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The neurotrophin Nerve Growth Factor (NGF) holds a great potential as a therapeutic
candidate for the treatment of neurological diseases. However, its safe and effective
delivery to the brain is limited by the fact that NGF needs to be selectively targeted
to the brain, to avoid severe side effects such as pain and to bypass the blood brain
barrier. In this perspective, we will summarize the different approaches that have been
used, or are currently applied, to deliver NGF to the brain, during preclinical and clinical
trials to develop NGF as a therapeutic drug for Alzheimer’s disease. We will focus on
the intranasal delivery of NGF, an approach that is used to deliver proteins to the brain
in a non-invasive, safe, and effective manner minimizing systemic exposure. We will
also describe the main experimental facts related to the effective intranasal delivery of
a mutant form of NGF [painless NGF, human nerve growth factor painless (hNGFp)] in
mouse models of Alzheimer’s disease and compare it to other ways to deliver NGF to
the brain. We will also report new data on the application of intranasal delivery of ANGFp
in Down Syndrome mouse model. These new data extend the therapeutic potential
of hNGFp for the treatment of the dementia that is progressively associated to Down
Syndrome. In conclusion, we will show how this approach can be a promising strategy
and a potential solution for other unmet medical needs of safely and effectively delivering
this neuroprotective neurotrophin to the brain.
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INTRODUCTION

The neurotrophin Nerve Growth Factor (NGF) (Levi-Montalcini, 1952) has been suggested to play
a neuroprotective factor in several neurological diseases and has been a matter of numerous basic
and clinical research studies.

Nerve growth factor is produced from a gene located on chromosome 1 (Francke et al., 1983)
as a precursor proNGF which exists in two distinct isoforms of 27 and 35 kDa (Edwards et al.,
1988). ProNGF is then cleaved to mature NGF by a group of enzymes including furin and
metalloproteases (Cuello et al., 2019). Recently, it has been found that both proNGF and mature
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NGF can trigger biological responses (Lee et al., 2001), most
often with an opposite sign. First, it has been demonstrated
that proNGF is the major species of this neurotrophin both in
the Central Nervous Systems (Fahnestock and Shekari, 2019).
Secondly, proNGF can bind p75N™R, the receptor common to
all neurotrophins. But it can also bind to the tropomyosin-
related kinase receptor TrkA, although with a lower affinity than
mature NGF (Fahnestock et al., 2004). Thus, a subtle balance
between the amount of proNGFE, mature NGF and their receptors
can lead to either a neuroprotective or a pro-neurodegenerative
outcome (see below).

NERVE GROWTH FACTOR IN
ALZHEIMER’S DISEASE AND ITS LIMITS
TO CLINICAL APPLICATION

Alzheimer’s disease (AD) neuropathology is distinguished
by deposits of misfolded proteins, mainly consisting of
hyperphosphorylated tau and p-amyloid (AB) (Selkoe, 2001).
Another prominent feature of the neurodegenerative process
characterizing AD 1is the occurrence of cholinergic deficit
(Whitehouse et al., 1982), which put the theoretical basis of
the pharmacological therapy available for AD patients (use
of cholinesterase inhibitors) (Giacobini, 2006). Basal forebrain
cholinergic neurons (BFCNs) were identified as the most
significant NGF-sensitive population inside the CNS. These
neurons express both NGF receptors TrkA and p75N'R (Hefti,
1986; Holtzman et al., 1992), are able to retrogradely transport
NGF from their cortical projections up to their cell bodies
(Seiler and Schwab, 1984) and respond to administration of
exogenous NGF, in terms of increase of cholinergic phenotypical
markers (Gnahn et al, 1983; Mobley et al, 1986). Most
importantly, NGF is able to prevent BFCN death or atrophy,
following axotomy (Hefti, 1986; Williams et al., 1986; Kromer,
1987) or linked to aging (Fischer et al, 1987). In AD, a
selective decrease in the expression of TrkA, and not p75N'R,
occurs in BFNCs and hippocampus and it correlates with the
severity of the disease (Mufson et al, 2019). The distinctive
cholinergic deficit in AD, together with the BFCN being
NGF target neurons, has led to propose the use of NGF
as a treatment for AD (Tuszynski et al, 2005; Mitra et al,
2019).

Work with the anti-NGF AD11 mouse model (Ruberti et al.,
2000), in which the expression of antibodies against mature
NGEF in the adult brain causes a progressive neurodegeneration
which is similar to that observed in AD brains, provided the
first demonstration that deficits in NGF signaling may lead to a
Alzheimer-like neurodegeneration (Capsoni et al., 2011), which
is broader than a pure cholinergic deficit. This comprehensive
neurodegeneration phenotype suggested that other cells in the
brain, in addition to BFCNs, might respond to NGF deficits
and, conversely, might represent targets for NGF therapeutic
actions. Indeed, triggered by this neurodegeneration picture,
we found that microglia are NGF target cells and respond to
NGF by activating a potent and broad neuroprotective and anti-
inflammatory action (Rizzi et al., 2018).

Deficits in NGF processing or transport could be causally
linked to the onset of AD neurodegeneration. Whilst in the AD11
model the NGF deficit is determined by interference with an
anti-NGF antibody expressed in the brain, different pathological
mechanisms could result in a reduced NGF bioactivity. Thus,
a reduced NGF bioactivity might result either by a defect in
NGEF retrograde transport system (Mufson et al., 1995) or by
an unbalance of proNGF vs. mature NGF signaling (Fahnestock
et al,, 2001; Podlesniy et al, 2006). Indeed, experimentally
increasing proNGF in transgenic mice also induces a progressive
neurodegeneration, despite concomitant higher-than-normal
mature NGF levels (Tiveron et al., 2013; Fasulo et al., 2017).

We can therefore formulate an NGF hypothesis for AD
neurodegeneration, whereby a common link behind AD
neurodegeneration is a failure or an insufficient NGF signaling,
leading to inadequate neurotrophic support (Capsoni and
Cattaneo, 2006; Cattaneo et al., 2008; Cattaneo and Calissano,
2012). The failure or unbalance of NGF support could be
due to different causes in the overall cascade(s) of events
involving NGF bioactivity: (1) decreased NGF synthesis, (2)
unbalanced or altered processing, (3) alterations in receptor
expression and/or activity or expression ratios, and (4) altered
retrograde transport. These events would be “located” upstream
of the “amyloid cascade” which is the central core of AD
neurodegeneration, as currently described (Selkoe, 2000), and
would be part of a negative feedback loop that involves several
steps (e.g., links between APP, tau, and axonal transport). On
the other hand, the intrahippocampal injection of AP oligomers
in naive rats is sufficient to induce a proNGF/NGF unbalance
(Bruno et al., 2009).

Thus, an initial deficit in NGF signaling or processing
or a reduction of TrkA receptors will result in a feed-
forward pathological cycle leading to increased accumulation
of AP and propagation of proNGF/NGF homeostasis deficits
(Cattaneo and Capsoni, 2019).

Within this theoretical frame, any therapy aimed at re-
establishing the correct balance between ligands (and receptors)
of the NGF pathway appears to have a clear rationale. The
most direct therapeutic approach along these lines would be,
therefore, to exploit NGF itself. However, the viable clinical
application of NGF requires providing a solution to major
obstacles, namely finding a more effective NGF delivery to the
CNS and limiting adverse effects deriving from undesired NGF
actions, most notably, pain.

PAST AND ONGOING NERVE GROWTH
FACTOR CLINICAL TRIALS IN
ALZHEIMER’S DISEASE

One approach to overcome the limits of NGF administration
might be the use of small molecules that could cross the blood
brain barrier and mimic NGF action, improving survival of target
cells [Pediaditakis et al. (2016a,b) and reviewed in Gascon et al.
(2021)]. Currently one of these small-molecule NGF mimetics,
the P75NTR binding molecule LM11A-31, is under evaluation
in clinical trials in Alzheimer’s disease (Yang et al., 2008, 2020).
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However, this approach might represent limitations due to a
more restricted pharmacological profile with respect to that of
the NGF protein.

To achieve a therapeutic concentration of NGF in the brain,
while also avoiding systemic exposure, a first clinical has been
performed in which an intracerebroventricular infusion was
performed in three patients (Eriksdotter Jonhagen et al., 1998).
Despite an increase in nicotinic receptor expression and an
amelioration in cognitive function, the trial had to be stopped
due to the onset of unbearable back pain linked to the diffusion
of NGF in the CSF irrorating the spinal cord. For this reason,
subsequent clinical trials were performed using cells engineered
to secrete NGF or adenoviruses carrying the sequence encoding
for NGF, stereotaxically implanted by neurosurgery close to the
basal forebrain. In 2005 a clinical trial targeting the BFCNs
was performed in 8 patients in which autologous fibroblasts
were engineered to produce NGF. Using this approach, slowing
down of the cognitive decline, associated with an amelioration
of cortical glucose uptake, was found (Tuszynski et al., 2005,
2015). Lately, an NGF-encoding adeno-associated viral vector
also injected in the basal forebrain has been used (Rafii et al.,
2014) but the treatment did not lead to clinical efficacy, most
likely because of the failure to accurately engage the target cells
(Rafii et al., 2018).

More recently, clinical trials using the encapsulated cell
biodelivery (ECB) have been started. The ECB cells engineered
to secrete NGF are located at the tip of a catheter formed
by a semipermeable membrane to allow the exchange of NGF
and nutrients in the extracellular fluid (Lindvall and Wahlberg,
2008). These catheters have been implanted in the basal forebrain
of AD patients and allow to achieve an increase in choline
acetyltransferase activity and glucose content in the brain, and
amelioration in memory tests (Mitra et al., 2019). However,
despite the encouraging results, the trials have been slowed down
because of the variability of results due to degeneration of the
engineered cells (Mitra et al., 2019).

THE ADVANTAGE OF INTRANASAL
DELIVERY VS. OCULAR DELIVERY

To bypass the blood brain barrier, intranasal delivery is an
alternative solution that has been proposed for several proteins
(Dhuria et al.,, 2010; Malerba et al., 2011). As far as NGF is
concerned, in 1997 Frey’s group used radioactive labeled NGF to
demonstrate that the intranasal delivery allows to obtain NGF
in therapeutic concentrations in several regions of rat brain
(Frey et al, 1997). Several hypotheses have been formulated
concerning the pathways through which the protein can reach the
brain. These include nerves (olfactory and trigeminal) connecting
the nasal passages to the brain, vasculature, cerebrospinal fluid
(CSF) and lymphatic system [reviewed in Dhuria et al. (2010)
and Malerba et al. (2011)]. Our laboratory first applied this
technique in anti- NGF ADI11 mice, and we showed that
intranasally delivered NGF could reduce memory deficits and
the accumulation of AP deposits, hyperphosphorylated tau and
cholinergic deficiency (Capsoni et al., 2002; De Rosa et al., 2005).
In a subsequent study, intranasal delivery of NGF was compared

to the administration of NGF eye-drops. It was found that the
ocular delivery of NGF was less efficient than nasal delivery in
rescuing tau-related neurodegeneration in AD11 mice, since a ten
times higher dose than the one used for intranasal delivery was
necessary to obtain the same effect (Capsoni et al., 2009).

MICROGLIA AS A NEW TARGET FOR
THE ACTIONS OF INTRANASAL
PAINLESS NERVE GROWTH FACTOR
(HUMAN NERVE GROWTH FACTOR
PAINLESS)

Intranasal delivery allows not only to reach brain regions, but
it also reduces the possibility to have a systemic leakage of the
protein in blood circulation, thus reducing the possibility to
trigger side effects such as pain. To increase the therapeutic index
and to reduce the possibility to trigger nociceptor sensitization,
a mutation in the human NGF gene, inspired by a rare human
disease, the Hereditary Sensory and Autonomic Neuropathy type
V (HSAN V), was introduced. HSAN V patients carry a mutation
from arginine 100 to tryptophan (R100W) and suffer of pain
insensitivity without having cognitive deficits (Einarsdottir et al.,
2004). After screening different amino acid substitutions, we
selected the mutation R100E because of (i) its similarity to the
R100W mutation in selectively altering TrkA signaling, (ii) in
abolishing the binding to p75N™R receptor and because of (iii)
a more efficient production in Escherichia coli (Covaceuszach
et al., 2010). In addition to the R100E mutation, a second one
(P61S) was introduced to make the protein detectable against the
endogenous human NGF (Covaceuszach et al., 2009). The mutant
NGFP61SR100E [painless NGF or human nerve growth factor
painless (hNGFp)] was shown to have the same neurotrophic
potency as wildtype NGF, in several bioassays, while showing a
greatly reduced pain sensitization potency, in a number of pain
assays, with respect to wild type NGF (Malerba et al., 2015).
From the pharmacological point of view, hNGFp is a TrkA-biased
agonist, with a greatly reduced ability to bind and activate p75N 'R
(Cattaneo and Capsoni, 2019).

In a first study, hNGFp was used to treat AD11 and APPxPS1
mice (Capsoni et al, 2012). We showed that the intranasal
delivery was able to improve memory in both transgenic models,
as assessed by novel object recognition and in Morris water
maze tests. Moreover, in both mouse models AP deposition
was lowered in both transgenic mice. In AD11 mice, also tau
hyperphosphorylation and cholinergic deficit were decreased.

A second paper in which the treatment was performed
in 5xFAD mice allowed us to uncover the neuroprotective
mechanisms through which hNGFp acts to reduce the
neurodegeneration and to compare the effectiveness of intranasal
delivery vs. a local delivery to cholinergic neurons, mimicking
the approach used in clinical trials (Capsoni et al., 2017).
First, we demonstrated that intranasal hNGFp can be detected
at 6 and 24 h after the administration in the hippocampus
and cerebral cortex, respectively, two areas highly affected
by the neurodegeneration. We found that the local delivery
of hNGFp to cholinergic neurons of the nucleus basalis was
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not decreasing the number of plaques in 5XxFAD mice, despite
the sprouting of cholinergic fibers. On the contrary, with the
intranasal delivery we obtained a reduction in the plaque load
because of a reduced pro-amyloidogenic processing of APP and
a clearance of deposited AB by microglia. Indeed, we found
that microglia are the first cellular target of hNGFp, being the
only cellular type, beside BFCNs, which express TrkA in 5xFAD
mice. Thus, mechanisms through which intranasal hNGFp
affects APP processing does not go through BFCNs but involve
a modulation of fine cytokines, including Interleukinla and
CXCL12 which we demonstrated to be upregulated in neurons
after hNGFp administration as a consequence of the blockade
of Tumor Necrosis Factor a (TNFa) by its soluble receptor
type 2 (Capsoni et al., 2017). The data on phagocytosis of
AP oligomers were confirmed in a parallel study performed
on primary microglia cells in which it was demonstrated that
NGF can increase their micropinocytosis, thus preventing the
decrease in neuronal spines and the onset of deficit in long term
potentiation (LTP) (Rizzi et al., 2018). LTP was also improved in
the entorhinal cortex of 5XFAD mice after intranasal treatment
and this correlates also with an amelioration of memory deficits
(Capsoni et al., 2017).

In conclusion, a therapeutic effect able to prevent or clear AP
deposition in the brain of the 5xFAD mouse model required a
broad hNGFp biodistribution, such that could be achieved by the
intranasal delivery of hNGFp, but not by the local delivery to the
basal forebrain. Thus, the intranasal, but not the local, delivery
of hNGFp appears to be necessary to permeate the brain with
hNGFp, reach microglia which are widely distributed in the brain
and provide neuroprotection and anti-neurodegenerative effects
(Rizzi et al., 2018).

EFFICACY OF INTRANASAL hNGFp IN
DOWN SYNDROME MICE

The fact that microglia is a target cell of NGF in the brain
(Rizzi et al., 2018) and that is a primary target of intranasal
hNGFp in the 5xFAD Alzheimer’s model (Capsoni et al., 2017)
suggests that the microglia-mediated broad neuroprotective
actions of hNGFp might be exploited in other disease states, in
addition to AD. We tested this hypothesis by investigating the
efficacy of hNGFp in a mouse model of Down Syndrome (DS).
A progressive dementia is a common age-related clinical aspect
of DS patients (Hartley et al,, 2015), the neurodegeneration
including the deposition of f amyloid, neurofibrillary tangles
and cholinergic deficit in BECNs (Hefti, 1986). Abnormal levels
of the amyloid precursor protein APP found in Ts65Dn mice
(Choi et al., 2009) lead to an impaired transport of NGF to
BFCNs (Salehi et al., 2006) and the local infusion of NGF rescues
the cholinergic deficit in these mice (Cooper et al., 2001). More
recently, an increase of the ratio between the precursor of NGE
proNGE, and mature NGE and imbalance in TrkA/p75NTR
ratio has been found in the brain and plasma from DS patients
(Tulita et al., 2014; Iulita and Cuello, 2016; Miguel et al,
2021). This imbalance is known to trigger neurodegeneration
(Capsoni and Cattaneo, 2006; Fahnestock and Shekari, 2019)

and to contribute to neuroinflammation (Capsoni et al., 2011;
Iulita et al,, 2016). Indeed, similarly to AD, an activation of
astrocytes and microglia, the main mediators of inflammation,
has been reported in DS subjects (Wilcock and Griffin, 2013).
Given these data, therapies aimed at re-establishing the correct
balance between ligands of the NGF pathway appear to have a
clear rationale (Cattaneo et al., 2008; Tulita and Cuello, 2014) also
for DS.

We therefore tested the effect of intranasally delivered
hNGFp in Ts65Dn mice at an early stage (4 months of age),
prior to overt accumulation of APP and neurodegeneration
[which in this model starts at 6 months of age (Choi et al,
2009; Figures 1K,L)]. We started by investigating whether
morphological alterations in microglia are found at this early
stage. Microglia was reported to be dystrophic in human DS
brains (Streit et al., 2009), but was never studied in TS65Dn.
By single cell morphologies from confocal images, we found
that, despite a similar number of microglial cells (Figure 1A)
in 4 months old Ts65Dn mice microglia (identified by Ibal
immunohistochemistry) is dystrophic, with a reduction in area,
volume, length and number of ramifications (Figures 1C,EH)
with respect to euploid mice (Figures 1B,E,H). The intranasal
administration of hNGFp significantly restored the morphology
of microglia (Figures 1D,G,H). This is highly relevant, since the
morphology of microglia is directly related to its functional state.

Then we measured the levels of markers of microglia
activation and cytokines. As might be expected from the fact
that we analyzed brains at an age in which Alzheimer-like
neurodegeneration had not yet started, we did not find a
differential expression among groups for CD68, TNFa, IL-18,
and INFy (Figures 1LJ). On the contrary, we found that hANGFp
increased the expression of IL-10 while decreasing IL-6 levels
(Figures 1L]J). We found that IL-la, which we know to be
decreased in Alzheimer mouse models after hNGFp treatment
(Capsoni et al., 2017), was decreased. IL-la is produced as
a precursor, prolL-la, which is cleaved to an active, lower
molecular weight molecule by calpain (Kobayashi et al., 1990;
Carruth et al.,, 1991). We observed a reduction of prolL-la in
the brain extracts from Ts65Dn mice treated with hNGFp with
respect to PBS-treated mice, although not statistically significant
(Figures 1K,L, P > 0.05). On the contrary, a significant reduction
of mature IL-lo (Figures 1K,L) was observed after hNGFp
treatment, similarly to previous findings in hNGFp-treated
5xFAD mice (Capsoni et al., 2017).

Concerning astrocytes, we found no difference in their
density among the treatment groups(Figure 2A). In PBS-
treated 4 months old Ts65DN mice we found a significant
reduction in volume, surface area, length and number of
ramifications (Figures 2C,EH) with respect to euploid mice
(Figures 2B,E,H) in the hippocampus. These changes resemble
the asthenic phenotype which precedes the astrogliosis observed
in mouse models of AD and in early human AD (Verkhratsky
et al., 2015). The intranasal delivery of hNGFp restores the
characteristic shape of astrocytes in the brain of control
mice, by increasing all parameters taken into consideration
(Figures 2D,G,H). The characteristic shape of astrocytes is
determined also by the expression the cytoskeletal protein GFAP.
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FIGURE 1 | Intranasal hNGFp ameliorates microglial dystrophic morphology and reduces IL-1a levels in Ts65Dn mice. (A) Density of microglia cells in euploid,
Ts65Dn mice treated with PBS or hNGFp. Immunohistochemistry for IBA-1 in cerebral cortex revealed morphological changes in panel (C) Ts65DN microglia with
respect to panel (B) euploid mice. (D) hNGFp treatment rescues these morphological changes. Reconstruction of microglia cells by IMARIS: (E) euploid (F) Ts65Dn
(G) NGFp-treated Ts65Dn mice. (H) Quantification of microglial morphological parameters. Bars are representative of mean + SEM. *P < 0.001 vs. euploid mice,
#P < 0.001 vs. Ts65Dn mice. N = 6/group. (I) Representative western blots and (J) densitometric analysis for CD68, TNFa, IL-18, IL-10, and IL-6.

(K) Representative western blots for APP and IL-1a species. Lanes 1-2 = euploid mice; 3-5 = Ts65Dn mice treated with PBS; 6-8 = Ts65Dn mice treated with
hNGFp. (L) Densitometric analysis of APP, prolL-1a (graph on the left) and mature IL-1a (right panel) levels. Values have been normalized to GAPDH values. Bars are
representative of mean + SEM. *P < 0.001 vs. euploid mice, #P < 0.001 vs. Ts65Dn mice. N = 6/group. Scale bar = 10 pm.
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FIGURE 2 | Intranasal hNGFp rescues astrogliopathy and neurogenesis deficit in Ts65DN mice. (A) Density of astrocytes in euploid, Ts65Dn mice treated with PBS
or hNGFp. Immunohistochemistry for GFAP in hippocampus revealed morphological changes in panel (C) Ts65DN astrocytes with respect to panel (B) euploid mice.
(D) hNGFp treatment rescues these morphological changes. Reconstruction of astrocytes by IMARIS: (E) euploid (F) Ts65Dn (G) NGFp-treated Ts65Dn mice.

(H) Quantification of astrocytic morphological parameters. Bars are representative of mean + SEM. *P < 0.05 vs. euploid mice, #P < 0.05 vs. Ts65Dn mice.

N = 6/group. Scale bar = 35 um. (I) Western blot for GFAP, TPS-1 and NF-M. Lanes 1-4 = euploid mice; 5-7 = Ts65Dn mice treated with PBS; 8-10 = Ts65Dn mice
treated with hNGFp. (J) Densitometric analysis of GFAP, TPS-1, and NF-M levels. Values have been normalized to GAPDH values. Adult hippocampal neurogenesis
is deficient in Ts65Dn mice compared to littermates and it is partially rescued by treatment with hNGFp. (K-M) examples from panel (K) euploid, (L) Ts65Dn, and

(M) Ts65Dn dentate gyrus. (N) Stereological quantification of BrdU-labeled cells. Bars are representative of mean + SEM. *P < 0.05 vs. euploid mice, #P < 0.05 vs.
Ts65Dn mice. Scale bar = 200 wm.

We found that, despite the reduction in volume, and consistently =~ mice compared to control mice (Figures 2LJ). This increase is
with what reported in literature for human DS (Jorgensen completely reverted by the intranasal administration of hNGFp
et al,, 1990), there is an increase of GFAP levels in Ts65Dn  (Figures 2LJ).
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In DS and in Ts65Dn mice cognitive deficits have been
associated to structural abnormalities in dendritic spines.
A critical factor for spine development is the production of
thrombospondin 1 (TPS-1) by astrocytes. Indeed, decreased
levels of TPS-1 have been found in the conditioned medium of
cultured DS astrocytes and hypothesized to contribute to the
reduced synaptogenesis (Torres et al., 2018). We found that also
in the brain of 4 months old Ts65DN mice there is a decrease in
TPS-1 protein, which was reverted to normal by the intranasal
administration of hNGFp (Figures 2L])).

Astrocytic homeostatic functions in the maintenance of
neurogenesis are impaired in DS (Sloan and Barres, 2014).
Moreover, we recently found that proNGF/NGF imbalance
determines a reduced adult neurogenesis in the hippocampus
dentate gyrus (Corvaglia et al., 2019). Also, adult neurogenesis
in the dentate gyrus of young Ts65Dn mice showed markedly
fewer BrdU-labeled cells than euploid animals (Clark et al,
2006). Based on these data, and on the fact that the intranasal
administration of hNGFp increases the production of the
chemokine CXCL12 (Capsoni et al., 2017) which is a pro-
neurogenesis factor (Li et al., 2012), we measured the number of
BrDU-immunoreactive cells in the dentate gyrus of 5 months old
TS65Dn mice. We found a dramatic reduction of neurogenesis
in the dentate gyrus of TS65Dn mice (Figures 2K-N), which
was partially but significantly recovered by intranasal hNGFp
(Figures 2K-N). Consistent with the increased neurogenesis
with hNGFp, we found that hNGFp restored the levels the
neuronal marker Neurofilament-M (Figures 2L]J), which was
decreased in Ts65Dn mice.

In conclusion, we found that hNGFp treatment rescues
astrogliosis, dystrophic microglia and neurogenesis deficits in the
brain of 4 months old TS65Dn mice.

GENERAL CONCLUSION AND NEW
PERSPECTIVES

From the data described in this perspective paper, we conclude
that the links between deficits or alterations in the NGF system
and AD go well beyond the long-established neurotrophic actions
of NGF on BFCNs. Indeed, the intranasal delivery studies allowed
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