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Gastrointestinal endoscopy has been identified as an important tool for cancer

diagnosis and therapy, particularly for treating patients with early gastric cancer

(EGC). It is well known that the quality of gastroscope images is a prerequisite

for achieving a high detection rate of gastrointestinal lesions. Owing to manual

operation of gastroscope detection, in practice, it possibly introduces motion blur

and produces low-quality gastroscope images during the imaging process. Hence,

the quality assessment of gastroscope images is the key process in the detection of

gastrointestinal endoscopy. In this study, we first present a novel gastroscope image

motion blur (GIMB) database that includes 1,050 images generated by imposing 15

distortion levels of motion blur on 70 lossless images and the associated subjective

scores produced with the manual operation of 15 viewers. Then, we design a

new artificial intelligence (AI)-based gastroscope image quality evaluator (GIQE) that

leverages the newly proposed semi-full combination subspace to learn multiple

kinds of human visual system (HVS) inspired features for providing objective quality

scores. The results of experiments conducted on the GIMB database confirm that the

proposed GIQE showedmore e�ective performance compared with its state-of-the-

art peers.

KEYWORDS

gastroscope images, motion blur, subjective and objective quality assessment, human visual

system, semi-full combination subspace

1. Introduction

Gastric cancer (GC) is the major cause of cancer death worldwide (Chen et al., 2022).

Recently, gastrointestinal endoscopy has been identified as an important tool for cancer

diagnosis and therapy, particularly for treating patients with early gastric cancer (EGC) (Li

Y.-D. et al., 2021). A proper application of endoscopy could identify and treat gastric lesions

better. The main purpose of medical image processing and analysis is to facilitate physicians

to conduct diagnosis and therapy (Cai et al., 2021; Xu et al., 2022). It is well known that

the quality of gastroscope images is a prerequisite for achieving a high detection rate of

gastrointestinal lesions (Liu et al., 2021). As gastroscope detection is operated manually, in

practice, it possibly introduces motion blur and produces low-quality gastroscope images

during the imaging process. These poor quality gastroscope images could lead to misdiagnosis,

and thus patients must need a second examination that increases their pain one more time

and even worse makes them miss the best time for treatment. Therefore, the image quality

assessment (IQA) of gastroscope images is helpful to lead to more accurate and earlier detection,

helping further in the development of image deblurring, enhancement, fusion, and denoising
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(Chen et al., 2021; Qin et al., 2021). To sum up, a good IQAmethod of

gastroscope images is very important to determine lesions effectively.

In the field of image processing and computer vision, IQA is a

crucial topic of research topic (Ye X. et al., 2020; Sun et al., 2021),

including the subjective assessment and the objective assessment.

The subjective assessment is widely perceived to be the most

accurate IQA method because the measuring results of its image

quality as the mean opinion score (MOS) are provided by human

viewers. A few well-known and publicly available IQA databases

with MOS or differential MOS (DMOS), such as Tampere Image

Database 2013 (TID2013) (Ponomarenko et al., 2013), Categorical

image quality (CSIQ) (Larson and Chandler, 2010), and Laboratory

for Image and Video Engineering (LIVE) (Sheikh et al., 2006),

pave the way for the development of the IQA. Over the past

decade, many scholars have built several IQA databases for more

practical purposes. For example, a contrast-changed image database

(CCID2014) was included in Gu et al. (2015b) to enable a study

on the perceptual quality of images with contrast changes. Two

tone mapping image databases were presented in Kundu et al.

(2017) and Gu et al. (2016b) to facilitate research on the quality

of evaluation of tone-mapped images with a high dynamic range

(HDR). The IQA database for super-resolved images was designed

in Fei (2020) for assessing the visual quality of super-resolution

images. However, well-known IQA databases are improper in the

case of gastroscope images. Specifically, there is no specific subjective

IQA database of gastroscope images. Because a gastroscope is

placed inside the body, many types of distortion in these databases,

such as impulse noise, brightness change, and Joint Photographic

Experts Group (JPEG) compression, are not included in gastroscope

images, but a motion blur usually exists. Up to now, to the

best of our knowledge, there has been not a publicly available

database for the quality assessment of gastroscope images, so it

is highly necessary to establish an IQA database of distorted

gastroscope images.

The MOS values are obtained experiments that include different

individuals and circumstances, but which are improper for the real-

time IQA of gastroscope images. The MOS is obtained in a labor-

intensive and time-consuming process, and is thus of very low

reusability. Another strategy to evaluate the quality of images which

is highly demanding is to develop objective assessment methods

toward matching the characteristics of a human vision system

(HVS). Recently, objective IQA method have achieved good results.

The typical objective IQA metrics are based on the full-reference

(FR), where a “clean” gastroscope image is available. The “clean”

gastroscope image is the ground truth in the case of gastroscope

images distorted with motion blur. The visual signal-to-noise ratio

(VSNR) Chandler and Hemami (2007) takes advantage of the supra-

and near-threshold characteristics of human vision. The peak signal-

to-noise ratio (PSNR) and mean-squared errors (MSEs) are the

most popular and commonly used FR IQA techniques, but their

correlation with perceived quality is not ideal. The most apparent

distortion (MAD) Larson and Chandler (2010) method adaptively

extracts visual features from the reference and distorted images

using the log-Gabor filtering and Fourier transform. The structural

similarity (SSIM) Wang et al. (2004) compares three visual aspects

including contrast, luminance, and structure. Later on, many variants

were proposed, based on the SSIM (Wang et al., 2003; Sampat et al.,

2009; Wang and Li, 2010; Zhu et al., 2018).

The FR IQA methods also make use of many other cues

or features, except for covariance, variance, and mean. Mutual

information between the distorted and the lossless images is used to

evaluate the quality of visual perception in the information fidelity

criterion (IFC) (Sheikh et al., 2005) and its extended approach

named the visual information fidelity (VIF) (Sheikh and Bovik, 2006).

In addition, since it is known that image gradients contain many

types of significant visual information, some IQA approaches extract

the gradient features. In Zhang et al. (2011), the feature similarity

(FSIM) was proposed to incorporate gradient magnitudes with phase

congruency. In Liu et al. (2011), the gradient similarity (GSIM) was

developed by combining gradient features with masking effect and

distortion visibility. In Xue et al. (2013), the gradient magnitude

similarity deviation (GMSD) takes advantage of a new pooling

strategy that is the global variation of a local gradient similarity.

Both the pooling weights and local features represent visual saliency

of the image in the IQA (Zhang et al., 2014; Ye Y. et al., 2020). A

few existing IQA models utilize the predictability as a feature. The

different strategies of the unpredicted and predicted parts in an image

are employed in Wu et al. (2012) to measure the internal generative

mechanism (IGM) index.

However, the scope of application of FR IQA is constrained by

the dependence of lossless images. In recent years, the no-reference

(NR) IQA models have been emphatically developed to solve the

problem of the original image not being available in many cases (Hu

et al., 2021; Li T. et al., 2021; Pan et al., 2021; ur Rehman et al.,

2022). In Gu et al. (2017c), the authors extracted 17 features including

brightness, sharpness, contrast, and so on, and then achieved a

predictive quality score by a regression model. In Gu et al. (2017d),

the authors developed a novel blind IQA model for evaluating the

perceptual quality of screen content images with big data learning. In

Gu et al. (2014b), the authors proposed a new blind IQAmodel using

the classical HVS features and the free energy feature based on the

image processing and brain theory. In Gu et al. (2015c), the authors

designed an NR sharpness IQA metric that is built using the analysis

of autoregressive (AR) parameters. However, some distortion types,

such as motion blur that may appear in the gastroscope images, are

not considered in the majority of the existing IQA methods, so these

off-the-shelf methods do not suit gastroscope images the best.

In this study, we attempt to construct a novel image database

and a specific IQA metric of gastroscope images to identify and treat

gastric lesions better. Because motion blur easily takes place in a

gastroscope image during the imaging process, we focus mainly on

how it affects the quality of a gastroscope image. First, we build a

gastroscope image motion blur (GIMB) database that encompasses

70 source images from 27 categories of the upper endoscopy anatomy

is built and 1,050 corresponding motion blurred images derived from

five pixel levels for three different motion angles. We adopt the single

stimulus (SS) method to gather subjective ratings. Then, we properly

integrate the existing FR IQA methods (Wu et al., 2021) to design an

artificial intelligence (AI)-based gastroscope image quality evaluator

(GIQE). To define it more concretely, we learn multiple kinds of HVS

inspired features from gastroscope motion blurred images by the

newly proposed semi-full combination subspace. The results reveal

that the proposed GIQE can achieve a superior performance relative

to the state-of-the-art FR IQA metrics.

The remainder of this article is arranged as follows. In

Section 2, the subjective assessment of gastroscope images and the
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establishment of the relevant GIMB database are introduced in detail.

In Section 3, a detailed implementation of the proposed GIQE is

presented. In Section 4, a comparison of the proposed GIQE with

several mainstream FR IQA metrics is carried out using the GIMB

database. In Section 5, some conclusions are finally drawn.

2. GIMB image database

In this section, we describe the proposed GIMB database. First,

we introduce the formation and processing of source images. Then,

the subjective methodology is leveraged to collect the MOS values

from the viewers. Finally, the collected values of MOS are processed

and analyzed.

2.1. The formation of source images

It is nontrivial to select source images, because the content of

source images has a strong effect on the IQA. According to the general

theory, the source images ought to be undistorted, and their contents

should be abundant and diverse. The GIMB database encompasses

70 source images that are taken from 27 categories of the upper

endoscopy anatomy, such as the antrum anterior wall, the pharynx,

the pylorus, and the fundus, as shown in Figure 1. In this study,

the patients were examined by gastroscopy at the Peking University

Cancer Hospital from June 2020 to December 2021. The Ethics

Committee approved the study at the Peking University Cancer

Hospital on 15 May 2020 (ethics board protocol number 2020KT60).

The source images were captured by endoscopes such as GIF-H290,

GIF-HQ290, GIF-H260 (Olympus, Japan), EG-760Z, EG-760R, EG-

L600ZW7, EGL600WR7, and EG-580R7 (Fujifilm, Japan). Areas

around gastroscope images contain information on indicators that

does not contribute to the IQA and should therefore be removed. We

cropped the source images into the same resolution of 1,075× 935 to

remove unnecessary information and obtain a higher processing level

of IQA.

2.2. The processing of source images

From the perspective of an IQA database, the gastroscope blurred

images are actually the images distorted by motion blur. The relative

motion between the gastrointestinal tract regions and the probe

during gastroscopy by artificial operation often leads to motion

blur in gastroscope images. The motion blur is caused by the

superposition of multiple images at different times. We set x0(t) and

y0(t) as the motion components in x and y, and set T as the exposure

time. The vague image adopted at time t is

g(x, y) =

∫ T

0
f [x− x0(t), y− y0(t)]dt. (1)

We suppose that the motion between the gastrointestinal tract

regions and the probe is a kind of uniform rectilinear movement.

During time T, the moving distances are represented by a and b in

x and y:
{

x0(t) = at/T

y0(t) = bt/T
(2)

Combining with Equations (1), (2), the probe moves L pixels with

uniform speed in a straight line at θ angle in the x-y plane. The vague

image is obtained by

g(x, y) =
1

L

L−1
∑

i=0

f [x′ − i, y′] (3)

Where x′ = x cos θ + y sin θ and y′ = y cos θ − x sin θ . i ∈{1, 2, 3,...,

L-1} is an integer.

Therefore, we define the point spread function (PSF) of the

motion blurred image in any direction by

h(x, y) =

{

1/L y = x tan θ , 0 ≤ x ≤ L cos θ

0 y 6= (x tan θ),−∞ < x < ∞
(4)

Two important parameters include the direction of the motion blur θ

and the distance from where the pixels L have blurred.

To obtain motion blurred images, we processed source images

using the built-in function of MATLAB application. To be more

specific, we used two key parameters, L and θ , of motion blur

aforementioned to process each lossless image.We set the direction of

the motion blur to be at three different motion angles θ = {30◦, 60◦,

and 90◦}. Because gastroscope images are different from natural

images, their rotations have no impact on the diagnosis of doctors.

In addition, we set the motion distance to be five pixel levels, that

is, L = {5, 10, 15, 20, 25}, which directly affect the performance of

the IQA and the detection rate of gastric lesions. Figure 2 shows

five motion blur levels of a lossless image. For the five motion

blur grades, doctors agree that L = {5, 10} is useful for diagnosis,

while L = {5, 10} corresponds to poor quality gastroscope images,

potentially contributing to the misdiagnosis. Moreover, L = 15 is the

boundary between the availability and the unavailability as confirmed

by most of the physicians. On this basis, we generated 15 motion

blurred images from each source image. Overall, the proposed GIMB

database contains 70 lossless images and 1,050 distorted images.

2.3. Subjective methodology

Subjective methodology is an important procedure in creating

an IQA database, yet it is very labor-intensive and time-consuming.

In the following, we present the subjective test method, subject,

environment, and the apparatus.

2.3.1. Method
The methodology for the subjective assessment of the quality of

television pictures. Recommendation ITU-R BT.500-13 (Ritur, 2002)

has defined several subjective test methods that include SS, double-

stimulus impairment scale (DSIS), and paired comparison. In this

study, we used the SS method to conduct the subjective experiment.

The order of all test images on the database was randomized to

minimize the impact of subjects’ memories on MOS. The subjects

were asked to score the quality of each gastroscope image from 1

to 5, according to their overall sensation to these images. The test

was divided into four subsessions, each of which lasted <20 min. A

subsession includes 18 min for scoring and 2 min for training, and

the interval for each subsession lasts 5 min.
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FIGURE 1

The source images in di�erent gastrointestinal tract regions in the gastroscope image motion blur (GIMB) database.

FIGURE 2

The five motion blur levels of a lossless image (A). (B–E) Are the motion blurred image with five levels corresponding to lossless image. (D) Shows the

boundary between available (B, C) and unavailable (E, F).

FIGURE 3

The interface window applied in the subjective assessment.
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2.3.2. Subject
This subjective experiment involves experienced and

inexperienced viewers, most of whom are physicians and

postgraduates from the medical specialty. The inexperienced

subjects are ignorant about distorted images and the corresponding

terminology. Specific visual acuity tests including vision and color are

not needed since the gastroscope image is a classical two-dimensional

(2D) image. The subjects could wear their own glasses with suitable

degree they wear every day. Before the test, we gave the viewers

oral and written instructions, as specified in the International

Telecommunication Union Telecommunication Standardization

Sector (ITU-T) Recommendation. P.910. In the training phase, each

subject is shown different pixel levels of motion blur, from the lowest

to the highest as given in Figure 3, and familiar with the scoring

procedure. The images used in the training stage and testing stage

are different.

2.3.3. Environment
To achieve reliable scoring results, we conducted the test in a fixed

and controlled environment. Specifically, all the viewers were asked

to perform their assessment in an indoor environment without any

background light (Huang et al., 2021; Shi et al., 2021). We chose the

suitable ambient luminance (Gu et al., 2015a; Yu and Akita, 2020).

In the training phase, the viewing distance was set to approximately

three times the image height. To get more precise scores, the viewers

were able to modify the distance between the monitor and themselves

slightly after a round testing.

2.3.4. Apparatus
Two interface windows are shown simultaneously in MATLAB

application and are applied to subjective assessment, as illustrated in

Figure 3. The left window is used to score, while the right window

is used to show the gastroscope motion gastroscope motion blurred

image. The right window can be controlled by subjects during the

test. The subjects can control which images should be shown in this

window by pressing the key “c” or “d” on the keyboard. According to

the psychovisual evaluation, we found that the viewers canmake their

decisions much more precisely and quickly by flipping the images

at exactly the same position. Information about the psychovisual

evaluation in detail is given in online materials section in Zhou et al.

(2018). During scoring, the subjects were asked to give their scores as

early as possible and were guided to click the button “1,” “2,” “3,” “4,”

or “5” on the window, indicating their grading of motion blur from

the lowest to the highest. The characteristics of the display device and

system used in the experiment are described briefly in Figure 4. We

saved the final scores of all the gastroscope images given by all the

viewers after the subjective test for further analysis.

2.4. Scores processing and analysis

According to the subjective test aforementioned, we gathered the

viewers’ scores to be processed and analyzed as follows:

First, we analyzed 15 motion blurred images of a lossless image

using the box plot to study the influence of inattentive subjects on

an individual observer’s rating. The box plot (i.e., box and whisker

diagram) is used to analyze the distribution of data on the basis of five

FIGURE 4

The characteristics of the display device and system are used in the

experiment.

FIGURE 5

Box plot of the subjects’ scores for 15 motion blurred images of a

lossless image. On each image box, the central red line is the median

score, the edges of the box are first quartile and third quartile, and the

outliers are marked by a red cross individually.

indicators, includingminimum,maximum,median, and the 25th and

75th percentiles. The range of the first and third quartiles is obvious,

and there are a few points that are outliers, as shown in Figure 5.

These results indicate that it is worthwhile to analyze the subjective

score of an individual participant. Thus, we invited an experienced

physician to screen the outliers.

Then, we processed all the values within the normal range after

elimination. We assigned mij as the raw subjective score obtained

from the viewer’s i evaluation of the gastroscope motion blurred

image Ij, where i = {1, 2, 3, . . . , 15}, j = {1, 2, 3, . . . ,N},N < 1, 050.

For a jth image, the MOS value is calculated by the formula as follows:

MOSj =

M
∑

i=1

mij

M
(5)
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Where M = 15 represents the number of subjects. We draw on

the distribution histogram of the MOS to display the viewers’ MOS

scores as illustrated in Figure 6. An important observation indicates

that the MOS scores of most distorted gastroscope images are only

around 3.5 in comparison. Hence, motion blur influences the original

gastroscope images considerably, which leads to a misdiagnosis

of GC.

3. Proposed IQA metric

The existing FR and NR IQA models designed for a specific

distortion category and an application scenario perform well, but are

not suitable for gastroscope images. We explore an IQA metric for

gastroscope motion blurred images using the semi-full combination

subspace. Specifically, the image quality evaluation method of a

gastroscope image is carried out in three steps.

3.1. The first step

We extract five features of gastroscope images since the

processing of IQA is to learn multiple kinds of HVS inspired features.

We then fuse these features to train a regression module.

3.1.1. The low-level similarity feature
The phase congruency (PC) principle postulates that the Fourier

transform phase contains maximal perceptual information, which

helps the HVS to detect and identify features, according to the

psychophysical and physiological evidence. Hence, we compute the

feature FPC:

FPC = max
φ̄(i)∈[0,2π]

{

∑

µ |Fµ| cos[φµ(i)− φ̄(i)]
∑

µ |Fµ|
} (6)

Where |Fµ| is the amplitude of an image and φµ(i) represents the

phase of Fµ at pixel i on the scale µ.

The gradient magnitude (GM) is a very classical and valid

feature for improving the IQA performance. We employ the Scharr

operator defined as GM =
√

GM2
x + GM2

y , where GMx and GMy

are the partial derivatives along x and y axis directions. This GM is

regarded as

FGM = E[
2GM(Id) · GM(Ir)+ A1

GM(Id)2 + GM(Ip)2 + A1
] (7)

Where Ir is the reference image. Id and Ip represent the distorted and

predicted versions of Ir , respectively. A1 is a fixed positive constant.

Many recently proposed IQA algorithms have proven that PC and

GM are very valid, since the HVS is very sensitive to them.

We then combine fPC with fGM to obtain the similarity feature FL,

which is defined by

FL = Fα
PC · F

β
GM (8)

Where parameters α and β are applied to change the importance of

fGM and fPC. Since the visual cortex is very sensitive to PC features,

we use FPC as a weight value to extract the low-level similarity feature

FLSF as the first feature:

FLSF =
FL · FPC

FPC
(9)

3.1.2. The visual saliency feature
Visual saliency (VS) areas of an image attract maximum attention

of the HVS. We fuse VS, GM, and chrominance features to obtain

the visual saliency feature (VSF) of images for IQA tasks. We extract

VS maps of original and lossless images by a specific VS model. The

similarity between them is defined as:

FVS = E[
2VS(Id) · VS(Ir)+ A2

VS(Id)2 + VS(Ip)2 + A2
] (10)

The similarity between the chrominance featue components is simply

defined as:

FC = E[
2M(Id) ·M(Ir)+ A2

M(Id)2 +M(Ip)2 + A2
] · E[

2N(Id) · N(Ir)+ A2

N(Id)2 + N(Ip)2 + A2
] (11)

Where parameters M and N are the numbers of channels. A2 is

another fixed positive constant.

We define FVSF as the second feature:

FVSF = FVS · F
α
GM · F

β
C (12)

Where two parameters α and β are used to adjust the relative

importance of VS, GM, and chrominance features.

3.1.3. The log-gabor filter
The log-Gabor filter (LGF) has strong robustness for brightness

and contrast changes of images, and it has been widely used to extract

local features and texture analysis in computer vision. We use a

log-Gabor filter bank to decompose the source and lossless images

into a set of subbands. The subband’s features are obtained by the

inverse density functional theory (DFT) of the images’ DFT with the

following multiplying 2D frequency response as the third feature:

FLGF(fr , fθ ) = exp[−
(logfr/frs)

2

2(logσs/frs)2
]× exp[−

(fθ − µ0)
2

2σ 2
0

] (13)

Where FLGF(fr , fθ ) is a log-Gabor filter by two indexes, which are

the normalized radial frequency fr =
√

(µ/M/2)2 + (µ/N/2)2, and

the angle of orientation fθ = arctan(υ/µ). The parameter frs is

the normalized center frequency of the scale, and the bandwidth

of the filter is determined by σs/frs. The parameters µ0 and σ0

denote the orientation and angular spread of the filter, respectively.

The parameters frs, σs, µ0, and σ0 can be determined by the

corresponding evaluation derived from the HVS, since it is known

that the log-Gabor filter approximates cortical responses in the

primary visual cortex.

3.1.4. The mutual information feature
The mutual information represents the amount of feature

information that we can extract from the HVS output. For the source
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FIGURE 6

Histogram of mean opinion score (MOS) values for gastroscope motion blurred images.

or lossless images, we define the mutual information to be the fourth

feature by

FMIF =
1

2

N
∑

i=1

log2(
x2i |BU + ǫ2mI|

|ǫ2mI|
) (14)

Where x = {xi : i ∈ I} is an RF of positive scalars and U is a Gaussian

vector RF with mean zero and covariance BU . BU = Q3QT is

symmetric. The parameter Q is an orthonormal matrix and 3 is a

diagonal matrix. ǫ2m represents the variance of the visual noise. The

RFs M and N are supposed to be independent of U and BM = ǫ2m I.

| · | denotes the determinant.

3.1.5. The novelty structural feature
The HVS is sensitive to structural distortion since natural images

are highly structured. The structural feature of an image represents

the structure of objects in the scene, different from the contrast

and luminance. For example, as regards SSIM, Wang et al. (2004)

calculate the differences in a few features (i.e., contrast, structural, and

luminance) between Ir and Id. Multiscale structural similarity (MS-

SSIM) (Wang et al., 2003)mainly incorporates contrast and structural

similarities that are more effective than the luminance similarity in

SSIM. We compute the contrast similarity:

FSF = E[
2η(Id)η(Ir) + A3

η2
(Id)

+ η2
(Ir)

+ A3
] (15)

Where η(Id) and η(Ir) are the gradient values for the central pixel

of images Id and Ir , respectively. A1, A2, and A3 are all fixed. E(·)

represents the expectation or the mean value. In the pixel version, we

define FNFS to be the fifth feature:

FNSF(i, j) =
2(1− R)+ K

1+ (1− R)2 + K
(16)

Where R =
|fSF(i)−fSF(j)|

max[fSF(i),fSF(j)]
and K = A3/max[fSF(i), fSF(j)]

2 of image

blocks i and j.

FIGURE 7

The implementation of an e�cient regression engine.

3.2. The second step

Inspired by Gu et al. (2020), we propose a semi-full combination

subspace method, which is an elaborate integration of bootstrapping

and aggregation applied to environmental factors. The semi-full

combination subspace exerts bootstrapping on the input features.

A high-dimensional feature vector or a small number of training

samples is very likely to lead to an overfitting. Specifically,

directly using all of the aforementioned five features is not always

superior to the situation of using only a few of them. To

address this issue, a new subset composed of a segment of the

features is generated, which decreases the conformity between the

length of the feature vector and the size of the training sample.

Using the new semi-full combination subspace, we can obtain
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a component learner. By applying the aforementioned process

to the feature space repeatedly through the feature selection,

we can build multiple component learners with diversity of the

environmental factors.

3.3. The third step

We use the semi-full combination subspace of five features

to attain a single direct visual quality of gastroscope images.

An efficient regression engine, namely support vector regression

(SVR) (Mittal et al., 2012), is used to reliably transform the semi-

full combination subspace into a single objective quality score.

Concretely, we implement the SVR by the radial basis function (RBF)

kernel (Mittal et al., 2012) included in the LibSVM package, as shown

in Figure 7.

3.3.1. SVR training
We train an SVR to learn a regression model using

the GIMB database. This database contains a number of

different gastrointestinal tract regions and motion blur

levels. To train our proposed model, we split the GIMB

into 40% data for testing and 60% data for training.

The SVR has significant advantages of high efficiency

and flexibility.

We consider the GIMB training database T =

{(f1,m1), (f2,m2), . . . , (fr ,mr)}, where fr and mr , r = {1, . . . ,N}.

fr indicates a feature vector of f1 − f5 of the rth training image.

The training labels mr are subjective MOSs. We express the linear

soft-margin SVR as

min
w,b,ξr ,ξ̂r

1

2
‖W‖2 +H

N
∑

i=1

(ξr , ξ̂r)

s.t. mode−mr ≤ ε − ξr ,

mr −mode ≤ ε + ξ̂r ,

ξr ≥ 0, ξ̂r ≥ 0, r = 1, 2, . . . ,N

(17)

Where we set kernel function K(fr , fi) to be the RBF kernel defined by

K(fr , fi) = ϕ(fr)
Tϕ(fi) = exp(−k‖xr − xi‖

2) (18)

By training the SVR on the GIMB database, we want to determine the

optimal parameters H, ε, and k to obtain a fixed regression model,

which is defined as

model = SVRtrain(fr ,mr ,Dtrain) (19)

Where Dtrain is the training set. Five features are extracted to create a

model named the gastroscope image quality evaluator (GIQE).

3.3.2. SVR prediction
Finally, the performance of the proposed GIQE metric is verified

on testing the GIMB database with the obtainedmodel. The perceived

quality score Qj of GIQE for gastroscope images is computed by

Qi = SVRpredict(fj,model,Dpredict) (20)

Where Dpredict is the testing set.

4. Comparison of objective quality
assessment metrics

In this section, we investigate whether several existing FR IQA

models can evaluate the quality of gastroscopic motion blurred

images effectively. There are 20 traditional and mainstream FR

IQA methods. Four commonly used performance indicators are

adopted to compute the correlation between each MOS and FR

IQA metric.

4.1. Objective quality assessment models

We introduce some categories of FR IQA algorithms as follows:

• Analysis of distortion distribution-based SSIM (ADD-SSIM):

Gu et al. (2016a) propose a high-performance fusion model

based on the SSIM by analyzing the distortion distribution

influenced by the image content and distortion.

• MAD: Larson and Chandler (2010) evaluates the perceived

quality of low- and high-quality images using two different

strategies respectively.

• Visual signal-to-noise ratio (VSNR): Chandler and Hemami

(2007) uses image features to estimate the image quality in

the wavelet domain, visual masking, near-threshold, and supra-

threshold properties.

• Analysis of distortion distribution GSIM (ADD-GSIM):

Gu et al. (2016a) incorporate the frequency variation,

distortion intensity, histogram changes, and distortion position

distributions to infer the image quality.

• IFC: Sheikh et al. (2005) use the natural scene statistics captured

by sophisticated models to propose a novel information fidelity

criterion (IFC).

• VIF: Sheikh and Bovik (2006) considers it an information fidelity

problem to quantify the loss of distorted images and explore the

correlation between visual quality and images.

• Visual information fidelity in pixel domain (VIFP): Sheikh and

Bovik (2006) develops a novel version of VIF in the pixel domain

to reduce computational complexity.

• IGM:Wu et al. (2012) control the process of cognition according

to the basic hypothesis of the free-energy-based brain theory.

• Local-tuned-global model (LTG): Gu et al. (2014a) assume that

the HVS draws on the prominent local distortion and global

quality degradation to characterize the image quality.

• Noise quality measure (NQM): Damera-Venkata et al. (2000)

combine the local luminance mean, contrast pyramid of

Peli, contrast sensitivity, contrast mask effects, and contrast

interaction in spatial-frequency domain.

• Reduced-reference image quality metric for contrast change

(RIQMC): Gu et al. (2016a) design a novel pooling module

by the analysis of distortion intensity, distortion position,

histogram changes, and frequency changes to infer an overall

quality measurement.

• Structural variation-based quality index (SVQI): Gu et al.

(2017b) evaluate the perceived quality of image based on the

analysis of global and local structural variations on account of

transmission, compression, etc.
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• Perceptual similarity (PSIM): Gu et al. (2017a) take into account

the similarities of GM at two scales and color information, and

an effective fusion based on perception.

• GMSD: Xue et al. (2013) explore a novel fusion strategy

according to the pixelwise gradient magnitude similarity (GMS)

between the lossless image and the corresponding distorted

image.

• FSIM and Feature similarity in color domain (FSIMC): Zhang

et al. (2011) compute the PC and the similarity of GM between

the lossless image and the distorted image.

• GSIM: Liu et al. (2011) combine gradient features with visual

distortion and masking effect.

• Visual saliency-induced index (VSI): Zhang et al. (2014)

skillfully combine the GM variations and vision saliency to

perceive the image quality.

4.2. Performance of the objective quality
assessment models

After introducing the aforementioned objective quality

assessment models, we first map the objective predictions of

the IQA models by the five-parameter logistic function:

Q(x) = β1(
1

2
−

1

1+ eβ2·(z−β3)
)+ β4 · z + β5 (21)

Where x and Q(x) represent the input scores and the mapped scores,

respectively. z is the predicted score of the IQA. βi(i = 1, 2, . . . , 5) are

variable parameters that have to be defined in the fitting process.

Then, we draw on four statistical indicators, as detailed in

Zhang et al. (2014), to compare the consistency of the predicted

ratings from subjective MOSs and objective IQA models. The four

indicators represent different meanings and evaluate the predicted

performance in different ways. First, Pearson’s linear correlation

coefficient (PLCC) points out the accuracy by computing correlation

of the subjective and objective scores. Second, Spearman’s rank-order

correlation coefficient (SROCC) reflects the predicted monotonicity

of IQA, which does not dependent on any monotone nonlinear

mapping between the objective scores and MOSs. Third, Kendall’s

rank-order correlation coefficient (KROCC) is a nonparametric rank

correlation metric to measure the matching between the original

scores and the converted objective ones. The last root mean-

squared error (RMSE) indicates the predicted consistency, which is

defined as the energy between two data sets. For the four indicators

aforementioned, a superior IQA model means the values of PLCC,

SROCC, and KROCC are close to 1, while the value of RMSE is close

to 0. Table 1 lists the performance of 20 FR IQA models on PLCC,

SROCC, KROCC, and RMSE. The best performing objectivemethods

are highlighted in boldface in each column.

We compared the performance of 20 commonly used FR IQA

models for gastroscope motion blurred images. From Table 1, we

derive some important conclusions as follows:

(1) The top two IQA models are highlighted in different bold

colors to compare our method with those of other competitors

straightaway. It is obvious that the proposed GIQE model, whose

PLCC, SROCC, KROCC, and RMSE reach 0.8883, 0.8849, 0.6988,

and 0.7766, respectively, shows a better performance than the existing

FR IQA models.

TABLE 1 Performance comparison of the proposed gastroscope image

quality evaluator and the existing full-reference image quality assessment

(FR IQA) metrics on the gastroscope image motion blur (GIMB) database.

PLCC SROCC KROCC RMSE

PSNR 0.6463 0.5703 0.4042 0.6966

MSE 0.4379 0.5833 0.4139 0.8207

SSIM 0.5831 0.5313 0.3730 0.7416

ADD-SSIM 0.7608 0.7022 0.5099 0.5924

MS-SSIM 0.7826 0.7248 0.5493 0.5683

FSIM 0.8571 0.8325 0.6343 0.4702

FSIMC 0.8568 0.8319 0.6336 0.4708

PSIM 0.7335 0.6780 0.4904 0.6205

MAD 0.8585 0.8412 0.6404 0.4682

VSNR 0.6027 0.5312 0.3707 0.7284

GMSD 0.7813 0.7090 0.5266 0.5697

GSIM 0.8486 0.8205 0.6237 0.4829

ADD-GSIM 0.7657 0.7026 0.5 135 0.5871

VIF 0.8392 0.8285 0.6329 0.4964

VIFP 0.8575 0.8269 0.6319 0.4697

IGM 0.7836 0.7111 0.5263 0.5671

LTG 0.7690 0.7038 0.522 1 0.5836

NQM 0.8533 0.8376 0.6375 0.4760

VSI 0.8316 0.8027 0.6050 0.5070

IFC 0.8630 0.8501 0.6578 0.4612

GIQE 0.8883 0.8849 0.6988 0.7766

The best results of each indicator are highlighted in bold.

Specifically, we concentrate only on the PLCC indicator, and

similar conclusions can be drawn from the other three indicators.

IFC is the second best performing model, achieving 0.8630 on PLCC.

Compared with the IFC, the performance of the proposed IQAmetric

GIQE has improved by 2.9%. The performance gains of the proposed

GIQE models are 13.5 and 16.7% higher than those of MS-SSIM and

ADD-SSIM, respectively.

(2) We can see that a few aforementioned FR IQA models do

not exhibit a remarkably high correlation with subjective quality. For

example, the performance of PSNR and VSNR for the gastroscope

motion blurred images is low. It means that the assessment model is

not suitable for the study of gastroscope images. Since the gastroscope

is placed inside the body, the images it produces do not contain

most types of distortion found in natural images, such as pulse noise,

brightness changes, and JPEG. It causes the PSNR to be inferior to the

traditional successful methods for natural images.

(3) We study the performance of the SSIM and SSIM-

based FR IQA models for gastroscope motion blurred images.

The performance of all SSIM-based IQA models has showed

an improvement compared with that of SSIM, indicating that

they can promote the analysis of motion blurred distortion in

gastroscope images. Both ADD-SSIM and MS-SSIM analyze the

influence of motion blurred distortion on image’s structure. MS-

SSIM performs the best among these SSIM-based IQA methods
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FIGURE 8

Scatter plots of mean opinion scores (MOS) vs. the proposed (T) gastroscope image quality evaluator (GIQE) and traditional Full-Reference Image Quality

Assessment (IQA) models [(A) peak signal-to-noise ratio (PSNR), (B) structural similarity (SSIM), (C) analysis of distortion distribution-based SSIM

(ADD-SSIM), (D) multi-scale structural similarity (MS-SSIM), (E) feature similarity (FSIM), (F) feature similarity in color domain (FSIMC), (G) perceptual

similarity (PSIM), (H) most apparent distortion (MAD), (I) gradient magnitude similarity deviation (GMSD), (J) gradient similarity (GSIM), (K) analysis of

distortion distribution GSIM (ADD-GSIM), (L) information fidelity criterion (IFC), (M) local-tuned-global model (LTG), (N) internal generative mechanism

(IGM), (O) visual signal-to-noise ratio (VSNR), (P) visual saliency-induced index (VSI), (Q) visual information fidelity (VIF), (R) visual information fidelity in

pixel domain (VIFP), and (S) noise quality measure (NQM)].

and it obtains values 0.7826, 0.7248, 0.5493, and 0.5683 of PLCC,

SROCC, KROCC, and RMSE, respectively. Yet, SSIM obtains

values 0.5831, 0.5313, 0.3730, and 0.7416 of PLCC, SROCC,

KROCC, and RMSE, respectively, which is the worst performing

model among all FR IQA tested methods. It shows that the

motion blurred distortion caused by the superposition of multiple

images at different times has a great effect on the structure

of images.

(4) We find that the methods based on the image gradients,

such as FSIM, FSIMC, and GSIM, achieve a high performance

in terms of these traditional FR IQA metrics, as image gradients

are significant in gastroscope images. VIF, VIFP, and VSI metrics

achieve superior performance than most of the tested FR IQAs,

which indicate that the features extracted by VIF, VIFP, and

VSI metrics are less affected by the motion blur. It brought to

light the fact that the visual saliency features of VIF, VIFP, and

VSI models are useful for assessing the quality of gastroscope

motion blurred images. In addition, the saliency models used in

VIF, VIFP, and VSI models are not specially devised for motion

blurred images.
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(5) Among the existing FR IQA methods, IFC shows

the best performance, which achieves values 0.8630, 0.8501,

0.6578, and 0.4612 of PLCC, SROCC, KROCC, and RMSE,

respectively. This observation indicates that IFC has the highest

correlation with the perceptual scores for gastroscope images.

However, the performance of IFC is far from satisfactory. All

the existing FR IQA methods do not take into consideration

the distorion-specific category of the gastroscope image.

The objective algorithm for gastroscope images needs to be

studied further.

The scatter plot is a common manifestation of comparison in

the IQA study, which can show some direct-viewing illustrations

of different IQA models. In Figure 8, we provide the scatter plots

of MOS vs. 20 existing objective FR IQA methods tested on the

proposed GIMB database. These representative models are composed

of PSNR, SSIM, ADD-SIMM, MS-SSIM, FSIM, FSIMC, PSIM,

MAD, VSNR, GMSD, GSIM, ADD-GSIM, IFC, VIF, VIFP, VSI,

VIF, VIFP, IGM, LTG, and NQM. It can be seen that the sample

points of IFC, MAD, NQM, and VIF present better convergence

and linearity, which illustrates that these models can deliver more

consistent results between the objective scores and the subjective

scores. From Figure 8, we find that the proposed GIQE method

(i.e., the last scatter plot) is more robust and shows a better

performance with regard to correlation than the existing FR IQA

models (including IFC, MAD, NQM, and VIF). Particularly, the

sample points of the proposed GIQE metric are quite close to the

centerline, whereas those of the majority of other tested FR IQA

models are far from the centerline. According to this, we assume

that the proposed GIQE method demonstrates higher consistency in

prediction performance.

5. Conclusions

In this study, we have investigated comprehensively a significant

quality assessment problem of gastroscope motion blurred images

in EGC diagnosis and therapy systems. We built a carefully devised

GIMB database to facilitate the image quality evaluation of the

gastroscope motion blurred images. This database is composed of

1,050 distorted images under five pixel levels for three different

motion angles. It associates MOS values scored by 15 experienced

and inexperienced viewers. What’s more, we compared 20 FR

IQA models by combining different features of images. The

IFC, VIF, FSIM, and NQM achieved high consistency with the

subjective scores. The results of the comparison show that visual

saliency information, structure information, and image gradients

are crucial features when devising objective IQA algorithms for

gastroscope images. We then extracted and learned these features

to design a novel IQA metric GIQE by adopting semi-full

combination subspace. The results of the experiments imply that

the proposed GIQE has always achieved a superior performance

(i.e., better consistency) than the 20 existing FR IQA metrics.

In the future, we would like to choose more lossless images

to increase the capacity of the database. In addition, we would

like to develop a higher performance objective IQA model for

gastroscope images.
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