proposed a fronto-medial ECT electrode placement that
would maximize the EF in speciĕc sagittal brain regions, whilst
minimizing EF in sub-regions of the bilateral hippocampi. Such
outcomes suggest electrode location can signiĕcantly reduce
cognitive and non-cognitive side-effects.

“Fight smarter not harder” —
Chapter. Military dispositions
《孙子兵法 ·军形篇》

Programming nerve stimulation setting is challenging and
time consuming due to the huge number of possible stimulus
parameter combinations (O’Doherty et al., 2011; Li et al., 2013;
Yan et al., 2016; Jia et al., 2018; Guo et al., 2019; Muralidharan
et al., 2020; Song et al., 2020; Zhang et al., 2020; Chang et al.,
2022). In terms of FES, several “smart” strategies have been
used to improve its effectiveness and acceptability. Xu et al. have
introduced a control strategy for FES parameter selection, based
on a direct transfer function using surface electromyography
(sEMG) features and joint angles as inputs. A similar idea
has been used historically in other neuromodulation ĕelds
since various stimulation parameters have been shown to evoke
distinct neurological and physiological responses. Conversely,
elicited physiological effects, both for targeted and untargeted
neurons, can guide stimulus parameter tuning for many neural
systems, including the brain (Qian et al., 2016; Chen et al., 2020,
2022), spinal cord (Verrills et al., 2016), vagus nerve (Chang et al.,
2020), and the retina (Guo et al., 2018). In another example, Dong
et al. have proposed a walking assistance system with adaptive
algorithm to support FES therapy. As the stimulation sequence
is tailored to the individual need based on real-time gait phase,
healthy subjects are able to achieve better treadmill performance
for various speed conditions. A similar adaptive idea has also
been successfully adopted in clinical neuromodulation therapies
to improve effectiveness, such as deep brain stimulation (Bocci
et al., 2021) and spinal cord stimulation (Schultz et al., 2012),
utilizing chosen physiological indices.

“Know the enemy, know yourself” —
Chapter. Strategic attack
《孙子兵法 ·谋攻篇》

Electrical stimulation performance cannot be signiĕcantly
improved by only optimizing the device in isolation without
considering the biophysical complexity of the target nerve
system (Abbasi and Rizzo, 2021; Ahmed et al., 2022; Italiano
et al., 2022). Sophisticated computational models have been
widely used in predicting the role of tissue or neural or ultra-
structures under EF (Guo et al., 2014, 2016; Yang et al., 2018;
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Bai et al., 2019a; Dokos and Guo, 2020). Liu(a) et al. have
proposed a new biophysical model of myelin ultra-structures
by simulating cytoplasmic channels in the myelin sheath as a
low-impedance route, while previous models approximate the
myelin sheath as an insulation layer (Schwarz and Reid, 1995;
Bean, 2007; Ge et al., 2020). Using this model, Liu(b) et al.
further investigated how cytoplasmic channels affect EF across
the myelin sheaths, concluding that the externally applied EF
can control myelin growth. ese new ĕndings indicate the
possibility of using electrical modulation to treat degenerative
neural diseases. Neurodegenerative progression can affect the
neuroprosthetic performance (Rattay et al., 2001; Hilker et al.,
2005; Loizos et al., 2018; Ly et al., 2022). Croner et al. have
investigated the differential performance of cochlear stimulation
in a cochlea with intact and degenerating spiral ganglion neurons
(SGNs) using a biophysically detailed computational model of
the human cochlea (Bai et al., 2019b). eir study identiĕed
the increased activation of neurons in unintended areas, and an
insensitive neural response to various apical electrode settings
when degenerating SGNs were stimulated. is study also
suggested that stimulation thresholds are unlikely to be a good
indicator of neural health, since degenerating SGNs showed both
an increase and decrease in current threshold depending on the
initial stimulation site.

Author’s note

e Chinese characters shown in the Editorial refer to the
origin of each subtitle in the ancient literature e Art of War
by Sun Tzu.
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