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Artificial Intelligence (AI) systems are increasingly applied to complex tasks that involve

interaction with multiple agents. Such interaction-based systems can lead to safety risks.

Due to limited perception and prior knowledge, agents acting in the real world may

unconsciously hold false beliefs and strategies about their environment, leading to safety

risks in their future decisions. For humans, we can usually rely on the high-level theory

of mind (ToM) capability to perceive the mental states of others, identify risk-inducing

errors, and offer our timely help to keep others away from dangerous situations.

Inspired by the biological information processing mechanism of ToM, we propose a

brain-inspired theory of mind spiking neural network (ToM-SNN) model to enable agents

to perceive such risk-inducing errors inside others’ mental states and make decisions

to help others when necessary. The ToM-SNN model incorporates the multiple brain

areas coordination mechanisms and biologically realistic spiking neural networks (SNNs)

trained with Reward-modulated Spike-Timing-Dependent Plasticity (R-STDP). To verify

the effectiveness of the ToM-SNN model, we conducted various experiments in the

gridworld environments with random agents’ starting positions and random blocking

walls. Experimental results demonstrate that the agent with the ToM-SNN model selects

rescue behavior to help others avoid safety risks based on self-experience and prior

knowledge. To the best of our knowledge, this study provides a new perspective

to explore how agents help others avoid potential risks based on bio-inspired ToM

mechanisms and may contribute more inspiration toward better research on safety risks.

Keywords: brain-inspired model, safety risks, SNNs, R-STDP, theory of mind

1. INTRODUCTION

With the vigorous advancement of AI, applications such as self-driving cars and service robots may
widely enter society in the future, but avoiding risks during interaction has not been solved yet. As
humans, we will help others when they may run into danger. Understanding and inferring others’
actions contribute to avoiding others suffering from safety risks. For humans, the ability to make
inferences about beliefs and motivations is called the theory of mind (ToM) (Sebastian et al., 2012;
Dennis et al., 2013). ToM is also considered as the ability to understand of the difference between
your own beliefs and that of others (Shamay-Tsoory et al., 2007). ToM seems to depend on a group
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of brain areas, which mainly includes the temporo-parietal
junction (TPJ), part of the prefrontal cortex (PFC), the anterior
cingulate cortex (ACC), and the inferior frontal gyrus (IFG).
The ACC evaluates others’ state values (Abu-Akel and Shamay-
Tsoory, 2011). The IFG is a critical area for the inhibition process:
self-perspective inhibition (Hartwright et al., 2012; Hartwright
et al., 2015). The TPJ and the PFC are two important areas for
ToMwhich are related to perspective taking and represent others’
traits (Koster-Hale and Saxe, 2013), respectively. Motivated by
this, this article aims to develop a brain-inspired ToM model to
infer others’ false beliefs and policies to reduce others’ safety risks.

The prediction sources are fundamental and crucial to ToM
(Koster-Hale and Saxe, 2013). One source of predictions about
a person’s beliefs and desires is the action (Patel et al., 2012;
Zalla and Korman, 2018). The individuals expect other people
to be self-consistent and coherent. Besides, self-experience is
mentioned as self-projection (Buckner and Carroll, 2007; Patel
et al., 2012) or using memories to understand others. Therefore,
we combined prior knowledge of others and self-experience to
perceive others’ states and predict their behaviors.

Taking inspiration from the multi-brain areas cooperation
and neural plasticity mechanisms of ToM, this article proposes
a biologically realistic ToM spiking neural network model,
namely, a brain-inspired ToM spiking neural network (ToM-
SNN) model. We designed the structure of our model with
neuroanatomical and neurochemical bases of ToM. The ToM-
SNN model consists of four parts: the perspective taking module
(TPJ and IFG), the policy inference module (vmPFC), the
action prediction module (dlPFC), and the state evaluation
module (ACC). The output of each submodule is interpretable.
We embedded the model into an agent and focused on the
problem of how to use the ToM-SNN model to reduce safety
risks based on self-experience (Zeng et al., 2020) as well as
prior knowledge of others acquired through direct interaction
(Koster-Hale and Saxe, 2013).

The innovative aspects of this study are as follows.
(1) Inspired by the ToM information processing mechanism

in the brain, we proposed multi-brain areas coordinated
SNNs model, including the TPJ, the PFC, the ACC, and the
IFG. We adopted STDP and Reward-modulated Spike-Timing-
Dependent Plasticity (R-STDP) training different modules based
on their functions. Therefore, our training methods are more
biologically plausible than artificial neural network training
methods, such as backpropagation.

(2) Our experimental results show that the ToM-SNN model
can distinguish self-and-other perspectives, infer others’ policy
characteristics, predict others’ actions, and evaluate safety status
based on self-experience and prior knowledge of others. The
agent with the ToM-SNN model can help others avoid safety
risks timely. Compared with experiments without the ToM-SNN
model, agents behave more safely in the experiments with the
ToM-SNN model. In addition, the model will behave differently
for agents with different policies to help others as much as
possible while minimizing their losses.

(3)To the best of our knowledge, this is the first study to
investigate the application of the biological realistic ToM-SNN
model on safety risks.

The rest of this article is organized as follows. Section 2
gives a brief overview of the related work of safety risks and
the ToM computational model. Section 3 is concerned with
the methodology proposed in this article for this study. Section
4 introduces the exact experiment procedure and analyses the
results of experiments. Some discussions and conclusions are
in section 5.

2. RELATED STUDIES

2.1. Safety Risks
Artificial Intelligence Safety can be broadly defined as the
endeavor to ensure that AI is deployed in ways that do not
harm humanity. With the rapid development of AI, many
AI technologies are gradually applied to social life in recent
years. Compared with the wide application of perceptual AI,
cognitive AI in real life is less common. The reason is that
the actual environment is complex and changeable, increasing
the model robustness requirement. So before these technologies
are widely used, it is necessary to explore the safety risks of
these technologies.

To avoid the application risk of AI technology in the future,
many researchers carried out a series of research on AI Safety.
Amodei et al. (2016) put forward the problems that need
to be considered in AI Safety: avoiding negative side effects,
avoiding reward hacking, scalable oversight, safe exploration,
and robustness to distributional shift. Similarly, Leike et al.
(2017) divided AI Safety problems into two categories: value
alignment and robustness. Value alignment mainly refers to
four problems caused by the inconsistency between goals of
human and artificial agents: safe interruptibility, avoiding side
effects, absent supervisor, and reward gaming. Robustness mainly
contains self-modification, distributional shift, robustness to
adversaries, and safe exploration.

Many researchers have put forward some feasible solutions
to AI safety problems. Some studies try to optimize reward
functions (Amin et al., 2017; Krakovna et al., 2018). Some studies
attempt tomake agents learn from humans (Frye and Feige, 2019;
Srinivasan et al., 2020). Others propose constrained RL for safe
exploration (Achiam et al., 2017; Ray et al., 2019). We do not
attempt to optimize the agent model, while the approach in this
article is to avoid safety risks through the help of others. This is
a new perspective for solving AI safety problems. The advantage
of this model is that it can help artificial agents avoid risks and
possibly help humans avoid some safety risks in the future.

2.2. Computational Models of ToM
The purpose of this article is to make agents understand
others’ false beliefs and policies in the environment through
the ToM-SNN model and take assistance measures when other
agents encounter danger in the environment. In this section, we
summarize the previous methods of modeling ToM.

Baker proposed the Bayesian ToM (BToM) model, which
modeled belief as the probability of an agent in a specific state
(Baker et al., 2011). Based on this, dynamic Bayes net (DBN)
can predict the target of an agent in the environment, which is
the same as human’s actual prediction (Baker et al., 2017). The
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reference of Baker’s study lies in his symbolization of abstract
terms in ToM, such as belief and desire, which makes the model
more interpretable. Rabinowitz et al. (2018) proposed a model of
predicting agent behavior and goal in a grid environment based
on meta-learning, and this model can avoid false beliefs. Inspired
by this study, Chen et al. (2021) built an authentic environment
in which the robot can predict trajectories of the other robot.
The starting point of these two studies is the same. They both
hope that the agent can predict the behavior of others when
its perspective is different from others and avoid false beliefs.
Compared with Chen et al. (2021)’s study using end-to-end deep
neural networks, Rabinowitz et al. (2018)’s study adopted meta-
learning and helped advance the progress on interpretable AI.
These two works have in common the fact that the observers do
not execute the behaviors themselves.

Shum et al. (2019) combined the two methods of general
models for action understanding and game theoretical models
of recurrent reasoning and proposed a model to infer agent
behavior based on the relationship between agents. This article
argues that there are cooperative and competitive relationships
among agents, and agents can predict behavior by predicting the
relationship between each other. Nguyen et al. (2020) also used
the idea of inferring agent relations to predict others’ behavior by
inferring the relationship among agents. Lim et al. (2020)’s model
can help other agents by estimating the goals of other agents
and putting the goals of others into its planning model. The
limitation of these two models is that they assume that there is
a specific relationship between agents. In many cases, agents can
have different goals or tasks, and there is no specific relationship.

Zeng et al. (2020)’s study proposed a brain-inspired ToM
model, which distinguishes the perspectives of self and others and
beliefs of self and others. The model enables robots to pass the
false beliefs task and has solid biological interpretability. Their
article also compares the experimental results with brain imaging
results and behavioral results to reveal the ToM mechanism in
the brain. Inspired by Zeng et al. (2020)’s study, we proposed
the ToM-SNN model, which focuses on how to make agents
avoid safety risks rather than to reveal the biological mechanism
of ToM.

Winfield (2018) also established the robot’s ToM model to
realize the prediction of other agents’ behavior and consequences.
Their study is influenced by the theory theory (TT) and
simulation theory (ST) when modeling others’ models. This
modeling method is also very enlightening. However, the
experimental design of their study does not highlight that their
model can solve the problem of conflict of perspective and
reasoning belief. One of the reasons why ToM is different from
prediction is that it can correctly distinguish self from other’s
perspectives and beliefs.

3. METHODS

3.1. The Functional Connectome of ToM
According to our research, we drew a functional connectome of
ToM with related brain areas (Abu-Akel and Shamay-Tsoory,
2011; Khalil et al., 2018; Zeng et al., 2020). The TPJ contains
the IPL, which stores self-relevant stimuli, and the posterior

superior temporal sulcus (pSTS), which stores other-relevant
stimuli. The precuneus/posterior cingulate cortex (PCun/PCC)
and the superior temporal sulcus (STS) send self-relevant, other-
relevant information to the PFC. The PFC excites the ACC. The
output of the ACC helps the PFCmake decisions. The connection
between the TPJ and the IFG is related to inferring others’
false beliefs. Dopamine is projected to the PFC when humans
make decisions or simulate others. Inspired by the neural circuits
of ToM in the brain [concerning connections (Figure 1)] and
functions [Table 1; (Abu-Akel and Shamay-Tsoory, 2011; Suzuki
et al., 2012; Barbey et al., 2013; Koster-Hale and Saxe, 2013; Zeng
et al., 2020)], we built the ToM-SNN model.

3.2. The LIF Neuron Model
We use the Leaky Integrate-and-fire (LIF) model as the basic
information processing unit of SNNs. The dynamic process
of LIF neurons can be described by a differential function in
Equation (1), where τm is the integral time delay constant of the
membrane, and τm = RC where R is the membrane resistance
and C is the membrane capacitor (Burkitt, 2006; Khalil et al.,
2017). Ii denotes the input current of a neuron i. It can be
seen that when the current continuously inputs to neuron i, the
membrane potential begins to accumulate. When the membrane
potential exceeds the threshold Vth, the neuron will fire, and
the membrane potential will be reset to Vrest . In a period,
the above phenomenon repeats continuously, and the neuron i
continuously fire spikes. A spike train is a sequence of recorded
times at which a neuron fires an action potential. Therefore, the
neuron i will form a spike train Si.

τm
dVi(t)

dt
= −[Vi(t)− Vrest]+ RIi(t) (1)

3.3. Encoding and Decoding Schemes
Spiking neural networks need effective encoding methods to
process the input stimulus and decoding methods to represent
the output stimulus to handle various stimulus patterns.
Population coding is “a method to represent stimuli by using
the joint activities of a number of neurons. Experimental studies
have revealed that this coding paradigm is widely used in the
sensor and motor areas of the brain” (Wu et al., 2002). Besides,
population coding tries to avoid the ambiguity of the messages
carried within a single trial by each neuron (Panzeri et al., 2010).

Encoding. One requirement for encoding is to increase the
difference among different input data. To alleviate it, we adopt
population coding. In this article, the input data relates to the
absolute and relative positions of agents. We use each neuron to
represent a particular point on the horizontal or vertical axis.

Decoding. A requirement for decoding is to increase
the representation precision of network output. Due to the
randomness of the initial weights, the input current in the last
layer is random. We use each neuron population to represent a
particular output which enlarges the spatial domain and reduces
the ambiguity of representation (Wu et al., 2019; Fang et al.,
2021). By adopting a voting strategy and lateral inhibition, only
one population of neurons fires among all populations, and it is
regarded as the output.
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FIGURE 1 | Brain areas involved in theory of mind (ToM) and the connections between these areas. These areas include the temporo-parietal junction (TPJ), the

prefrontal cortex (PFC), the anterior cingulate cortex (ACC), the inferior frontal gyrus (IFG), and the substantia nigra pars compacta/ventral tegmental area (SNc/VTA).

Arrows indicate connections between brain areas. The curve with a round head represents the projection path of dopamine.

TABLE 1 | The functions of brain areas.

Brain area Function

TPJ Perspective taking, stores mental states

IPL Stores self-relevant mental states

pSTS Stores other-relevant mental states

PCun/PCC Sends self information

STS Sends other information

ACC Evaluates state value

PFC Makes decisions, stimulates others’ decisions

dlPFC Stores working memory, predicts others’ action

vmPFC Infers others’ behavior styles

IFG Inhibits self-perspective

SNc/VTA Is useful to elicit dopamine

3.4. Plasticity and Learning Model
We have chosen to implement biologically plausible STDP and
R-STDP weight update rules to train the modules. Converging
evidence about STDP indicates that synaptic weight changes are
caused by the tight temporal correlations between presynaptic
and postsynaptic spikes. STDP can be regarded as a temporary
precision form of Hebbian synaptic plasticity because synaptic

modification depends on the interspike interval within a critical
window. When the presynaptic firing time is earlier than the
postsynaptic firing time, the synapse between the two neurons
will be enhanced, which is called long-term potential (LTP)
(1t < 0), whereas reverse timing yields depression which is long-
term depression (LTD) (1t > 0) (Kistler, 2002; Potjans et al.,
2010; Héricé et al., 2016). A synaptic eligibility trace (e) stores a
temporary memory of the relationship between the presynaptic
neuron and postsynaptic neuron in a specific time window as
shown in Equation (2) where A± are learning rates, τ± are STDP
time constants, and1t = tpre− tpost represents the delay between
presynaptic spike arrival and postsynaptic firing.

STDP(1t) =

{

A+exp[1t/τ+] 1t < 0

−A−exp[−1t/τ−] 1t > 0
(2)

In addition, reward-related dopamine signals can play the role
of the neuromodulator that can help the brain learn by affecting
synaptic plasticity. The eligibility trace can effectively bridge
the temporal gap between the neural activity and the reward
signals (Izhikevich, 2007; Frémaux and Gerstner, 2016; Mikaitis
et al., 2018). The eligibility trace makes the synapses between
neurons temporarily labeled, and then dopamine affects the
labeled synapses. It is a transient memory which can be described
in Equation (3) where τe is the time constant and δ is the Dirac
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delta function. Firings of presynaptic and postsynaptic neurons
occur at times tpre/post , respectively. The weight change is based
on the eligibility traces e and reward-related dopamine signals
r shown in Equation (4). Inspired by dopamine, R-STDP is a
learning method combining the advantages of STDP and is no
longer unsupervised but more potent than STDP (Frémaux and
Gerstner, 2016). R-STDP modulates network weights according
to a synaptic eligibility trace e and a delayed reward r. Rewards
represent reward-related dopamine signals and can be defined
according to experiments. We described the reward function
in section 4.1.

ė = −
e

τe
+ STDP(1t)δ(t − tpre/post) (3)

ẇ = er (4)

3.5. The Architecture of the ToM-SNN
The ToM-SNN model incorporates the multiple brain area
coordination mechanisms and is based on SNNs trained with
STDP and R-STDP. We designed the ToM-SNN model shown
in Figure 2 which shows the model structure, input, output,
and training method. The ToM-SNN model is composed of
the modules related to ToM: the perspective taking module,
the policy inference module, the action prediction module, and
the state evaluation module which are inspired by the TPJ,
the vmPFC, the dlPFC, and the ACC, respectively. We trained
the policy inference module and action prediction module
by R-STDP. Dopamine is a neurotransmitter produced in the
SNc and the VTA (Chinta and Andersen, 2005; Juarez Olguin
et al., 2016). Research has shown that dopamine response is
related to reward occurred and reward predicted (Schultz, 2007).
Unexpected rewards increase dopaminergic neurons’ activity,
while the omission of expected rewards inhibits dopaminergic
neurons’ activity. Dopamine acts as a neuromodulator that
affects synaptic plasticity. In the policy inference module and the
action prediction module, error signals (ebs and eaction) just like
dopamine modulates the synaptic weights based on Equation (4).
Therefore, we trained these two modules with R-STDP.

Our model is a multiple brain areas coordination model
composed of multiple modules. It is not an end-to-endmultilayer
neural network. The advantages of a multiple brain areas
coordinationmodel are reflected in two aspects. First, inspired
by brain structure and function, modules in the ToM-SNN
corresponding to specific brain areas have specific functions.
The end-to-end neural networks are “regularly described as
opaque, uninterpretable black-boxes” (Rabinowitz et al., 2018).
Our model is more biologically plausible and more interpretable.
Second, amultiple brain areas coordinationmodel can reduce the
burden of training. When a new feature appears in the task, only
the module for this feature needs to be retrained. So this structure
can reduce the amount of calculation and improve efficiency.
The policy inference module, the action prediction module, and
the state evaluation module are fully connected SNNs with two
layers. Details of the two-layers SNNs are as follows. The input
current of the input layer and the output layer is denoted by Iin

and Iout , respectively. The output spikes of the input layer and the

output layer are denoted by Sin and Sout , respectively. Section 3.1
describes the neural spiking process. At each time step t, the input
current to neuron j at the output layer is integrated as Equation
(5).

Ioutj (t) =
∑

i

wjiS
in
i (t) (5)

The wji denotes the synaptic weight. The Ioutj (t) can change

neuron j’s membrane potential Vout
j (t) as shown in Equation (6)

and the neuron j generates an output spike at time t (Soutj (t))

when Vout
j (t) crosses the threshold Vth as shown in Equation (7).

Vout
j (t) = Vout

j (t−1)+
dt

τm
[−Vout

j (t−1)+Vrest+RIoutj (t)] (6)

Soutj (t) = 2(Vout
j (t)− Vth) with 2(x) =

{

1, if x ≥ 0

0, else
(7)

The total number of spikes cp generated by the neuron population
p can be determined by summing all neurons’ spikes in the
population p over the simulation period T as Equation (8). Each
population has J neurons. The population pmax that sent the most
spikes is selected as the output as shown in Equation (9). P is the
number of populations.

cp =

J
∑

j

T
∑

t

Soutj (t) (8)

pmax = argmax(c0, c1, . . . , cP) (9)

The PFC receives numerous dopaminergic projections.
Dopamine affects synaptic plasticity. The reward can regulate
the weight through R-STDP. A positive reward is exploited at
the synaptic level to reinforce the correct sequence of actions,
whereas a negative reward weakens the wrong. When we model
modules related to the PFC, we train the model with R-STDP.
We use the STDP mechanism to modulate the network learning
process in the ACC.

We will describe these modules and the parameters involved
in them in detail in the following paragraphs.

Perspective taking module. An essential ability of ToM is to
distinguish between different perspectives in the same situation
simultaneously. In the reasoning about others’ beliefs, the conflict
between self-and-other perspectives in the TPJ will activate
the IFG, then IFG will inhibit self-relevant stimuli in the IPL.
Inspired by this, we used the IFGmodule presented by the Brain-
ToM (Zeng et al., 2020) to inhibit self-relevant stimuli. The input
of the module consists of two parts: self-relevant stimuli and
other-relevant stimuli. The output is an inference about other
people’s observations (ôother). The weights of the connections
between the IFG and the TPJ remain unchanged in this model.

Policy inference module. This module is used to model the
function of the vmPFC brain area to distinguish the behavior
styles. We preprocessed the self-observation oself composed of
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FIGURE 2 | The architecture of the ToM-SNN model. The ToM-SNN model comprises the perspective taking module, the policy inference module, the action

prediction module, and the state evaluation module, which are inspired by the TPJ, the vmPFC, the dlPFC, and the ACC, respectively. The perspective taking module

parses current observation to form predictions about other’s observation, ôtother . The policy inference module parses current observation and past observation to infer

other’s behavior style, b̂sother . The action prediction module parses predictions about other’s observation and behavior styles to form other’s predicted action, âother .

When combining predictions about other’s actions with environmental information, the agent can get other’s next state, ŝother . The state evaluation module parses

other’s next state to form state value, V̂other . The arrow in the figure indicates information transmission and does not involve the learning of network weight.

FIGURE 3 | Simple architecture for reducing the safety risks of others. The ToM-SNN model can infer others’ safety status by inferring their beliefs and behavior

styles. The agent will continue carrying out its task when others are in a safe situation, whereas it will help with fixed policy when others are unsafe. The arrow in the

figure indicates information transmission and does not involve the learning of network weight.
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visible agents’ positions at time t and at time t − 1 and then
input them into the model. The output is the agent’s behavior

styles denoted by b̂sother . The output is the policy characteristics
corresponding to the population which fired the most spikes.
The vmPFC receives numerous dopaminergic projections. The
research has shown that dopamine response is related to reward
occurred and reward predicted (Schultz, 2007). The weights
between the two layers are equivalent to synapses. We denote the
predicted other’s behavior styles error by ebs shown in Equation
(10). The error will regulate synaptic plasticity in the form of
dopamine based on Equation (4). Therefore, ebs is regarded as
a reward when we trained our module with R-STDP. γ and β

are constants.

ebs = −|b̂sother − bsother| ∗ γ + β (10)

Action prediction module. This module is used to model the
function of the dlPFC brain area to predict others’ behaviors.
The input is formed by concatenating the predicted other’s
observation, ôother generated by the perspective taking module

with its behavior style, b̂sother . The output is the predicted others’
action, âother . We denoted the predicted other’s action error by
eaction shown in Equation (11) where aother is the actual action.
The error regarding as a reward can be used to regulate the weight
through R-STDP. A positive reward is exploited at the synaptic
level to reinforce the correct sequence of actions, whereas a
negative reward weakens the wrong.Wewill describe the training
process in detail in section 4.2. The predicted other’s action error
is regarded as a reward to modulate weights. Besides, different
populations will inhibit each other, and neurons in the same
population do not inhibit each other. As shown in Figure 2, the
black dashed box represents a population. In the output layer in
this module, lateral inhibition between populations of neurons
reduces the activity of exited populations’ neighbors.

eaction =

{

1, if âother == aother

−1, else
(11)

State evaluation module. This module is used to model the
function of the ACC brain area. The goal of the state evaluation
module is to evaluate the safety of the observed agent. The input
is the predicted state of others denoted by ŝother which is formed
by the predicted others’ action, âother output is other agents’ safety
status denoted by v̂. Because there are two kinds of safety status:
safe and unsafe, the STDP mechanism can perform well.

After introducing the ToM-SNN model, we design a simple
architecture so that the agent can take practical measures to
reduce others’ safety risks when inferring other agents’ unsafe
status. The agent can choose an action to get closer to its own
goal when it infers others safe. This process is shown in Figure 3.

Decision module. The decision model in Figure 3 shows the
input, output, and training methods. This module is designed to
learn a policy to make agents arrive at their goals. The input of
the module is the observation oself . The output of the module
is the action aself . In the output layer, lateral inhibition will also
reduce the activity of exited populations’ neighbors. The decision
module is trained by R-STDP. The left part of the figure shows

FIGURE 4 | (A) The actual position of the agent. (B) The view of the agent at

the current position. The black part is the area blocked by the wall, which is

invisible to the agent.

TABLE 2 | The number of neurons in different modules.

Modules Number of

neurons in input

layer

Number of

neurons in

output layer

Perspective taking module 7 · 7 · (4+ 8) · 2 7 ·7 · (4+ 8)

Policy inference module (6+ 8) 3 · 6

Action prediction module 7 · 7 · (4+ 8) · 3 5 · 6

State evaluation module 7 · 7 · (4+ 8) 2 · 6

how the VTA/SNc sends dopamine to the PFC. Dopamine acts on
the synapses of the two layers of neurons in the decision module
to help update the network weight. More specifically, the reward
plays the role of dopamine, and it is combined with the eligibility
traces, which can modulate the weights based on Equation (4). In
the process of interacting with the environment, an agent adjusts
its policy according to the reward. The reward function is defined
in section 4.1.

4. EXPERIMENTS

Our main goal is that an agent can infer others’ safety status
with the ToM-SNN model and choose to interfere when
necessary. An agent can unconsciously expose itself to potentially
unsafe situations due to holding either false beliefs of its
states or bad policies. This section tries to verify that the
ToM-SNN model can find others’ potentially unsafe situations
by introducing experimental environments, model training,
experimental method, experiments, and results.

4.1. Environments and Agents’ Policies
To verify the effectiveness of the ToM-SNN model, we
conducted various experiments in the gridworld environments
with random agents’ starting positions and random blocking
walls. The gridworld environment is implemented with PyGame.
The experimental environment is a 7 × 7 gridworld with
a common action space(up/down/left/right/stay), goals, and
random blocking walls. The wall will block part of the view of
an agent in the environment shown in Figure 4. The visible area
of an agent is the white area in Figure 4B. The environments are
fully observable for agents if no wall blocks their views.
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We designed three different kinds of policies for agents: the
reckless policy, the experienced policy, and the cautious policy.

When an agent is taking the reckless policy, it does not
consider the impact of their behaviors on other agents. The
reward is only related to their distance from the goal. The reward
function is shown in Equation (12). Dpt , Dpt−1 is the Euclidean
distance between the current position and the goal at time t, t−1,
respectively. According to Equation (12), when the agent gets
further away from the goal, it will get a negative reward.

r =
Dpt−1 − Dpt

Dpt−1
(12)

An agent with experienced policy learns a safe strategy without
colliding with other agents and walls. The reward is related to
the goal and collision. The experienced agents will get a negative
reward when colliding with others. This kind of agent can actively
avoid others that can be observed. The reward function is shown
in Equation (13).

r =







Dpt−1 − Dpt

Dpt−1

−5, if collision

(13)

The third kind of policy is cautious. Since the wall will block the
perspective and make the agent have a false belief in the state, the
agent will tend to take action away from the walls. The reward
function is shown in Equation (14). Dwt , Dwt−1 is the Euclidean
distance between the current position and the wall at time t,
t − 1, respectively.

r =



























Dpt−1 − Dpt

Dpt−1

Dwt − Dwt−1

Dwt−1
, if Dwt−1 <= 1

−5, if collision

(14)

The three kinds of agents adopt the decision module in the
left part of Figure 3. The input of the model is the observation,
including the location of the goal, the location of walls, and the
location of other agents. We used population coding to encode
the observation, which is represented by [7 · 7 · (4+ 8)] neurons,
where (7 · 7) is the size of the gridworld, 4 is the number of
walls’ features and 8 is the number of other agents’ features. The
decision module is trained by R-STDP, and the reward can be
obtained by the reward function shown in Equations (12)–(14).
After training the decision modules, we get three kinds of agents
with fixed policies.

4.2. Model Training
In this subsection, we describe the model parameters and the

training of the networks. Resting potentials are around -70 mV

(Brette, 2006; Chen and Jasnow, 2011). For the hyper-parameters

of the LIF neuron as described in section 3.2, we set Vth = −55

mV, Vrest = −75 mV, τm = 20 ms according to the research.
In the experiment, we simplify the process of depolarization and

FIGURE 5 | An example of a random environment. The environment consists

of three agents: a bystander and two pedestrians. Different agents have

different goals to reach. Agents cannot pass through walls.

repolarization. For the hyper-parameters of the STDP and R-
STDP as described in Section 3.4, we set A+ = 0.925, A− = 0.1
(Kistler, 2002), τe = 5 ms, τ+ = τ− = 20 ms (Friedmann et al.,
2013) according to the research. The synaptic efficacy is increased
if presynaptic spikes arrive slightly before the postsynaptic firing
and the synapse is weakened if presynaptic spikes arrive a few
milliseconds after the output spike. For the hyper-parameters of
the ToM-SNN model as described in section 3.5, we set γ = 2,
β = 1 to make sure the parameter, ebs, belongs to the closed
interval [−1, 1] and speed up the convergence of the network by
normalizing weights to the closed interval [−1, 1].

We trained our model to predict the safety status of others
based on the policies of different agents in random environments
with either two agents or one agent and walls with 300 episodes.
An episode process is that the agents start at the starting position
until all agents end the game.

The number of neurons in different modules is listed in
Table 2. The observed states are encoded by populations with
[7 ·7 ·(4+8)] neurons where (7 ·7) is the size of the gridworld, 4 is
the number of walls’ feature and 8 is the number of other agents’
features. The input of the policy inference module is encoded
by (6 + 8) neurons where 6 is the number of agents’ policy
characteristics which the policy inference module predicted at
time t − 1 and another 8 neurons encode the difference of
perspective and others’ safety status. The characteristics of agents’
policies are encoded by one population with 6 neurons and we
used (3 ·6) neurons to represent three kinds of policies. The input
of the action prediction module is composed of other agents’
observed states and their policy characteristics. The action is
encoded by one population with 6 neurons and 5 populations can
represent all actions. When the output of the action prediction
model is different from the behavior of other agents, the model
will receive a negative reward. On the contrary, if the prediction
is correct, it will get a positive reward. The reward will help
adjust the weight of the network. The input of the state evaluation
module is other’s state at time t + 1, which is got by combining
collected data about environment information with a prediction
about other’s action at time t. The output of the state evaluation
module is composed of two safety status, which is encoded by two
population with 6 neurons. When there is a collision, neurons
associated with characterizing risk will fire. Combined with the
flow in the right half of block Figure 3, if others are safe in the
next state, the bystander will not help. Otherwise, the bystander
will prevent the behavior of other agents.
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FIGURE 6 | (A) Histograms of three kinds of pedestrian 2’s performance scores. The horizontal axis represents performance scores, and the vertical axis represents

the number of occurrences of scores. (B) Histograms of three kinds of pedestrian 2’s risks assessment. The horizontal axis represents the two states of risk and

safety, and the vertical axis represents the number of occurrences of the different states.

FIGURE 7 | The ToM-SNN model on three kinds of agents in random environments. (A) The bystander with the ToM-SNN model’s prediction of pedestrian 2’s policy

characteristic based on the partial past trajectory [e.g., A(a)] is shown in A(b). In another environment, the bystander with the ToM-SNN model can predict the risks of

pedestrian 2 and help it to avoid risks. (B) The bystander with the ToM-SNN model predicts that pedestrian 2’s policy characteristic is experienced based on the

partial past trajectory [e.g., B(a)] is shown in Figure. In another environment, the bystander with the ToM-SNN model can predict the risks of pedestrian 2 and help it to

avoid risks. (C) The bystander with the ToM-SNN model predicts that pedestrian 2 is a cautious agent shown in C(b) based on the partial past trajectory [e.g., C(a)]. In

another environment, the bystander with the ToM-SNN model did not interfere with pedestrian 2 ’s action because it evaluated pedestrian 2’s next state was safe [C(c)].

4.3. Experiments and Results
In the first two subsections, first, we introduced the random
environments and three kinds of policies. Then, we introduced

the training process of the ToM-SNN model. In this section, we
applied the ToM-SNN model to the bystander and tested it in
the random gridworld environments. Additionally, we compared
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the performance of the agents and the safety situation when
the bystander did not use the ToM-SNN model. Based on the
following experiments, we show that the bystander with the
ToM-SNN model can help others avoid risks in many random
environments when necessary.

A false belief task is a type of task used in ToM studies in
which subjects must infer that another person does not possess
knowledge that they possess. Inspired by this experimental
paradigm, we designed the experiment. The feature of the
experimental scene is to make agents possess some different
knowledge. The occlusion of the wall will make the agents
in different locations observe the environment differently.
Agents with different initial strategies will choose different
behaviors in the process of executing tasks. There are three
agents in potentially risky environments. We randomized agents’
starting positions and blocking walls in the environments (e.g.,
Figure 5). Random combinations of agents with different starting
positions and random walls will increase the randomness of
the environment. Besides, the shape of walls and the starting
positions in the test environments are not exactly the same
as those in the training environments. In each episode, we
fixed the policy of pedestrian 1 and the bystander to reckless.
We conducted 100 random experiments, respectively, when the
policy of pedestrian 2 is reckless, cautious, and experienced
and the bystander does not know the policy characteristics of
pedestrian 2. When all agents reach their goals, one episode will
end. When the bystander predicts the risks of others, it will stop
others from taking action to move on. At the same time, helping
others makes the bystander lose scores.

We give the agent an initial performance score, setting Rbase
to 50 and setting Lcollision to 40 if the agent collides with others
and to 0 otherwise. The performance score will be consumed as
time passes. If the agent consumes time t to reach the goal, the
performance score is the number of points subtracted from Rbase
by Ctime · t. We set Ctime to 3. We set that helping others will
reduce performance scores. We set Lhelp to 10 if the agent helps
others and to 0 otherwise. The final performance score is no less
than zero shown in Equation (15). The risk assessment can be
understood as that collision causes risks.

P = max(Rbase − Ctime · t − Lcollision − Lhelp, 0) (15)

In the following, we conducted comparative experiments with
and without the ToM-SNN model. We analyzed the results of
the compared experiments by using performance scores and
risk assessment.

First, we conducted experiments without the ToM-SNN
model and assessed the performance and risks of pedestrian 2
with different policies shown in Figure 6. It can be seen that
cautious agents have a small probability of encountering risks but
have fewer opportunities to get higher scores than experienced
agents. Reckless agents will take risks and increase benefits. The
probability of reckless agents getting high scores is significantly
lower than the others, but they can also reach their goals safely
sometimes because the environments are random, and not all
environments have risks.

Second, we endowed the bystander with the ToM-SNN
model. To explore the effect of the ToM-SNN model on agents
with different policies in a risky environment, we assessed the
performance and risks of pedestrian 2 with different policies.

Pedestrian 2with the reckless policy.We explored the impact
of the ToM-SNNmodel when pedestrian 2 is reckless. The ToM-
SNN model predicts pedestrian 2’s policy characteristics based
on partial past trajectory [e.g., Figure 7A(a)]. According to the
experimental phenomenon (e.g., Figure 7A), we found that the
bystander with the ToM-SNN model can predict pedestrian 2’s
actions. If it predicts that pedestrian 2 will be in danger, the
bystander will take help strategies to help pedestrian 2 avoid risks.

Pedestrian 2 with the experienced policy. We focused
on pedestrian 2 with experienced policies. In some random
environments, the random walls just block the perspective of
pedestrian 2 [e.g., Figure 7B(a)], which causes it wrong decisions.
Figure 7B(b) shows the bystander with the ToM-SNNmodel can
infer the policy characteristic of pedestrian 2 based on the partial
past trajectory, infer pedestrian 2 false belief in environments,
and predict experienced agents can take the wrong action.
Figure 7B(c) shows the bystander help it to avoid risks.

Pedestrian 2 with the cautious policy. In the same test
environment, the bystander inferred that pedestrian 2 is a
cautious agent shown in Figure 7(b). Although the walls blocked
cautious agents’ perspective, the bystander can predict that the
cautious agents will walk away from the wall based on partial past
trajectory [e.g., Figure 7C(a)]. Therefore, the bystander’s next
state assessment of the cautious agent is safe, so the bystander
will not help [e.g., Figure 7C(c)].

Based on the experimental phenomenon, we proved that
the ToM-SNN model could infer other’s false beliefs, policy
characteristics, predict other’s actions and evaluate other’s safety
status. Then we analyzed the effect of having the ToM-SNN
model and not having the ToM-SNN model on agents with
different policies shown in Figure 8.

First, we analyzed the first row of Figure 8, the performance
scores. The figure shows that the scores of pedestrian 2 with
three kinds of policies are mainly distributed in the region of 0
point and more than 23 points. The distribution of high score
regions (score ≥ 23) indicates that the agents can almost reach
the goal in less than eight time steps ((50 − 26)/3) without
risk. According to Equation (15), it can be found that when
the agents collide with others, they will get zero points. The
rest of the scores within the interval of 8 to 23 indicate the
agents’ poor performance in random environments. The figure
can show that the ToM-SNN model reduces the number of
scores of 0 for reckless and experienced agents and increases
the number of cases of high scores for reckless agents. The
reckless pedestrian 2 takes risks and increases benefits. Then,
we analyzed the second row of Figure 8, the risk assessment.
From the figure, it can be seen that the ToM-SNN model
clearly reduces the risk of reckless and experienced agents but
almost has no effect on pedestrian 2 with cautious policy.
Because the ToM-SNN model can determine that pedestrian
2 is cautious and does not encounter risk in the environment
based on the observation of pedestrian 2. The bystander with
the ToM-SNN model will not help it. Since cautious policies can
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FIGURE 8 | (A)(a) Histograms of reckless agents’ performance scores. (b) Histograms of reckless agents’ risks assessment. (B)(a) Histograms of experienced agents’

performance scores. (b) Histograms of experienced agents’ risks assessment. (C)(a) Histograms of cautious agents’ performance scores. (b) Histograms of cautious

agents’ risks assessment.

TABLE 3 | The bystander’s performance scores.

The policy of pedestrian 2 Reckless Experienced Cautious

Performance scores 35.93± 3.83 37.28± 2.42 37.76± 0.82

TABLE 4 | Compared bystander’s performance scores.

The policy of

pedestrian 2

Reckless Experienced Cautious

Performance scores

(the ToM-SNN model)

35.93± 3.83 37.28± 2.42 37.76± 0.82

Performance scores

(the Brain-ToM model)

36.00± 3.74 36.18± 3.77 36.26± 3.58

perform erratically in random environments sometimes, the risk
of cautious agents can be ignored when evaluating the ToM-SNN
model performance.

As mentioned above, helping others will affect the bystander
performance scores. We counted the scores of the bystander,
respectively, when pedestrian 2 is reckless, experienced, and
cautious, and showed the average value, variance, and minimum
value of the scores in Table 3. This shows that the ToM-SNN
model can not only help others avoid risks, but also choose

different behaviors for different agents, so as to reduce their
own losses.

5. DISCUSSION AND CONCLUSION

We proposed a new idea of using the ToM-SNN model to
help other agents avoid safety risks. The ToM-SNN model is
combined with bio-inspired SNNs modeled multi-brain areas
which mainly include the TPJ, part of the PFC, the ACC, and
the IFG. The experimental results show that the ToM-SNN
model can infer others’ policy characteristics, predict the behavior
of others, assess others’ safety status and, thus, reduce others’
risks. In addition, the model is rational. Even in the same
potentially risky environment, the model will behave differently
for agents with different policies so as to help others as much as
possible while minimizing their own losses. More importantly,
the structure and learning mechanism of the model are inspired
by the ToM loops in the biological brain, and the input and
output of the network have meanings, which makes the model
more biologically interpretable. That is to say, our model is
an interpretable, biologically plausible model which can avoid
safety risks.

We focus on building a brain-inspired theory of mind spiking

neural network model to distinguish different agents, predict

others’ actions and evaluate their safety. We successfully build
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a ToM spiking neural network model to avoid safety risks for
the first time. Although Zeng et al. (2020) have established the
Brain-ToM model, this model is inclined to reveal the biological
mechanism of ToM in the brain. On the basis of it, our model
added the policy inference module and action prediction module
and combined with the decision-making system. We tried to
use the ToM-SNN model to avoid safety risks. Compared with
the Brain-ToM model from Zeng et al. (2020): (1) The ToM-
SNN model can simulate others’ decisions in combination with
others’ behavior styles, whereas the agent with the Brain-ToM
can only infer other agents that are the same as itself. Besides,
our model can infer others’ current beliefs and predict others’
decisions and safety status. Different agents will have different
behaviors in the same task due to different policies. Therefore,
predicting others’ actions according to their policies is important.
We use the experiment in section 4 to test the Brain-ToM
model. It can be seen from Table 4 that the Brain-ToM model
performs almost the same for three types of agents. The results
show that the Brain-ToM model can not produce different
feedback for agents with different policies. (2) In the process of
simulating others’ decisions, dopamine helps the PFC predict
others’ decisions. Therefore, our model uses the R-STDP to train
the policy inference module and the action prediction module to
get the appropriate weights, whereas the weights of the PFC part
in the Brain-ToM remain unchanged. (3) We try to solve others’
safety problems through the ToM. The agent with the ToM-SNN
model helps others avoid safety risks successfully. Additionally,
their work provides a possible computational model and hints on
how infant infers and understands other people’s beliefs. The two
models are based on SNNs through brain-inspired mechanisms
and have contributions to the ToMmodels.

There is much work to do to scale the ToM-SNNmodel. First,
we focus on building the ToM model to help others avoid safety
risks. In the future, we hope to be inspired by the mirror neuron
system and establish a biologically plausible model to understand
others’ actions (Khalil et al., 2018). In addition, a vital point of

this article is that the ToM model can influence the decision-
making process so as to help reduce safety risks. The safety risk
studied in this article is still relatively single, and there is only
one risk at a time in the experiment. In the future, we hope to
improve the model to a social decision-making model such as
making moral uncertainty reach intuitively reasonable trade-offs
between ethical theories (Ecoffet and Lehman, 2021).
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