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This article conforms to a recent trend of developing an energy-efficient Spiking

Neural Network (SNN), which takes advantage of the sophisticated training regime of

Convolutional Neural Network (CNN) and converts a well-trained CNN to an SNN. We

observe that the existing CNN-to-SNN conversion algorithmsmay keep a certain amount

of residual current in the spiking neurons in SNN, and the residual current may cause

significant accuracy loss when inference time is short. To deal with this, we propose

a unified framework to equalize the output of the convolutional or dense layer in CNN

and the accumulated current in SNN, and maximally align the spiking rate of a neuron

with its corresponding charge. This framework enables us to design a novel explicit

current control (ECC) method for the CNN-to-SNN conversion which considers multiple

objectives at the same time during the conversion, including accuracy, latency, and

energy efficiency. We conduct an extensive set of experiments on different neural network

architectures, e.g., VGG, ResNet, and DenseNet, to evaluate the resulting SNNs. The

benchmark datasets include not only the image datasets such as CIFAR-10/100 and

ImageNet but also the Dynamic Vision Sensor (DVS) image datasets such as DVS-CIFAR-

10. The experimental results show the superior performance of our ECC method over

the state-of-the-art.

Keywords: spiking neural network (SNN), spiking network conversion, deep learning, deep neural networks

(DNNs), event-driven neural network

1. INTRODUCTION

Spiking neural networks (SNNs) are more energy efficient than convolutional neural networks
(CNNs) in inference time because they utilize matrix addition instead of multiplication. SNNs are
supported by new computing paradigms and hardware. For example, SpiNNaker (Painkras et al.,
2012), a neuromorphic computing platform based on SNNs, can run real-time billions of neurons
to simulate the human brain. The neuromorphic chips, such as TrueNorth (Akopyan et al., 2015),
Loihi (Davies et al., 2018), and Tianji (Pei et al., 2019), can directly implement SNNs with 10,000
neurons being integrated onto a single chip. Moreover, through the combination with sensors,
SNNs can be applied to edge computing, robotics, and other fields, to build low-power intelligent
systems (Pfeiffer and Pfeil, 2018).
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FIGURE 1 | An illustrative diagram showing how SNNs process two different types of inputs and their performance comparison with CNNs. A regular image (left

column)—taken from the camera—is preprocessed into a spike train (A), which then runs through the SNN in several timesteps (e.g., 128 timesteps as in the figure). A

DVS input—taken from the event camera—can be represented directly as a spike train (B), and processed naturally by the SNN in several frames (e.g., 48 frames as

in the figure). (C,D) show the SNN’s performance with respect to the three objectives (accuracy, energy efficiency, and latency), compared to CNNs.

However, the discrete nature of spikes makes the training
of SNNs hard, due to the absence of gradients. This article
follows a cutting-edge approach to obtaining a well-performed
SNN by converting from a trained CNN of the same structure.
This approach has an obvious benefit from the sophisticated
training regime of CNNs, i.e., it is able to take advantage of the
successful—and still fast improving—training methods on CNNs
without extra efforts to adapt them to SNNs. Unfortunately,
existing CNN-to-SNN conversionmethods either cannot achieve
a sufficiently small accuracy loss upon conversion (Rueckauer
et al., 2017; Sengupta et al., 2019), or need a high latency
(Sengupta et al., 2019), or require a significant increase in the
energy consumption of the resulting SNNs (Han et al., 2020).
Moreover, recent methods such as Han et al. (2020) do not work
with the batch-normalization layer—a functional layer that plays
a key role in the training of CNNs (Santurkar et al., 2018).

This article levels up the CNN-to-SNN conversion with the
following contributions. First of all, methodologically, we argue
that the conversion needs to be multi-objective—in addition to
accuracy loss, energy efficiency and latency should be considered
altogether. Figure 1 provides an illustration showing how SNNs
process images and DVS inputs, exhibiting howwell our methods
enable the achievement of the three objectives and its comparison
with CNNs. Actually, Figures 1C,D, SNNs can have competitive
accuracy upon conversion (92.52 vs. 92.76% and 71.20 vs. 73.30%,
respectively) and be significantly more energy efficient than
CNNs (90 vs. 657 MOps and 7.52 vs. 307 MOps, respectively).
While it is hard to compare the latency as SNNs and CNNs
work on different settings, our method implements high energy
efficiency with low latency (128 timesteps for images and 48
frames for DVS inputs). As shown in our experiments, ours are
superior to the state-of-the-art conversions (Rueckauer et al.,
2017; Sengupta et al., 2019; Han et al., 2020).

Second, we follow an intuitive view aiming to establish
an equivalence between the activations in an original CNN
and the current in the resulting SNN. This view inspires us
to consider an explicit, and detailed, control of the current
flowing through the SNN. Technically, we develop a unifying
theoretical framework, which treats both weight normalization
(Rueckauer et al., 2017) and threshold balancing (Sengupta et al.,
2019) as special cases. Based on the framework, we develop a
novel conversion method called explicit current control (ECC),
which includes two techniques: current normalization (CN),
to control the maximum number of spikes fed into the SNN,
and thresholding for residual elimination (TRE), to reduce the
residual membranes potential in the neurons.

Third, we include in ECC a dedicated technique called
consistency maintenance for batch-normalization (CMB) to deal
with the conversion of the batch-normalization layer.

Finally, we implement ECC into a tool SpKeras1 and conduct
an extensive set of experiments on not only the regular image
datasets, such as CIFAR-10/100 and ImageNet but also the
Dynamic Vision Sensor (DVS) datasets such as DVS-CIFAR-
10. Note that, DVS datasets are dedicated to SNN processing.
The experimental results show that compared with state-of-
the-art methods (Rueckauer et al., 2017; Sengupta et al., 2019;
Han et al., 2020), ECC can optimize over three objectives
at the same time, and have superior performance. Moreover,
we notice that (1) ECC can utilize the conversion of batch-
normalization to reduce the latency, and (2) ECC is robust to the
hardware deployment because the quantisation—by using 7–10
bits to represent the originally 32-bit weights—does not lead to
significant accuracy loss.

1https://github.com/Dengyu-Wu/spkeras
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We remark that this article is not to argue for the replacement
of CNNs with SNNs in general. Instead, we suggest a plausible
deployment workflow, i.e., train a CNN → convert into an
SNN→ deploy on edge devices with e.g., an event camera. The
workflow will not be a good option if any of the three objectives
is not optimized.

2. RELATED STUDY

2.1. Current “Energy for Accuracy” Trend in
CNN-to-SNN Conversion
A few different conversion methods, such as Diehl et al. (2015),
Rueckauer et al. (2017), Sengupta et al. (2019), and Han et al.
(2020), have been proposed in the past few years. It is not
surprising that there is an accuracy loss between SNNs and
CNNs. For example, in Rueckauer et al. (2017) and Sengupta
et al. (2019), the gap is between 0.15 and 2% for CIFAR10
networks. A recent study by Sengupta et al. (2019) shows that
this gap can be reduced if we use a sufficiently long (e.g., 1024
timesteps) spike train to encode an input. However, a longer spike
train will inevitably lead to higher latency. This situation was
believed to be eased by Han et al. (2020), which claim that the
length of the spike train can be drastically shortened in order to
achieve near-zero accuracy loss. However, as shown in Section 4.2
(Figure 3A), their threshold scaling method can easily lead to
a significant increase in the spike-caused synaptic operations
(Rueckauer et al., 2017), or spike operations for short, which also
lead to a significant increase in the energy consumption.

Other related studies include (Rathi et al., 2020; Li et al., 2021;
Rathi and Roy, 2021), which calibrate SNN to a specific timestep
by gradient-based optimization. The calibration requires extra
training time to find the optimal weights or hyper-parameters,
such as some thresholds. In contrast, Deng and Gu (2021) trained
a dedicated CNN for an SNN with fixed timesteps by shifting
and clipping ReLU activations, although the accuracy loss of these
SNNs cannot converge to zero when increasing the timesteps, as
shown in Figure 6B. Besides, instead of reducing spikes, Lu and
Sengupta (2020) explored SNN with binary weights to further
improve the energy efficiency by consuming less memory.

2.2. Technical Ingredients in CNN-to-SNN
Conversion
Table 1 provides an overview of the existing conversion methods
(Cao et al., 2015; Diehl et al., 2015; Rueckauer et al., 2017;
Sengupta et al., 2019; Han et al., 2020) and ours, from the aspects
of technical ingredients and workable layers. In the beginning,
most of the techniques, such as Cao et al. (2015) and Diehl et al.
(2015), are based on hard reset (HR) spiking neurons, which
are reset to fixed reset potential once their membrane potential
exceeds the firing threshold. HR is still used in some recent
methods such as Sengupta et al. (2019). The main criticism of
HR is its significant information loss during the SNN inference.
Soft reset (SR) neurons are shown better in other studies such as
Rueckauer et al. (2017) and Han et al. (2020).

Weight normalization (WN) is proposed in Diehl et al.
(2015) and extended in Rueckauer et al. (2017) to regulate

TABLE 1 | Comparison of key technical ingredients (HR, SR, WN, TB, TS, ECC)

and workable layers (BN, MP, AP) with the state-of-the-art methods.

HR SR WN∗ TB∗ TS ECC BN∗∗ MP AP

Cao et al. (2015)
√ √

Diehl et al. (2015)
√ √ √

Rueckauer et al. (2017)
√ √ √ √

Sengupta et al. (2019)
√ √ √

Han et al. (2020)
√ √ √ √

[This paper]
√ √ √ √ √ √

HR, hard reset; SR, reset by subtraction, or soft reset; WN, weight normalization; TB,

threshold balancing; TS, threshold scaling; ECC, explicit current control; BN, batch

normalization; MP, max pooling; AP, average pooling. *As a contribution to this article,

in Section 3.2, we show that both WN and TB are special cases of our ECC framework.

**Among all methods, only those that can handle BN have bias terms in their pre-trained

CNNs.

the spiking rate in order to reduce accuracy loss. The other
technique, threshold balancing (TB), is proposed by Sengupta
et al. (2019) and extended by Han et al. (2020), to assign
appropriate thresholds to the spiking neurons to ensure that
they operate in the linear (or almost linear) regime. We show
in Section 3.2 that both WN and TB are special cases of our
theoretical framework.

Another technique called threshold scaling (TS) is suggested
by Han et al. (2020). However, as our experimental result is
shown in Figure 3A, TS leads to significantly greater energy
consumption (measured as MOps). On the other hand, our ECC
method can achieve smaller accuracy loss and significantly less
energy consumption.

We also note in Table 1 the differences in terms of workable
layers in CNNs/SNNs for different methods. For example, the
batch-normalization (BN) layer (Ioffe and Szegedy, 2015) is
known as important for the optimization of CNNs (Santurkar
et al., 2018), but only one existing method, i.e., Rueckauer et al.
(2017), can work with it. Similarly, the bias values of neurons
are pervasive for CNNs. Actually, the consideration of BN is
argued in Sengupta et al. (2019) as the key reason for the higher
accuracy loss in Rueckauer et al. (2017). The results of this article
show that we can keep both BN and bias without significantly
increased energy consumption, by maintaining the consistency
between the behavior of SNN and CNN. BN can help with the
reduction of latency. As we discussed earlier and in Section 5, our
ECC method may be applicable to B-SNN and further improve
its performance. Moreover, we follow most SNN research to
consider the average pooling (AP) layer instead of the max
pooling (MP) layer.

2.3. Direct Training
Spiking Neural Networks process information through non-
differentiable spikes, and thus the backpropagation (BP) (LeCun
et al., 1989) training algorithm cannot be directly applied.
Few attempts by Lee et al. (2016) and Lee et al. (2020) have
been made to adapt the BP algorithm by approximating its
forward propagation phase. Such direct training requires high
computational complexity to achieve an accuracy that is close
to CNNs (Wu et al., 2021). Unlike these methods which
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approximate the BP algorithm (Lee et al., 2016, 2020), both
of which may lead to performance degradation, we choose
CNN-to-SNN conversion which can take full advantage of
the continuously improving CNN training methods. Other
than these methods which try to reproduce the success of
CNN training, there are other direct training methods, such
as approaches based on reservoir computing (Soures and
Kudithipudi, 2019) and evolutionary algorithms (Schuman et al.,
2020).

3. EXPLICIT CURRENT CONTROL

By leveraging the correspondence between activation in CNNs
and current in SNNs,2 we propose a unifying theoretical
framework targeting multiple objectives, including accuracy,
latency, and energy efficiency. Going beyond the existing
conversion techniques (refer toTable 1) that consider some of the
objectives individually, we view these multi-objective holistically
through the lens of the unifying theoretical framework. Inspired
by such a new viewpoint, we develop explicit current control
(ECC) techniques to normalize, clip, and maintain the current
through the SNNs for the purposes of reducing accuracy loss,
latency, and energy consumption.

3.1. Existing CNN-to-SNN Conversion
Without loss of generality, we consider a CNN model of N layers
such that layer n has Mn neurons, for n ∈ {1, 2, . . . ,N}. The
output of the neuron i ∈ {1, . . . ,Mn} at layer n with ReLU
activation function is given by

ani = max







0,

Mn−1
∑

j=1
Wn

ija
n−1
j + bni







(1)

where Wn
ij is the weight between the neuron j at layer n − 1 and

the neuron i at layer n, bni is the bias of the neuron i at layer n,
and a0i is initialized as the input xi.

The activation ani indicates the contribution of the neuron to
the CNN inference. For CNN-to-SNN conversion, the greater
ani is, the higher the spiking rate will be, for the corresponding
neuron on SNN. An explanation of a conversion method from
CNNs to SNNs was first introduced by Rueckauer et al. (2017) by
using data-based weight normalization.

The conversion method uses integrated-and-fire (IF) neurons
to construct a rate-based SNN without leak and refractory
time. If considering practical implementations, the rate-based
SNN expects a relatively large interval between input spikes to
minimize the effect of refractory time. To convert from a CNN,
the spiking rate of each neuron in SNN is related to the activation
of its corresponding neuron in the CNN. An iterative algorithm
based on the reset by subtraction mechanism is described below.
The membrane potential Vn

i (t) of the neuron i at the layer n can
be described as

2The activation values in the original CNNs can be represented by the current

through the analog/digital circuits in the resulting SNNs, so that controlling

current through spike train in SNNs corresponds to data flow operations in CNNs.

Vn
i (t) = Vn

i (t − 1)+ Zn
i (t)−2n

i (t)V
n
thr (2)

where Vn
thr

represents the threshold value of layer n and Zn
i (t) is

the input current to neuron i at layer n such that

Zn
i (t) =

Mn−1
∑

j=1
Wn

ij2
n−1
j (t)+ bni (3)

with 2n
i (t) being a step function defined as

2n
i (t) =

{

1, if Vn
i (t) ≥ Vn

thr
0, otherwise.

(4)

In particular, when the current Vn
i (t) reaches the threshold Vn

thr
,

the neuron i at layer n will generate a spike, indicated by the step
function 2n

i (t), and the membrane potential Vn
i (t) will be reset

immediately for the next timestep by subtracting the threshold.

3.2. A Unifying Theoretical Framework
The above CNN-to-SNN conversion method is designed
specifically for weight normalization (Rueckauer et al., 2017), and
cannot accommodate other conversion methods, e.g., threshold
balancing (Sengupta et al., 2019). We propose a novel theoretical
framework for CNN-to-SNN conversion that covers both weight
normalization (Rueckauer et al., 2017) and threshold balancing
(Sengupta et al., 2019) as special cases. In particular, the
proposed framework improves over (Rueckauer et al., 2017) by
adopting a thresholding mechanism to quantify the accumulated
current into spikes in SNN and extends the threshold balancing
mechanism to be compatible with batch normalization and bias.

We will work with the spiking rate of each SNN neuron i at
layer n, defined as rni (t) = Nn

i (t)/t, where N
n
i (t) is the number of

spikes generates in the first t timesteps by neuron i at layer n. We
remark that it is possible that rni (t) > 1, i.e., multiple spikes in a
single timestep, in which case the latency is increased to process
extra spikes.

Our framework is underpinned by Proposition 1.

Proposition 1. In the CNN-to-SNN conversion, if the first layer
CNN activation a1i and the first layer SNN current Z1

i (t) satisfy the
following condition

1

T

T
∑

t=1
Z1
i (t) = a1i , (5)

where T is a predefined maximum timestep, then the SNN spiking
rate at time step t can be iteratively computed by

rni (t) =
1

Vn
thr

(

Mn−1
∑

j=1
Wn

ijr
n−1
j (t)+ bni

)

−1n
i (t) (6)

with 1n
i (t) , Vn

i (t)/(tV
n
thr) representing the residual spiking rate.

Initially, the spiking rate of neuron i at the first layer is r1i (t) =
a1i /V

1
thr
−11

i (t).
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FIGURE 2 | Left: Our proposed CNN-to-SNN conversion for the n-th layer with a current normalization component and a thresholding mechanism. The activation ani
in the CNN (Top) is used for current normalization in the SNN (Bottom). Right: The proposed Thresholding for Residual Elimination (TRE) and the illustration of error

reduction by TRE.

Remark 1.: The spiking rate in Equation (6) is a generalised
form of those using weight normalization (WN) (Rueckauer
et al., 2017) and threshold balancing (TB) (Sengupta et al., 2019).
When keeping V1

thr = 1, by normalizing Wn
ij we obtain WN;

when keeping Wn
ij unchanged, by normalizing Vn

thr
we obtain

TB. When applying a scaling factor αn to the threshold Vn
thr
,

Proposition 1 recovers (Han et al., 2020).

The condition in Equation (5) bridges between the activations
in CNNs and the accumulated currents in SNNs, i.e., within the
duration of a spike train, the average accumulated current equals
the CNN activation. This is key to our theoretical framework,
and different from some previous conversion methods such
as Rueckauer et al. (2017), which bridges between activations
and firing rates. This activation-current association is reasonable
because it aligns with the intuitions that (i) given a fixed spiking
rate, a greater CNN activation requires a greater accumulated
current in the SNN; and (ii) given a pre-trained CNN,more input
spikes lead to increased current in the SNN.

Proposition 1 suggests that an explicit, optimized control on
the currents may bring benefits to the spiking rate (so as to reduce
energy consumption) and the residual current (so as to reduce
the accuracy loss) simultaneously. First, a normalization of the
currents Zn

i (t) is able to control the spike number, with its details
being given in Section 3.3.1. Second, the error term 1n

i (t) will
accumulate in deeper layers, causing a lower spiking rate in the
output layer (Rueckauer et al., 2017). The thresholding technique
in Section 3.3.2 will be able to reduce the impact of such an error.
Third, we need to maintain the consistency between CNN and
SNN so that the above control can be effective, as in Section 3.3.3.

The input is encoded into a spike train via Poisson event-
generation process (Sengupta et al., 2019) or interpreting the
input as constant currents (Rueckauer et al., 2017). In this article,
we select the latter.

3.3. ECC-Based Conversion Techniques
We develop three ECC-based techniques, including current
normalization (CN), thresholding for residual elimination (TRE),
and consistency maintenance for batch-normalization (CMB).
Figure 2 illustrates CN and TRE, where the n-th layer of CNN
is on the top and the corresponding conversed SNN layer is at
the bottom. In the converted SNN layer, the sequences of spikes
from the previous layer are aggregated, from which the current
Zn
i (t) is accumulated in the neurons, and normalized by a factor

(refer to Equation (7) below) to ensure that the increase of current
at each timestep is within the range of [0,1]. The membrane

potential V
n(t)
i is produced according to Equation (2), followed

by a spike generating operation as in Equation (4) once Vn
i (t)

exceeds the threshold Vn
thr
= κn. The parameter κn is the current

amplification factor, which will be explained in Section 3.3.1. The
residual current 1n

i at the end of the spike train indicates the
information loss in SNNs.

3.3.1. Current Normalization
At layer n, before spike generation, CN normalizes the current
Zn
i (t) by letting

Zn
i (t)←

λn−1
Tλn

Zn
i (t), ∀ t = 1, . . . ,T (7)

where λn , maxi{ani } for n = 1, 2, . . . ,N. We have λ0 = 1 when
the input has been normalized into [0, 1] for every feature. The
benefit of CN is 2-fold:

• By CN, the maximum number of spikes fed into the SNN is
under control, i.e., we can have direct control of the energy
consumption.
• It facilitates the use of a positive integer Vn

thr
= κn as the

threshold to quantify the current, which is amplified by a
factor of κn, for spike generation. In doing so, the neuron with
maximum current can generate a spike at every time step.
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We randomly choose κn = 100 for Vn
thr

and normalize weights
for all experiments, except quantised SNN. Since the scalar
of quantized weights in each layer will be absorbed into the
threshold, we will get a different threshold for each layer. The
quantisation process is explained in Section 4.4.

To achieve CN, the following conversion can be implemented
to normalize weights and bias as follows.

Wn
ij ← κn

λn−1
λn

Wn
ij , b

n
i ←

κnb
n
i

λn
, Vn

thr ← κn. (8)

Note that, the next layer will amplify the incoming current
back to its original scale before its normalization. When
κn = 1 or λn/λn−1, the conversions correspond to weight
normalization in Rueckauer et al. (2017) and threshold balancing
in Sengupta et al. (2019), respectively.

3.3.2. Thresholding for Residual Elimination
According to Equation (6), the error increment after conversion
is mainly caused by the residual information, δni (T) ∈ [0,Vn

thr
],

which remains with each neuron after T timesteps and cannot be
forwarded to higher layers. To mitigate such errors, we propose
a technique TRE to keep δni (T) under a certain value (half of
Vn
thr

as in our experiments). In particular, we add extra current to
each neuron in order to have ηVn

thr
increment on eachmembrane

potential, where η ∈ [0, 1). Specifically, we update the bias term
bni of neuron i at layer n as follows

bni (t) : = bni (t)+ ηVn
thr/T (9)

for every timestep t. Intuitively, we slightly increase synaptic bias
for every neuron at every step so that a small volume of current is
pumped into the system continuously.

The following proposition says that this TRE technique will be
able to achieve a reduction of error range, which directly lead to
the improvement in the accuracy loss.

Proposition 2. Applying TRE will lead to

2n
i (T) =

{

1, if Vn
i (T) > (1− η)Vn

thr
0, otherwise.

(10)

for timestep T as opposed to Equation (4). By achieving this, the
possible range of errors is reduced from [0,Vn

thr
) to [0, (0.5+|0.5−

η|)Vn
thr
).

We remark that, deploying TREwill increase atmost one spike
per neuron at the first layer and continue to affect the spiking
rate at higher layers. This is the reason why we have slightly
more spike operations than Rueckauer et al. (2017), as shown in
Supplementary Figure 1C. A typical value η is 0.5.

3.3.3. Consistency Maintenance for

Batchnormalization
Batch normalization (BN) (Ioffe and Szegedy, 2015) accelerates
the convergence of CNN training and improves the
generalization performance. The role of BN is to normalize
the output of its previous layer, which allows us to add the
normalized information to weights and biases in the previous

layer. We consider a conversion technique CMB to maintain the
consistency between SNN and CNN in operating the BN layer,
by requiring a constant for numerical stability ǫ, as follows.

Ŵn
ij =

γ n
i

√

σ n2
i + ǫ

Wn
ij (11)

b̂ni =
γ n
i

√

σ n2
i + ǫ

(bni − µn
i )+ βn

i (12)

where γ n
i and βn

i are two learned parameters, µn
i and σ n

i are
mean and variance. ǫ is platform dependent: for Tensorflow, it is
default as 0.001, and for PyTorch, it is 0.00001. The conversion
method in Rueckauer et al. (2017) does not consider ǫ, and
we found through several experiments that a certain amount of
accuracy loss can be observed consistently. Figure 5 shows the
capability of CMB in reducing the accuracy loss.

4. EXPERIMENT

We implement the ECC method and conduct an extensive
set of experiments to validate it. We consider its comparison
with the state-of-the-art CNN-to-SNN conversion methods
on images and DVS inputs (Sections 4.2, 4.5, respectively),
the demonstration of its working with batch-normalization
(Section 4.3), its robustness with respect to hardware deployment
(Section 4.4), and an ablation study (Section 4.6). Due to
the space limit, we present a subset of the results—the
Supplementary Material includes more experimental results.
We fix κn = 100 and ǫ = 0.001 throughout the experiments.

In this section, “2017-SNN” denotes the method proposed in
Rueckauer et al. (2017). “RMP-SNN(0.8)” and “RMP-SNN(0.9)”
denote the method in Han et al. (2020), with different parameters
0.8 or 0.9 as co-efficient to Vthr . ‘ECC-SNN’ is our method.
We remark that it is shown in Han et al. (2020) that its
conversion method outperforms that of Sengupta et al. (2019),
so we only compare with Han et al. (2020). Moreover, we may
write “Method@nT” to represent the specific ‘Method’ when
considering the spike trains of length n. Note that, only the CNN
model in Figure 3A was trained without bias and BN, in order
to have a fair comparison with RMP-SNN techniques. Since BN
layers play an important role in training a high performance
CNN and have the benefit of lowering the latency (c.f. Section
4.3), we believe it is essential to include them in CNN training.
Therefore, we do not compare with Han et al. (2020) (i.e., RMP-
SNN) and Sengupta et al. (2019) in other experiments because
they do not work with BN.

Before proceeding, we explain how to estimate energy
consumption. For CNNs, it is estimated through the multiply-
accumulate (MAC) operations

MAC operations for CNNs :

N
∑

n=1
(2f nin + 1)Mn (13)

where f nin is the number of input connections of the n-th layer.
The number of MAC operations is fixed when the architecture of
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FIGURE 3 | (A) Accuracy and energy consumption (MOps) with respect to timesteps for CIFAR-10. (B) Accuracy and energy consumption (MOps) with respect to

timesteps, for ImageNet (Top-1 Acc). (C) Accuracy loss and latency with respect to energy consumption (MOps), for CIFAR-10 and CIFAR-100. (D) Accuracy and

quantisation error with respect to timesteps, for CIFAR-10.

the network is determined. For SNNs, the synaptic operations are
counted to estimate the energy consumption of SNNs (Merolla
et al., 2014; Rueckauer et al., 2017) as follows.

Synaptic operations for SNNs :

T
∑

t=1

N
∑

n=1
f nouts

n (14)

where f nout is the number of output connections and sn is the
average number of spikes per neuron, of the n-th layer.

4.1. Experimental Settings
We work with both image datasets [CIFAR-10/100 (Krizhevsky
and Hinton, 2009) and ImageNet (Russakovsky et al., 2015)]
and DVS datasets (CIFAR-10-DVS Li et al., 2017) on several
architectures (Simonyan and Zisserman, 2014) (VGG-16, VGG-
19, and VGG-7). All the experiments are conducted on a CentOS
Linux machine with two 2080Ti GPUs and 11 GB memory.

4.2. Comparisons With State-of-the-Art
Figure 3A presents a comparison between 2017-SNN, RMP-
SNN, and ECC-SNN on both accuracy and energy consumption
with respect to the timesteps, on VGG-16 and CIFAR-10. We
note that both RMP-SNN and ECC-SNN outperform 2017-SNN,
in terms of the number of timesteps to reach near-zero accuracy
loss. Furthermore, ECC-SNN is better than RMP-SNN(0.9) and
competitive with RMP-SNN(0.8) in terms of reaching near-zero
accuracy loss under certain latency. Specifically, both ECC-SNN
and RMP-SNN(0.8) require 128 timesteps and RMP-SNN(0.9)
requires 256 timesteps. Importantly, we note that both RMP-
SNN(0.8) and RMP-SNN(0.9) consume much more energy,
measured with MOps, than ECC-SNN. Actually, ECC-SNN does
not consume significantly more energy than 2017-SNN.

Similar results can be extended to a large dataset such as
ImageNet. Moreover, to investigate further into the energy

consumption, Figure 3B presents a comparison with 2017-SNN.
All the above results show that ECC-SNN significantly reduces
the latency, easily reaches the near-zero loss, and costs a minor
increase in energy.

The above results, together with those in
Supplementary Figures 1A,C,D,E), reflect exactly the advantage
of using ECC-SNN. That is RMP-SNN(0.8) and ECC-SNN are
the best in achieving near-zero accuracy loss with low latency,
but RMP-SNN requires significantly more energy than the
other two methods. Therefore, ECC-SNN achieves the best when
considering energy, latency, and accuracy loss.

Batch-normalization (BN) has become indispensable to train
CNNs, so we believe a CNN-to-SNN method should be able to
work with it. After demonstrating a clear advantage over RMP-
SNN, for the rest of this section, we will focus on the comparison
with 2017-SNN, which deals with BN. We trained CNNs using
Tensorflow by having a batch-normalization layer after each
convolutional layer.

4.3. Batch-Normalization
Figure 3C considers the impact of working with BN. Compared
with 2017-SNN, ECC-SNN achieves similar accuracy loss by
taking 2x less MOps and 3x less latency. Moreover, to achieve the
same accuracy loss, ECC-SNN without BN, i.e., ECC applies on
CNNs without BN layers, requires significantly more timesteps,
with slightly less MOps. Moreover, our other experiments show
that RMP-SNN (0.8), without BN in its method, can only achieve
48.32% in 256T. With BN, 2017-SNN can achieve 49.81% in
128T. ECC-SNN further improves on this, achieving 63.71%
in 128T. That is, batch-normalization under ECC-SNN can help
reduce the latency. This is somewhat surprising, and we believe
further research is needed to investigate the formal link between
BN and latency.
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FIGURE 4 | Accuracy and energy consumption (MOps) with respect to frames, between 2017-SNN and ECC-SNN, for CIFAR-10-DVS, and VGG-7.

TABLE 2 | Comparison of SNN accuracy, latency, and energy consumption (MOps), between direct training, 2017-SNN and ECC-SNN, for Cifar-10-DVS.

Method Publication Accuracy N∗

f
MOps

Direct training (VGG7) Wu et al., 2021 62.50 - -

2017-SNN (DenseNet) Kugele et al., 2020 65.61 60 1,551

ECC-SNN (VGG16) this paper 71.20 48 66.79

ECC-SNN (VGG7) this paper 71.30 48 7.52

4.4. Robustness to Quantisation
Figure 3D and Supplementary Figure 1B present how the
change in the number of bits to represent weights may affect the
accuracy and the quantisation error. This is an important issue,
as the SNNs will be deployed on the neuromorphic chip, such
as Loihi (Davies et al., 2018) and TrueNorth (Akopyan et al.,
2015), or FPGA, which may have different configurations. For
example, Loihi can have weight precision at 1-9 bits. Floating-
point data, both weights and threshold can be simply converted
into fixed-point data after CN in two steps: normalizing the
weights into the range [-1,1] and scaling the threshold using
the same normalization factor, and then multiplied with 2b,
where b is the bit width (Ju et al., 2019; Sze et al., 2019). From
Figure 3D and Supplementary Figure 1B, the reduction from
32-bit to 10-, 9-, 8-, and 7-bit signed weights does lead to a drop
in the accuracy, but unless it goes to 7-bit, the accuracy loss is
negligible. This shows that our ECC method is robust to hardware
deployments.

4.5. DVS Dataset
CIFAR-10-DVS (Li et al., 2017) is a benchmark dataset of DVS
inputs, consisting of 10,000 inputs extracted from the CIFAR-
10 dataset using a DVS128 sensor. The resolution of data is
128x128. We preprocess the data following Wu et al. (2021) and
Kugele et al. (2020), select the first 1.3 s of the event stream
and down-scale the input into 42 x 42. For each dimension
of input, we calculate the number of spikes over the 1.3 s
simulation and normalize with a constant representing the
maximum number of spikes. During SNN processing, as shown

in Figure 1B, the latency is based on spikes. The experiments
using VGG7 (Figure 4), VGG16, and ResNet-18 (Sengupta
et al., 2019; Supplementary Figures 2A,B) show that ECC-SNN
performs much better than 2017-SNN, who also work with BN
layer. Moreover, in Table 2, we compare fewmethods including a
recent direct training method and highlight the best results for
each objective. We can see that ECC-SNN can always achieve
better accuracy, less frames, and less energy consumption.

Moreover, we recall the results shown in Figure 1 concerning
the comparison between DVS inputs and images. For the same
problem, if we choose the deployment workflow of “training a
CNN→ converting into an SNN→ deploying on edge devices
with e.g., event camera,” we may consume 10+ times less energy
(7.52 vs. 90 MOps for CIFAR-10) by taking DVS inputs. Both are
in stark contrast with the other deployment workflow “training
a CNN→ deploying on edge devices with camera,” which costs
much more energy (307MOPs and 657MOps, respectively).

4.6. Ablation Study
To understand the contributions of the three ingredients of
ECC-SNN, i.e., CN, CMB, and TRE, we conduct an experiment
on VGG-16 and CIFAR-10, by gradually including technical
ingredients to see their respective impact on the accuracy loss.
Figure 5 shows the histograms of the mean accuracy losses in
256T, over the 281–283th epochs. We see that every ingredient
plays a role in reducing the accuracy loss, with the TRE and CN
being lightly Moreover, We also consider the impact of η (as in
Supplementary Figure 1F).
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5. CONVERSION OPTIMIZED THROUGH
DISTRIBUTION-AWARE CNN TRAINING

Up to now, all methods we discussed and compared, including
our ECC method, are focused on optimizing the CNN-to-SNN
conversion, without considering whether or not the CNN itself
may also play a role in eventually obtaining a good-performing
SNN. In this section, we will discuss several recent techniques
that include the consideration of CNN training and show that
our ECC method can also improve them by optimizing the
CNN-to-SNN conversion.

As noted in Section 3.3.1 that the maximum value of
activations is a key parameter in the conversion. Based on this,
Rueckauer et al. (2017) and Lu and Sengupta (2020) suggest that
a particular percentile from the histogram on the CNN activation

FIGURE 5 | Contribution of CN, CMB, and TRE to the reduction of mean

accuracy loss, for CIFAR-10 and VGG-16.

may improve conversion efficiency. One step further, Yu et al.
(2020) suggest that a good distribution with less outliers on
CNN activation can be useful for quantisation. Therefore, we call
these techniques distribution-aware CNN training techniques, to
emphasise that they are mainly focused on optimizing the CNN
training through enforcing good distributions on the activations.

To show that our ECC method is complementary to the
distribution-aware CNN training techniques, we implement
some existing CNN training techniques that can affect activation
distribution and show that ECC can also work with them to
achieve optimized conversion. Specifically, Yu et al. (2020) notice
that the clipped ReLU can enforce small activation values (i.e.,
close to zero) to become greater, and eventually reshape the
distribution from a Gaussian-like distribution to a uniform
distribution. We follow this observation to train CNN models
with different clipping methods, including ReLU6 (clipped by
6) from Lin et al. (2019) and Jacob et al. (2018), ReLU-CM
(clipped by k-mean) from Yu et al. (2020), and ReLU-SC (shift
and clipped) from Deng and Gu (2021). Figure 6A shows that
all clipping methods can shift the original activation value (as
in the top left figure) to values closer to the mean value (i.e.,
near the peak area). Such a shift of maximum activation value
can significantly reduce the possibility for the maximum value to
become an outlier.

Figure 6B presents a comparison between SNNs obtained
through ReLU6, ReLU-CM and ReLU-SC, with and without the
application of ECC. First of all, distribution-aware training can
improve performance. For example, with clipping methods, the

A B

C

FIGURE 6 | Comparison of SNNs using different clipping methods, ReLU6 (Jacob et al., 2018; Lin et al., 2019), ReLU-CM (Yu et al., 2020), ReLU-SC* (Deng and Gu,

2021), for CIFAR-10 on VGG-16. (A) Normalized activation distribution of the first layer. (B) Accuracy with respect to timesteps. (C) Energy consumption (MOps) with

respect to timesteps. *We use ReLU-SC to train an SNN with a fixed timestep (16T), as it does not need extra training.
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accuracy loss is less than 2.2%@32T, which is better than ECC-
SNN (3.2%@32T) as in Supplementary Figure 1C. Then, we
can see that, with ECC, ReLU6 and ReLU-CM can achieve 2x
less latency with little performance degradation. Although ECC-
ReLU6, ECC-ReLU-CM, and ReLU-SC achieve similar accuracy
(90.20–90.56%@16T), ECC-ReLU-CM has the best adaptability
to different timesteps. By contrast, ECC-ReLU6 uses 1.5–1.7x less
operations at 16T than ReLU-SC and ECC-ReLU-CM, as shown
in Figure 6C. We only apply ECC to ReLU6 and ReLU-CM, as
ReLU-SC in Deng and Gu (2021) is not designed to be adaptable
to different timesteps.

The above results show that distribution-aware CNN
training and our ECC method can both improve the CNN-
to-SNN conversion. While distribution-aware CNN training
can reduce the accuracy loss, the application of the ECC
method can further improve the performance of the resulting
SNN model. Furthermore, it is worth mentioning that ECC
can take the advantage of the accumulated bias current
to optimize a single SNN model with respect to different
timesteps.

6. DISCUSSION

Variants to the Unifying Framework
The current unifying framework (Section 3.2) considers the
ReLU activation function, which exhibits a linear relation
between accumulated current and spiking rate. There are other—
arguably more natural—features in biological neurons, such
as a leak, refractory time, and adaptive threshold, as discussed
in Kobayashi et al. (2009). If considering these features, the
relation between accumulated current and spiking rate will
become non-linear. To deal with them, it can be an interesting
future work to consider extending the unifying framework
to address the connection between nonlinear activation
functions (e.g., sigmoid) on CNN and the dynamic properties
on SNN.

Hyper-Parameters in ECC
Most of the hyper-parameters in ECC-SNN are determined
with reasons, such as κn (Section 3.3.1) and η (Section 3.3.2),
while timesteps (T) are determined by practical application
according to e.g., required accuracy. Although some gradient-
based optimization methods, such as Rathi et al. (2020), Rathi
and Roy (2021), and Li et al. (2021), can improve the SNN to
a fixed timestep, ECC allows SNN to be adaptive to different
timesteps. In the future, we will consider hyper-parameters

tuning methods, e.g., Parsa et al. (2020), to further improve
ECC-SNN while maintaining its adaptability.

7. CONCLUSION

We develop a unifying theoretical framework to analyze the
conversion from CNNs to SNNs and a new conversion method
ECC to explicitly control the currents, so as to optimize
accuracy loss, energy efficiency, and latency simultaneously. By
comparing state-of-the-art methods, we confirm the superior
performance of our method. Moreover, we study the impact
of batch-normalization and show the robustness of ECC over
quantization.
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