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Background: The capacity to diagnose obstructive sleep apnoea (OSA) must be
expanded to meet an estimated disease burden of nearly one billion people worldwide.
Validated alternatives to the gold standard polysomnography (PSG) will improve access
to testing and treatment. This study aimed to evaluate the diagnosis of OSA, using
measurements of mandibular movement (MM) combined with automated machine
learning analysis, compared to in-home PSG.

Methods: 40 suspected OSA patients underwent single overnight in-home sleep
testing with PSG (Nox A1, ResMed, Australia) and simultaneous MM monitoring
(Sunrise, Sunrise SA, Belgium). PSG recordings were manually analysed by two expert
sleep centres (Grenoble and London); MM analysis was automated. The Obstructive
Respiratory Disturbance Index calculated from the MM monitoring (MM-ORDI) was
compared to the PSG (PSG-ORDI) using intraclass correlation coefficient and Bland-
Altman analysis. Receiver operating characteristic curves (ROC) were constructed
to optimise the diagnostic performance of the MM monitor at different PSG-ORDI
thresholds (5, 15, and 30 events/hour).

Results: 31 patients were included in the analysis (58% men; mean (SD) age: 48
(15) years; BMI: 30.4 (7.6) kg/m?). Good agreement was observed between MM-ORDI
and PSG-ORDI (median bias 0.00; 95% Cl —23.25 to + 9.73 events/hour). However,
for 15 patients with no or mild OSA, MM monitoring overestimated disease severity
(PSG-ORDI < 5: MM-ORDI mean overestimation 4+ 5.58 (95% Cl + 2.03 to + 7.46)
events/hour; PSG-ORDI > 5-15: MM-ORDI overestimation + 3.70 (95% Cl —0.53
to + 18.32) events/hour). In 16 patients with moderate-severe OSA (n = 9 with PSG-
ORDI 15-30 events/h and n = 7 with a PSG-ORD > 30 events/h), there was an
underestimation (PSG-ORDI > 15: MM-ORDI underestimation —8.70 (95% CI —28.46
to + 4.01) events/hour). ROC optimal cut-off values for PSG-ORDI thresholds of 5, 15,
30 events/hour were: 9.53, 12.65 and 24.81 events/hour, respectively. These cut-off
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values yielded a sensitivity of 88, 100 and 79%, and a specificity of 100, 75, 96%. The
positive predictive values were: 100, 80, 95% and the negative predictive values 89,

100, 82%, respectively.

Conclusion: The diagnosis of OSA, using MM with machine learning analysis, is
comparable to manually scored in-home PSG. Therefore, this novel monitor could be a
convenient diagnostic tool that can easily be used in the patients’ own home.

Clinical Trial Registration: [https://clinicaltrials.gov], identifier NCT04262557].

Keywords: sleep apnoea, polysomnography, mandibular monitor, in-home diagnosis, one-night agreement,
performance, automated machine learning analysis

INTRODUCTION

Obstructive sleep apnoea (OSA) is a major burden worldwide,
affecting nearly one billion people (Benjafield et al., 2019; Grote,
2019; Lyons et al., 2020). Alongside symptoms of sleepiness, and
impaired memory and mood, untreated OSA is associated with a
range of cardiovascular and metabolic morbidities and increased
mortality (Knauert et al., 2015; Levy et al., 2015; Reutrakul and
Mokhlesi, 2017; Linz et al., 2018). Moreover, the prevalence is set
to rise with ageing populations and a global obesity pandemic.
Additionally, recent data supporting treatment of mild OSA has
created further burden, with over half of patients with OSA
experiencing a mild form of the disease (Benjafield et al., 2019;
Wimms et al., 2020). Finally, an acute need has arisen to re-
evaluate OSA diagnosis and treatment, due to the COVID-19
pandemic, which has reduced resources and increased waiting
lists (Patel and Donovan, 2020; Schiza et al., 2021).

Attempts to expand diagnostic capacity in the face of
increasing demand have utilised technological advances. In
particular, portable monitors have focused on minimally invasive
measurements and automated analysis, for ease of use by both
patients and staff (Collop et al., 2007). Additionally, the COVID-
19 pandemic has resulted in the need for disposable diagnostic
monitors that can be used safely in the patients’ home, to facilitate
remote healthcare pathways (Grote et al., 2020). However, despite
the obvious need for new diagnostic tools, monitors must
be evaluated for reliability, since issues typically occur in the
classification of breathing events as central or obstructive, plus
the overall event count, in the absence of sleep monitoring
(Randerath et al., 2018).

Mandibular movements (MM) have been established as a
surrogate bio-signal for the detection of breathing effort during
sleep (Martinot et al., 2015, 2017b, 2020). Analysis of the MM
signal has enabled the identification of specific breathing patterns
associated with sleep-disordered breathing (Senny et al., 2008;
Maury et al., 2013, 2014; Martinot et al.,, 2017a). MM analysis
has also been shown to differentiate between sleep and wake
states, allowing for the identification of total sleep time, which
may be of value in the calculation of sleep-disordered breathing
indices (Senny et al., 2009, 2012; Maury et al., 2014). In a recent
study, machine learning was used to homogenise the quality
of the scoring of respiratory events, linked with cloud-based
data transfer; this automated analysis was equivalent to that of
in-laboratory PSG (Pépin et al., 2020).

The aim of the current study was to evaluate the use
a novel monitor (Sunrise, Sunrise SA, Belgium) using MM
for the diagnosis of OSA in real world conditions. MM
and PSG data were recorded simultaneously in the patients’
home. MM was analysed automatically and compared to PSG
analysed manually by experts at two clinical centres. We
hypothesised that the Obstructive Respiratory Disturbance Index
(ORDI)(Nordigarden et al., 2011) calculated using MM with
machine learning analysis would not be significantly different to
the ORDI obtained using manually scored PSG.

MATERIALS AND METHODS
Study Design

A prospective, diagnostic, open study in 40 adult patients referred
with a suspicion of OSA to a single centre (Grenoble Alpes
University Hospital) was conducted. The study was approved
by an independent Ethics Committee (Comité de Protection
des Personnes, Sud-Ouest et Outremer III, Bordeaux, France,
ID-RCB: 2019-A02965-52) and registered on Clinicaltrials.gov
(NCT04262557). All 40 patients were recruited from the
Grenoble centre and signed written informed consent. The
study was conducted in accordance with Good Clinical Practice,
and all applicable laws and regulations. This study followed
the Standards for Reporting of Diagnostic Accuracy (STARD)
reporting guideline.

Forty consecutive adult patients undertaking a diagnostic
home sleep study for suspicion of OSA were invited to
participate. Participants had to be able to use portable devices
and smartphones. All 40 participants underwent an overnight
PSG (the reference method) with simultaneous MM recordings
using the Sunrise system (Sunrise SA, Belgium). Two visits were
scheduled; the first to verify the eligibility of the patient and to
collect baseline data. The second visit was at end of the study, with
the patient and clinician, for sharing of the final diagnostic report.

Overnight Sleep Study and Scoring of
Polysomnography

In-home PSG was recorded with a portable acquisition
system (Nox Al, ResMed, Saint-Priest Cedex, France).
Measurements used to determine sleep were electro-
oculogram, electroencephalogram, electromyogram, and
electrocardiogram. Oxygen saturation was also monitored by
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a digital oximeter displaying pulse waveform (Nonin, Nonin
Medical, United States). Airflow was measured using nasal
pressure associated with the sum of oral and nasal thermistor
signals. Respiratory effort was monitored with abdominal
and thoracic bands.

Polysomnography recordings were initially scored by experts
from the recruiting centre (Grenoble Alpes University Hospital,
France). PSG were anonymized, converted in European data
format (EDF) and sent via a secured platform for blinded
scoring to the second reference centre (Imperial College London,
United Kingdom). Scoring was performed according to the
recommended criteria established by the American Academy
of Sleep Medicine (AASM) Manual for the Scoring of Sleep
and Associated (Berry et al., 2012). Apnoeas were defined as a
complete cessation of airflow > 10 s and classified as obstructive,
central, or mixed according to the presence or the absence of
respiratory effort. Hypopneas were scored using the AASM-
recommended hypopnoea definition, requiring at least a 30%
decrement in airflow lasting 10 s or longer and associated with
a decrease of at least 3% in oxygen saturation as measured
by pulse oximetry, or an arousal (Berry et al, 2012, 2017).
ORDI was defined as the total number of obstructive respiratory
disturbances accompanied by respiratory effort divided by the
total sleep time (TST) (PSG-ORDI). PSG recordings were
analysed blinded to the MM data and the two centres scored the
PSG recordings independently.

Obstructive sleep apnoea diagnosis was established according
to the third edition of the International Classification of
Sleep Disorders (ICSD-3) (Sateia, 2014). Apnoea-Hypopnoea
Index (AHI) thresholds of 5, 15 and 30 events/hour were
used to define OSA severity levels of mild, moderate, and
severe, respectively.

Mandibular Movement Recordings and
Description of the Sunrise Monitoring
System

The Sunrise monitoring system is a certified medical device used
for the diagnosis of sleep apnoea using MM analysis (Sunrise
SA, Namur, Belgium). The MMs were monitored using inertial
measurement units and data was transferred via Bluetooth Low
Energy to a smartphone application. For more information on
MM analysis see Appendix.

Participants first downloaded the application and then
performed a device association, before attaching the monitor
to their chin, in the mentolabial sulcus. The recorded MM
data were automatically transferred from the smartphone to
a cloud-based infrastructure at the end of the night. These
data were then analysed using a dedicated machine learning
algorithm. The algorithm identified obstructive and mixed
apnoeas and hypopnoeas, plus respiratory effort-related arousals,
through stereotypical MM patterns. Respiratory disturbances
were identified by periods of respiratory effort ended by an
arousal or an awakening. A full description of the Sunrise
System and algorithm have been previously reported (Pépin
et al., 2020). The MM-ORDI was defined as the total number of

obstructive respiratory disturbances accompanied by respiratory
effort divided by the TST, estimated from the Sunrise analytics.

Statistical Analysis
Data analysis was conducted using scientific computing packages
(numpy, scipy) in the Python programming language.

Firstly, we evaluated the agreement between the MM-ORDI
and the PSG-ORDI. For this, we compared the MM-ORDI with
the PSG-ORDI calculated by scorers in Grenoble and in London
and we also calculated the combined PSG-ORDI by averaging
the ORDI scores from the two centres. Then, we used Pearson’s
linear correlation matrix and regression plots to evaluate the
linear relationship between MM-ORDI and PSG-ORDI. Next, we
calculated ORDI Intraclass Correlation Coeflicients (ICC) using
a 2-way fixed model for single measures (ICC, 3,2) to evaluate the
agreement between MM-ORDI and PSG-ORDI. Additionally, we
used a complete and groupwise Bland-Altman plot to estimate
the 95% limits of agreement and the systematic bias of MM-
derived indices compared with their PSG counterparts.

Secondly, we evaluated the diagnostic performance of MM-
ORDI for OSA based on receiver operating characteristic (ROC)
curves. We performed an area under the curve (AUC), and a
post hoc analysis to optimise the cut-oftf points of MM-ORDI
for diagnostic decisions, compared with the criterion-standard
cut-off values of obstructive PSG-ORDI recommended in ICSD-
3 (5 events/hour and 15 events/hour). The optimal MM cut-
offs were assessed at the highest value of the Youden index
(sensitivity plus specificity minus 1). Finally, we calculated the
metrics of clinical utility and accuracy for the optimal detection
thresholds and the post-test probability for each cut-off point
recommended by the Portable Monitoring Task Force of the
AASM (Collop et al., 2007).

Statistical inference was based on null-hypothesis testing at
significance threshold of p < 0.05.

RESULTS

Participants

Forty participants were recruited to the study and data from
31 participants were included in the analysis. Two participants
withdrew, and there were three technical failures of PSG (poor
quality signals) and four technical failures of the Sunrise device
(Bluetooth connection was lost for three patients and for one
patient the Sunrise sensor became disconnected). Participants
were 58% men, with a mean (SD) age of 48 (15) years and body
mass index (BMI) of 30.4 (7.6) kg/mz.

Evaluation of the Agreement Between
Mandibular Movement Monitoring
System and in-Home Polysomnography

for Measuring Respiratory Disturbances

The median value of PSG-ORDI, determined by averaging the
ORDI scores from the two centres, was 15.45 (IQR: 1.75 to 61.38)
events/hour. The median of MM-ORDI was 16.80 (IQR: 3.50 to
42.50) events/hour. Overall, there was a good agreement between
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FIGURE 1 | Bland-Altman analysis for MM-ORDI versus average PSG-ORDI. Bland-Altman plot shows the disagreement between average PSG-ORDI and
MM-ORDI (y axis) as a function of the average PSG ORDI (x axis), with individual cases stratified into three clinical groups. Bidimensional kernel density estimation
plots are superimposed to show the joint distribution of measurement bias within each subgroup. The blue horizontal lines indicate the median, lower and upper
bound (5th and 95th centiles) of the measurement bias in the whole sample. The distribution of the disagreement between the two methods, stratified by group, is
shown on the right, with three horizontal lines indicating the median bias within each group. MM: mandibular movement; ORDI: obstructive respiratory disturbance
index; PSG: polysomnography.

MM-ORDI and PSG-ORDI with a median bias of 0.00 (95% CI  moderate-severe patients with ORDI > 15, the variation became
—23.25 to + 9.73) events/hour (Figure 1). However, there was more and unpredictable: mean bias —13.00, varying from —31.36
systematic bias across the disease severity spectrum. In patients  to + 13.22 events/hour.

with no OSA (<5 events/hour, n = 6) and mild OSA, (5-15 There were significant linear correlations and high
events/hour, n = 9), MM-ORDI over-estimated by a random intraclass correlation coefficients among all the ORDI scores
and normally distributed bias, with medians of + 5.58 (95% (p-values < 0.001) (see Appendix).

CL: + 2.03 to + 7.46) and + 3.70 (95% CI —0.53 to + 18.32)

events/hour, respectively. In patients with moderate-severe OSA Di ic Perf f th
(ORDI score > 15, n = 16) MM-ORDI underestimated by —8.70 lagnostic Performance of the

(95% CI —28.46 to + 4.01) events/hour. Mandibular Movement Monitoring
System
Evaluation of the Agreement Between The ROC analysis at OSA thresholds of 5, 15 and 30 events/hour

. corresponding to mild, moderate, and severe OSA is shown in
Two Expert Centres for Measuring Figure 3. The AUCs showed high global performance for each

Obstructive Respiratory Disturbance threshold; 0.928 (95% CI: 0.84 to 1.0), 0.902 (95% CI: 0.80 to 1.0)
Index From in-Home Polysomnography and 0.918 (95% CI: 0.79 to 1.0), respectively.

The PSG-ORDI from the two expert sleep centres were: London Optimal cut-offs were determined for the MM-ORDI. Mild
median 13.60 (IQR: 0.65 to 53.75) and Grenoble 159 (IQR: OSA (PSG-ORDI > 5 events/hour) was detected with an
2.15 to 69.00) events/hour. Overall, the London PSG-ORDI was  optimal cut-off of 9.53 events/hour with a good balance between
lower: median —3.40 (95% CI —22.80 to + 14.00) events/hour sensitivity and specificity (F1 = 0.94, BAC = 0.94). A previously
compared to Grenoble (Figure 2). In patients with no OSA  reported cut-off of 7.63 events/hour yielded a high sensitivity, but
(ORDI < 5 events/hour) and those with mild OSA (ORDI 5-15  lower specificity (Pépin et al., 2020). There was good diagnostic
events/hour) there was a random and low median bias between agreement for moderate OSA (>15 events/hour) using a cut-off
the two centres of —0.60 (95% CI —2.58 to —0.03). However, in  of 12.65 events/hour (F1 = 0.89, BAC = 0.88). This cut-off was the
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FIGURE 2 | Bland-Altman analysis for London PSG-ORDI versus Grenoble PSG-ORDI. Bland-Altman plot shows the disagreement between average PSG-ORDI
(London) and PSG-ORDI (Grenoble) (y axis) as a function of Grenoble PSG-ORDI (x axis), with individual cases stratified into three clinical groups. Bidimensional
kernel density estimation plots are superimposed to show the joint distribution of measurement bias within each subgroup. The blue horizontal lines indicate the
median, lower and upper bound (5th and 95th centiles) of the measurement bias in the whole sample. The distribution of the disagreement between the 2 methods,
stratified by group, is shown on the right, with 3 horizontal lines indicating the median bias within each group. PSG: polysomnography; ORDI: obstructive respiratory

same as observed previously (Pépin et al., 2020). MM-ORDI was
also effective for detecting severe OSA (> 30 events/hour) at cut-
off of 24.81 events (F1 = 0.86, BAC = 0.87). At these cut-offs, the
post-test probabilities of obtaining a true positive diagnosis were
100, 80, and 95% respectively (Table 1).

DISCUSSION

Our study aimed to answer the question “is the Obstructive
Respiratory Disturbance Index (ORDI) calculated using MM
with machine learning analysis similar to the ORDI obtained
using manually scored in-home PSG?” The main findings of this
study are that the use of MM with machine learning analysis
to diagnose OSA produced good agreement compared to in-
home PSG-derived ORDI. The best agreement was observed at
the mild end of the disease spectrum. Additionally, agreement
in ORDI, between the MM monitor and in-home PSG, was
similar to the agreement for the scoring of PSG between by the
two expert centres.

Mandibular movement-derived respiratory disturbance
measures and automated analysis demonstrated comparable
performances than in-home PSG, suggesting that MM
monitoring is an effective and practical way of testing for
OSA in the patients’ own home. There is an expanding need for
simple, automated tools for the diagnosis of OSA that can be

used remotely (Randerath et al., 2018). However, it is important
for these monitors to be accurate and reliable. Previously, the
novel Sunrise device, using MM-derived respiratory disturbance
measures and automated analysis, has been shown to have
reliable agreement with PSG data recorded in-laboratory (Pépin
et al, 2020). The findings of the present study show similar
agreement using PSG recorded in the patients own home.
Moreover, the high diagnostic performance, sensitivity and
specificity compare favourably with other portable devices for
the in-home detection of OSA (Mendonga et al., 2018). The
advantages of using home-recorded data include reduced patient
stresses, associated with travel and overnight hospital stays,
plus a potential reduction in waiting times and clinical costs
(Collop et al., 2007). A systematic review is currently underway
to determine the cost-effectiveness of limited channel tests
compared to laboratory and home PSG in diagnosing OSA
(Natsky et al., 2021). Empirical studies support the use of limited
channel tests carried out in the patients’ own home, suggesting
similar efficacy, at lower costs, compared to PSG (Masa et al.,
2014; Corral et al, 2017). These advantages of remote data
collection, however, are balanced against the risk of technical
failure. In the present study there were technical issues with the
MM-monitor and smartphone application in 10% of studies,
which is comparable to previously reported in-home PSG failure
rate of 10-20% (Bruyneel and Ninane, 2014). This may be
easily addressed by repeating limited channel studies at home
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over several nights, therefore reducing technical concerns and
improving night-to-night variability estimation (Roeder et al.,
2020, 2021).

In the current study, comparing PSG scored by experts
from Grenoble and London, the ICC was 0.90. The magnitude
of this difference was similar to the difference between the
ORDI scored by the MM-analysis, compared to the mean ORDI
calculated from both the Grenoble and London PSG scoring
(ICC 0.85). The manual analysis of PSG data is time consuming.
There is also variability between experts, despite the use of
standardised scoring criteria. Inter-scorer agreement is generally
between 70-80%, however, this figure increases when combined
with automated scoring in an auto-edited approach (Magalang
et al., 2013; Rosenberg and Van Hout, 2013; Younes et al,
2016). Machine learning for automatic sleep scoring presents
many advantages including the removal of the subjectivity
and unconscious bias associated with manual scoring. Machine
learning algorithms have demonstrated a high level of accuracy
and agreement, on average around 85%, between computer and
manual scoring (Fiorillo et al., 2019).

Overall agreement between MM-ORDI and PSG-ORDI
in the current study was good, with an overestimation of
ORDI in mild disease. New technologies that do not use
neurophysiological data to identify sleep, typically underestimate
respiratory disturbance indices, such as AHI and ODI (Bianchi
and Goparaju, 2017). This is due to the number of respiratory
events being calculated across the total recording time, rather
than total sleep time. Data from the ESADA study, showed
that the AHI of patients investigated by polygraphy was
approximately 30% lower, compared to patients investigated by
PSG (Escourrou et al., 2015). Analysis of MM has previously been
shown to reliably detect sleep and wake, which potentially leads
to a more accurate calculation of ORDI (Senny et al., 2009, 2012;
Maury et al., 2014).

In patients with severe OSA, however, the MM with machine
learning analysis underestimated the ORDI. This is similar to
results of a previous study, comparing MM analysis to in-lab
PSG (Pépin et al, 2020). The scoring discrepancy in more

TABLE 1 | Diagnostic performance of MM-ORDI versus PSG-ORDI.

Detecting Detecting Detecting
PSG-ORDI >5 PSG-ORDI >15 PSG-ORDI >30
events/hr events/hr events/hr

Optimal cut-off Optimal cut-off Optimal cut-off

(9.53) (12.65) (24.81)
Sensitivity 0.88 1.00 0.79
Specificity 1.00 0.75 0.96
F1 0.94 0.89 0.86
BAC 0.94 0.88 0.87
Positive predictive value 1.00 0.80 0.95
Negative predictive value 0.89 1.00 0.82
Positive likelihood ratio Inf 4.00 19.0
Negative likelihood ratio 0.12 0.00 0.22
Youden J index 0.88 0.75 0.75
BAC, balanced accuracy; MM, mandibular movement; ORDI, obstructive

respiratory disturbance index, PSG, polysomnography

severe OSA patients, may have been due to the use of the 2012
AASM recommended hypopnoea definition (Berry et al., 2012).
Specifically, hypopnoeas can be scored when airflow reduction is
followed either by a 3% oxygen desaturation, or an arousal from
sleep. Therefore, cortical arousals detected by the occurrence of
brisk and abrupt MM, typically associated with mouth closure,
are reliably scored. However, hypopnoea events scored on PSG
due to the presence of a 3% oxygen desaturation, may have been
excluded by MM analysis. Ongoing algorithmic developments
are likely, specifically to address the scoring of hypopnoeas. In
a clinical setting, however, these patients represent the more
severe end of the disease spectrum and therefore relatively small
differences in ORDI may not impact diagnosis and treatment
options, because treatment is usually recommended for patients
with moderate-severe OSA (McDaid et al., 2009).

Recently, an international expert group have reinforced the
need to move toward outcomes beyond the AHI for the diagnosis
and classification of OSA (Randerath et al., 2018). Specifically,
they recommend consideration of diagnostic criteria to reflect
phenotypic variation. The use of a bio-signal such as MM may
provide surrogate sleep data, alongside breathing data to improve
the diagnosis of OSA.

Strengths and Limitations

This is the first study to compare MM monitoring to PSG
recording in the patients’ own home. Moreover, the OSA patients
were recruited from a clinical referral population, enabling
investigation of diagnosis across the disease spectrum. The PSG
data was also independently analysed by experts in two centres.
However, to fully interpret these data, several limitations need
to be considered.

Firstly, the small sample size may have led to a type 2
error. Secondly, the increasing use of technology in healthcare
can lead to issues associated with lack of access, either due
to reduced internet availability in remote regions, or lack of
familiarity e.g. in those who did not use mobile devices when they
were younger, or other socioeconomic factors. There were three
(7.5%) technical failures due to Bluetooth connection loss in the
current study. Refinement of the technology and more access to
training may ameliorate some of these issues. However, in-home
studies require the ability to understand in-depth instructions,
thus information must be given to patients in a clear, concise
format (Medicines and Healthcare products Regulatory Agency
[MHRA]J, 2021).

CONCLUSION AND IMPLICATIONS

For future routine clinical practice, MM with machine learning
analysis had good agreement with manually scored PSG recorded
in the patients’ own home and is a promising option for home-
based, automated assessment for OSA. Further studies will
evaluate the use of the monitor in different care pathways, the
patient experience and cost-effectiveness of this new technology.
For policy makers, it is time to consider reimbursement and
large-scale development of such simplified techniques for sleep
apnoea diagnosis.
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APPENDIX

Machine Learning Analysis

The obstructive respiratory disturbance index (ORDI) was calculated based on a combination of awake/sleep and respiratory
effort/arousal/quiet sleep classification tasks. These are handled by stacked classifiers: a binary Random Forest classifier for awake/sleep
detection based and a multiclass Random Forest classifier for respiratory effort/arousal/quiet sleep detection based on 30 s epochs.

Input features consisted of a combination of axes of the accelerometer/gyroscope, processing modes (filter with several frequency
bands, moving average) and statistical functions. The statistics applied to the above features were tendency toward centrality (mean,
median), extreme values (min, max), quartiles, standard deviation, as well the normal standardised version of all above features.

The hyper-parameters of Random Forest classifiers were optimised through a grid-search based 10 x 10 cross-validation, which
aimed to minimise the logarithmic losses. Following hyper-parameters were considered for tuning: tree depth, minimum sample split
and tree number.

Choice of the machine learning (ML) approaches:

Machine learning approaches can be classified into 2 main categories: (a) deep learning or (b) conventional methods on structured
data, depending on two factors: (1) how to extract input features from the raw signals? and (2) what algorithm should be used?

Based on literature review and previous experiments, there remains uncertainty about the superiority of any specific algorithm
among tree-based ensemble algorithms (XGBoost, Random Forest) or deep learning models.

The only advantage of deep learning framework is allowing for automatic feature extraction from raw signal. However, on a
well determined problem, with appropriate pre-processing techniques and carefully validated labels, there would be no difference
in performance between deep learning and tree-based models.

Instead of using the deep learning models, it was decided to use the features extraction framework, which allows better control and
understanding of input data compared to black-box models like convolutional neural networks in deep learning.

Due to the large training data size, complexity of the output and high dimensionality of input features, Random Forest algorithm
has been adopted. This algorithm offers several advantages over the classical methods (linear discriminant, support vector machine),
including better performance, high efficiency in computation, ability of detecting important features, fast training, and execution
speeds. Compared with XGboost, the Random Forest model would have the same level of performance on tabular data, with less
complexity in tuning process, as they have less hyper-parameter than XGBoost.
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