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We present a processing-in-memory (PIM)-based hardware platform, referred to as

MONETA, for on-chip acceleration of inference and learning in hybrid convolutional

spiking neural network. MONETA uses 8T static random-access memory (SRAM)-based

PIM cores for vector matrix multiplication (VMM) augmented with spike-time-dependent-

plasticity (STDP) based weight update. The spiking neural network (SNN)-focused data

flow is presented to minimize data movement in MONETA while ensuring learning

accuracy. MONETA supports on-line and on-chip training on PIM architecture. The

STDP-trained convolutional neural network within SNN (ConvSNN) with the proposed

data flow, 4-bit input precision, and 8-bit weight precision shows only 1.63% lower

accuracy in CIFAR-10 compared to the STDP accuracy implemented by the software.

Further, the proposed architecture is used to accelerate a hybrid SNN architecture that

couples off-chip supervised (back propagation through time) and on-chip unsupervised

(STDP) training. We also evaluate the hybrid network architecture with the proposed data

flow. The accuracy of this hybrid network is 10.84% higher than STDP trained accuracy

result and 1.4% higher compared to the backpropagated training-based ConvSNN result

with the CIFAR-10 dataset. Physical design of MONETA in 65 nm complementary metal-

oxide-semiconductor (CMOS) shows 18.69 tera operation per second (TOPS)/W, 7.25

TOPS/W and 10.41 TOPS/W power efficiencies for the inference mode, learning mode,

and hybrid learning mode, respectively.

Keywords: spiking neural network (SNN), processing-in-memory (PIM), convolutional spiking neural network,

on-line learning, on-chip learning, spike-time-dependent plasticity (STDP), AI accelerator, hybrid network

1. INTRODUCTION

Spiking neural network (SNN) (Maass, 1997; Gerstner and Kistler, 2002) with
spike-time-dependent-plasticity (STDP) based unsupervised learning provides a bio-inspired
and energy-efficient alternative to deep learning (Kim et al., 2020; Panda et al., 2020). There is a
growing interest in developing specialized hardware accelerators for SNN (Akopyan et al., 2015;
Buhler et al., 2017; Davies et al., 2018; Chen et al., 2019; Park et al., 2019; Chuang et al., 2020).
However, majority of the prior accelerators focused on fully connected SNN and shallow networks.
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Deep Convolutional Neural Network (CNN) architectures
incorporated within SNN, hereafter referred to as ConvSNN,
can improve the accuracy of SNNs for complex problems (Cao
et al., 2015; Tavanaei et al., 2016; Kheradpisheh et al., 2018;
Lee et al., 2019). As the complexity of ConvSNN increases,
deep ConvSNN requires more synaptic weights and generates
larger input/output feature maps, all of which can increase data
movement. Processing-in-memory (PIM) has emerged as a key
approach to reduce data movement and enhance the energy
efficiency of CNNs (Chi et al., 2016; Shafiee et al., 2016; Imani
et al., 2019; Long et al., 2020; Sze et al., 2020). However, to the best
of our knowledge, there has been no prior work on PIM based
accelerator for ConvSNN with on-chip learning.

This article for the first time presents a PIM, hereafter referred
to as MONETA, to accelerate ConvSNN with on-chip STDP
learning. The overall architecture of MONETA includes SRAM-
based PIM cores for computing synapse responses, all-digital
modules for computing membrane potentials of neurons, and
centrally manage but locally apply STDP-based weight update.
The SRAM-based PIM cores augment the sequential access PIM
used in DNN acceleration, such as the ones presented by Long
et al. (2020), with STDP-based weight update modules for parallel
updates of synaptic weights (Kim et al., 2020). The novelty of
MONETA lies in the optimized data flow for improving resource
efficiency while implementing inference and learning in PIM-
based ConvSNN.

In traditional CNN, the output feature map (OFM) tensor of a
layer is obtained from the total input feature map (TIFM) tensor
and filter weights (Figure 1A). In ConvSNN, we first generate

FIGURE 1 | The computational model in (A) convolutional neural network (CNN) and the (B) convolutional neural network within spiking neural network (ConvSNN).

a tensor for the membrane potential of all neurons (TVmem),
followed by output spikes (OFMs) (Figure 1B). However, as
input pixels are encoded as spike trains, multiple time steps (spike
cycles) are necessary to process one image using ConvSNN.
Hence, the TIFM for each layer must be processed multiple times
to generate the TVmem in each spike cycle, leading to a large
on-chip buffer for TVmem tensor, and significant off-chip (from
DRAM) and on-chip (from TVmem buffer) data movement.
Although, Narayanan et al. have analyzed the temporal aspects
of SNN for logic-based engines (Narayanan et al., 2020), they
did not optimize data flow simultaneously considering data
movement and learning accuracy in ConvSNN.

We propose a novel data flow for the PIM-based processing
of the TIFM. We read an input feature map (IFM) from the
TIFM tensor, process the IFM using PIM, and generate the
Vmem for output neurons. The sequential processing of an IFM
overall spike cycles eliminates repeated reading of TIFM from
DRAM and on-chip storage of TVmem. However, the sequential
processing of IFMs introduces a bias in the STDP learning as
IFMs processed earliermore strongly influence filter weights than
the ones processed later.We propose a central STDP controller to
ensure each filter is updated based on the IFM that results in the
maximum Vmem of the firing neuron, rather than the IFMs that
were processed earlier in sequence. In summary, our approach
minimizes the data movement during inference, while ensuring
the accuracy of the STDP learning process.

The accuracy of the accelerator is estimated considering
MNIST, CIFAR-10, and CIFAR-100 datasets. With CIFAR-10
dataset, the accuracy with the weights trained by the standard
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FIGURE 2 | The architecture of the CNN.

STDP model is 67.88%. When we apply our modified STDP
model, the accuracy is 66.25%, which is 1.63% lower than
standard STDP model-based result. The experiment result
demonstrates that on-chip and on-line STDP learning can be
achieved with insignificant accuracy loss. The average power
efficiencies of 18.69 TOPS/W and 7.25 TOPS/W are observed for
inference and learning, respectively.

Along with a fully-STDP trained ConvSNN, the proposed
architecture is also used to accelerate inference and on-
line learning of a hybrid ConvSNN architecture that couples
supervised (off-chip) trained and STDP (on-chip) learned layers.
Previously, the concept of hybridization combining supervised
training and STDP has been first introduced for aDNN (She et al.,
2021). After that, Chakraborty et al. has shown the same concept
of hybridization on SNN (Chakraborty et al., 2021). In this article,
we show the hardware platform to accelerate the ConvSNN using
the same concept of hybridization.

In addition to homogeneous networks, MONETA also
supports hybrid ConvSNN. Half of the layers can be on-line
trained using the STDP algorithm and the other half of the
layers are based on the externally programmed fixed weights.
These fixed weights are off-chip trained by supervised learning.
STDP uses unsupervised local learning to extract low-level
features under spatial correlation. On the other hand, surrogate-
gradient based backpropagation (BP) in ConvSNN enables global
learning between low-level pixel-to-pixel interactions (Wu et al.,
2018). It thus aids in high-level detection and classification
similar to a SGD trained CNN model. By integrating global
features using supervised training and local features using STDP
learning, the hybrid network is also much more robust to local
uncorrelated perturbations in pixels while extracting the correct
feature representation from the overall image. Consequently,
hybridization of surrogate-gradient and STDP enables robust
image classification improving the accuracy of the baseline
backpropagated ConvSNN model.

Based on the hybrid network simulation, we achieve 1.40%
higher accuracy (77.83%) in MONETA than the accuracy based
on the supervised learning (76.43%) with the CIFAR-10 dataset.
In addition, the average power efficiency for the hybrid on-line

learning mode is 10.41 TOPS/W. This power efficiency is larger
than on-line learning mode, but smaller than inference mode
because half of the layer use inference mode and the other half
of the layers use learning mode.

2. BACKGROUND

2.1. ConvSNN and Unsupervised Learning
Using STDP
The spiking CNN uses the same structure as a traditional CNN
(Figure 2). However, the input is a binary spike where the
magnitude of the input. For example, the value of an image pixel
is encoded in the frequency of the spikes. A spiking neuron
computes the membrane potential Vmem using the spike levels
multiplied by synaptic weights following the leaky integrate and
fire (LIF) dynamics (Figure 3). An output spike is generated
(neuron firing) when Vmem is higher than a threshold Vth and
resets Vmem to Vreset.

When the neuron fires (i.e., generates an output spike), the
synaptic weights connected to the spiked neuron are updated
following a stochastic STDP model (Figure 3B) (She et al.,
2019). The firing of the neuron inhibits the firing of other
neurons. There are two types of inhibitions, which are cross-
depth inhibition and lateral inhibition. Figure 4A shows the
cross-depth inhibition. In the case of the cross-depth inhibition,
the firing of a neuron inhibits the firing of all other neurons
located at the same (x, y) coordinates of all depths (across
“z”-axis) in TVmem. The cross-depth inhibition can be easily
implemented within the single PIM array and the neuron set
(Figure 4B). In the case of lateral inhibition, the firing of the
neuron inhibits all the neurons located at the same z coordinates
(Figure 4C).

2.2. CNN Mapping for PIM Architecture
Figure 1A shows the basic terminologies for the CNN
hardware (Chen et al., 2017). In the layer <n>, the size of
TIFM is IR× IC× ID, the size of the filter is FR×FC× ID, and the
size of total output feature maps (TOFM) is OR × OC × OD. The
number of filters (depth of filters) are the same as the TOFM’s
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FIGURE 3 | (A) Leaky integrate and fire (LIF) neuron computational model. (B) Stochastic spike-time-dependent-plasticity (STDP) model.

FIGURE 4 | (A) Cross-depth inhibition (B) cross-depth inhibition on the memory array (C) lateral inhibition.

FIGURE 5 | CNN mapping on the memory for processing-in-memory (PIM) architecture.

depth (OD). The IFM, whose size is FR × FC × ID, is multiplied
by each filter and generates the OFM, which size is 1× 1× 1. The
stride is called as S. Figure 5 shows the CNN mapping method

on the memory for the PIM architecture (Peng et al., 2021). Filter
weights are divided by the x and y-axis, whose size is 1 × 1 × ID
and distributed on the different memory arrays. Also, each filter
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is placed on the different columns. To calculate the OFM, IFM is
divided and sent to the memory sub-arrays. The multiplication
between the synapse matrix and input vector is computed in
each array, and outputs are summed to compute the OFM.

2.3. Prior SNN Accelerator Hardware
Various types of SNN based accelerators have been introduced
in recent years. Buhler et al. (2017) made the analog neuron-
based accelerator for the compact and energy-efficient design.
However, they use the spiking locally competitive algorithm
for an accelerator. Chen et al. (2019) showed the large-scale
neuromorphic processor with 4,096-neuron and 1M-synapse.
Their design uses binary activation, but the hardware is not
optimized for the ConvSNN (Chen et al., 2019). Park et al. (2019)
showed the ConvSNN based accelerator. However, they only
used the stochastic gradient descent algorithm for the learning
to improve the accuracy. In addition, the ConvSNN accelerator
is introduced by Chuang et al. using a 2D systolic array with
efficient data re-use, but their design does not include the on-chip
training (Chuang et al., 2020).

Our design accelerates the ConvSNN using PIM architecture
with on-chip STDP learning. The ConvSNN requires more
complicated hardware design than multilayer perceptron-based
SNN, but it has higher accuracy and lower memory usage for the
weights on the complex image datasets such as CIFAR-10. The
PIM architecture does not require the VMM calculation module,
as we calculate the VMM in the SRAM array. In this sense, the
PIM architecture can reduce the data transmission, as it does not
require transmitting the weights to another module. In addition,
the STDP learning rule benefits efficient learning for large-
scale models or on-line learning as it enables unsupervised local
learning. We propose a modified STDP algorithm to efficiently
accelerate the PIM architecture.

2.4. Hybrid Spiking Neural Network
The SNN training methodologies can be broadly classified into
three types: (1) conversion from artificial-to-spiking models
(Diehl et al., 2015; Sengupta et al., 2019), (2) surrogate gradient
descent based backpropagation with spikes (Lee et al., 2018; Wu
et al., 2018; Neftci et al., 2019), and (3) unsupervised STDP based
learning (Diehl and Cook, 2015; Srinivasan et al., 2018). Each
technique has its own set of advantages and disadvantages. ANN-
to-SNN conversion yields state-of-the-art accuracies, even for
complex datasets like ImageNet (Deng et al., 2009) and can be
used to convert complex architectures, like VGGNet (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016), RetinaNet
(Miquel et al., 2021), the latency incurred to process the rate-
coded image is very high (Pfeiffer and Pfeil, 2018; Lee et al., 2020).
Surrogate gradient-based methods address the latency concerns
but lag behind conversion in terms of accuracy for larger and
complex tasks. The unsupervised STDP training also suffers from
accuracy deficiencies. As pointed out by Panda et al. (2020),
the accuracy loss due to vanishing spike propagation and input
pixel-to-spike coding are innate properties of SNN design that
can be addressed to a certain extent, but, cannot be completely
eliminated. In order to achieve competitive accuracy as that of
an ANN, previous works have taken a hybrid approach with

a partly-artificial-and-partly-spiking neural architecture (Panda
et al., 2020; She et al., 2020). As discussed by Ledinauskas
et al. (2020), SNNs obtained by conversion must use only
rate encoding, due to which the expressive capacity might be
reduced. Another drawback of such conversion using rate-based
encoding is that one needs to use forward propagation time
steps in the order of thousands during the inference procedure
for SNN. This drawback severely limits the computation speed
and energy efficiency benefit of SNNs. Large spikes are necessary
to reduce the uncertainty of spiking frequency values. Also,
several ANN architectures are limited before conversion (e.g.,
batch normalization cannot be used) (Diehl et al., 2015; Sengupta
et al., 2019). This limits ANN performance and the upper
bound of SNN performance. Due to these limitations, we use a
surrogate gradient-based method to train SNNs directly instead
of converting ANN parameters to SNN.

Hence, following the work done by Chakraborty et al.
(2021), we use a hybrid network consisting of surrogate-
gradient based backpropagated ConvSNN modules along with
the unsupervised STDP trained ConvSNN module. Figure 6

shows the architectural block diagrams of the different types
of neural networks. Figures 6A,B show the homogeneous
network architecture that uses STDP and the backpropagation,
respectively. Figure 6C shows the hybrid network architecture
whose weights are from the different training algorithms. The
hybrid network consists of spiking layers placed in parallel to
form different spiking convolution modules. The first spiking
convolution module and half of the third spiking convolutional
module (shown in blue in Figures 6A,C) are the backpropagated
spiking modules. The second spiking convolutional module and
the other half of the third spiking convolutional module (shown
in orange in Figures 6B,C) are trained with the unsupervised
STDP algorithm. The STDP-spiking convolution module is
placed in parallel to the backpropagated module to enable
robust extraction of local and low-level features. Further, to
ensure that the low-level feature extraction also considers global
learning, which is the hallmark of gradient back-propagation,
several backpropagated ConvSNN layers of a similar size in
parallel with the STDP ConvSNN module are used. The output
feature map of the two parallel modules is maintained to
have the same height and width and concatenated along the
depth to be used as input tensor to the final ConvSNN layers.
This ConvSNN module is responsible for higher level feature
detection as well as the final classification. The main CNN
module can be designed based on existing deep learning models.
The concatenation of features from backpropagation-based
ConvSNN and STDP-based ConvSNN modules help integrate
global and local learning.

In addition, there exist other types of hybridization in the
prior works. Lee et al. (2018) show the STDP-based unsupervised
pre-training followed by supervised fine-tuning to improve the
accuracy. Other works also show ANN-SNN hybridization that
uses both ANN and SNN (Deng et al., 2020; Singh et al., 2020;
Wang et al., 2021). On the other hand, hybridization in this article
means, using only SNNwith the different types of weight training
algorithms (pre-trained backpropagation and STDP-based on-
line leaning).
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FIGURE 6 | Architectural block diagram of the (A) STDP only network (B) backpropagation only network (C) hybrid Network.

FIGURE 7 | The MONETA system architecture overview.

3. HARDWARE ARCHITECTURE

The overall MONETA architecture consists of synaptic cores,
neuron modules, and a central STDP controller (Figure 7). The
synaptic core calculates the Vmem for each filter based on the
IFMs and the weights. The synaptic array inside the synaptic
core functions as a digital PIM core and calculates the vector
matrix multiplication (VMM) of IFMs and synaptic weights.
The results generated by the synaptic array are accumulated in
the neuron module. The neuron module generates the output
spikes based on the accumulated Vmem using the LIF model. The
central STDP controller has a filter-update table and the training

control module to control the synaptic core and the STDP-based
weight update.

The STDP learning is performed using distributed weight
update modules embedded in each synaptic core and a central
STDP controller (Figure 7). The weight update module reads,
computes the update, and writes back the synaptic weights using
stochastic STDP (Kim et al., 2020). The central STDP controller
manages the filter-update table and the learning process.

There are two phases in our design, the inference phase and
weight update phase. In the inference mode, only the inference
phase exists. In the learning mode, both the inference phase
and the weight update phase exist. More precisely, during the
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FIGURE 8 | Inference approaches: (A) sequential processing of spike cycles: serially process all input feature maps (IFMs) in a total IFM (TIFM) for a given spike cycle

and generate the entire TVmem. (B) sequential processing of IFMs: an IFM is serially processed for Nspike-cycle (=
Ttotal
Tspike

) spike cycles followed by processing the next IFM.

inference phase in the learningmode, the central STDP controller
collects the data in the filter update table while other modules
do the same function with inference mode. After finishing the
inference function for the scheduled cycles, MONETA starts the
weight update phase and updates the weights.

3.1. Proposed SNN Inference Methodology
An SNN receives the input as spikes. Based on each pixel’s
brightness, the range of the spike frequency is fspike-min ∼

fspike-max. Assume, Tspike(=
1

fspike-max
) is a unit time-step, and Ttotal

is a total exposure time for an input image. Therefore, ConvSNN
(Figure 1B) receives all the IFMs, including the input image, for

Nspike-cycle(=
Ttotal
Tspike

) of spike cycles, computes the Vmem for all

neurons, i.e., entire TVmem tensor in each cycle based on the LIF
neuron policy (Figure 3A). All the Vmem values in the TVmem

tensor that are higher than the threshold generate an output spike
in the OFM.

3.1.1. Sequential Processing of Spike Cycles
Ideally, at spike cycle i, we need to generate aTVmem tensor which
is used along with the TIFM tensor to compute TVmem for cycle
i+1. Hence, in each spike cycle, wemust compute allVmem values
in the TVmem tensor by processing the all the IFMs in the TIFM
tensor (Figure 8A). As all the IFMs aremultiplied by same weight
matrix, parallel processing of all the IFMs will require duplication
of weight memory by IR

S ×
IC
S (where S is the stride), which is

infeasible to store on-chip. Hence, we must process each IFMs
serially in each accelerator clock cycle (fCLK = 1 GHz in our
design), as shown in Figure 8A). Hence, for each spike cycle, we
can serially read all IFMs, multiply each IFM to all the filters in
one accelerator clock fCLK, and serially compute all the elements
of the TVmem tensor. This is similar to operating a normal
CNN. However, in ConvSNN, we must process the same TIFM

tensor repeatedly for Nspike-cycle spike cycles in ConvSNN, such
an approach requires either reading the same data (IFMs) from
the off-chip memory repeatedly in every spike cycle resulting in a

significant (TtotalTunit
×) increase in data movement or store the TIFM

tensor on-chip requiring large buffer. Moreover, we also need a
global buffer to store the TVmem tensor generated over the entire
spike cycle. While processing spike cycle i+ 1, the global TVmem

buffer generated in the spike cycle i must be read by individual
PIM blocks to generate the TVmem tensor for the i+1 spike cycle.
We will also need a global on-chip buffer of size OR × OC × OD

to store the TVmem tensor increasing on-chip data movement
between the PIM cores.

3.1.2. Sequential Processing of IFMs
We propose to re-order the IFM processing as shown in
Figure 8B. We first read one IFM and serially compute all
Vmem values generated by that IFM over all Nspike-cycle spike
cycles. Note, all these Vmem values can now be computed in
Nspike-cycle of accelerator clock cycle. Moreover, as the IFM
remains constant, the Vmem values for successive spike cycles
can be locally accumulated within the PIM block eliminating the
need for global TVmem buffer and associated data movement.
Moreover, serial processing of all spike cycles for a given IFM
eliminates the need for repeated reading of the entire TIFM
tensor thereby reducing off-chip data movement.

3.2. Hardware Support for Inference
3.2.1. Synaptic Core
The synaptic core is used for distributed computation of Vmem

and generates the output spike. The synaptic core uses synaptic
arrays (weight storage), routers, and neuron modules for the
inference. Since the weight matrix is distributed across multiple
synaptic cores, each synaptic core has a subarray of dimension
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FIGURE 9 | The synaptic array architecture.

ID ×
OD×weight’s bit-width

# of synaptic core
, and calculates the matrix multiplication

results for OD
synaptic core # filters.

3.2.2. Synaptic Array
The synaptic array multiplies the IFMs and synaptic weights to
generate the partial sum of the VMM result. A sequential (row-
by-row) read access-based PIM design is considered for synaptic
arrays to multiply IFMs and weights. Then, the hierarchical
network-on-chip (H-NoC) router adds partial sums and sends
the VMM result to the neuron module. The synaptic array is
implemented by SRAMarray, peripherals, and drivers (Figure 9).
Synaptic weights are 8 bits and consist of 8 consecutive SRAM
cells in a row. The most left SRAM cell represents the sign bit.

The synaptic array receives the input spikes of the IFM on
the row-wise word-line (RWL) port. The input spikes are sent in
row-by-row order, so the RWL peripheral uses a counter-based
decoder to send input spikes to an 8T-SRAM array sequentially.
When the result of sense amplifier for CBL is 1, the CBL
peripheral sends the partial sum, 1, to the H-NoC router and pre-
discharges the CBL. The H-NoC connects the synaptic arrays,
accumulates the partial sums, and sends the VMM result to the
neuron module (Long et al., 2019).

3.2.3. Neuron Module
The neuron module receives the VMM result from the synaptic
arrays, calculates the Vmem, and generates the output spike.
Figure 10 shows the neuron module architecture. The neuron

module consists of OD
synapse core # neuron cells, Vmem comparator,

and synapse update selector. The neuron cell updates the Vmem

based on the LIF neuron dynamics and generates the output spike
when the Vmem over the Vth. Vmem comparator and Synapse
update selector are disabled during inference. These modules are
discussed in section 3.3

To generate the output spike, the neuron cell receives the
VMM result and updates the Vmem based on the LIF neuron
dynamics. Inside the Vmem calculation module (Figure 10),
VMM result and the current Vmem are added when the compute
enable signal is enabled. This Vmem accumulation takes ID cycles,
as the whole VMM computation requires ID cycles with row-
by-row access on synaptic array. Then, the leakage calculator
calculates the leakage based on the current Vmem and subtracts
the leakage to the result of the Vmem accumulator to generate the
updated Vmem. In the end, if the updated Vmem is larger than Vth,
the neuron cell will generate the output spike and reset Vmem as
0. Updated Vmem is stored in the Vmem register inside the neuron
cell to be used in the next time step.

3.3. Proposed PIM-Friendly STDP Learning
Methodology
We argue that the proposed approach of sequential processing
of IFMs can lead to bias in STDP learning. In ConvSNN
with cross-depth inhibition, each depth controls the weight
update for a filter tensor. Consider a neuron at location
xk, yk, zk fires, then it will inhibit the firing of all other neurons
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FIGURE 10 | The LIF Neuron Module architecture.

across the depth, i.e., all neurons at xk, yk but all locations
across the z-axis. In an ideal case, Vmem values of all the
neurons in the same depth of the TVmem tensor are calculated
simultaneously. Hence, for a given depth, the neuron with the
maximum Vmem considering the entire TIFM will fire and
control the weight update process for the associated filter.
However, when IFMs are processed sequentially, the STDP
based updates of filter weights are controlled by the order in
which IFMs are processed. For example, considering the order
shown in Figure 8B, the IFM in the earliest position (top-
left segment in the TIFM tensor) can cause firing at a given
depth change with the associated filter weights. The Vmem

computation for the later IFMs will be performed with the
already changed filter weights and hence will have less impact
on overall learning. This leads to undesired sequential bias in the
STDP learning.

We address this problem by ensuring that at a particular
depth the neuron which has the maximum Vmem considering
all IFMs control STDP-based update of the corresponding filter
weight (shown in Figure 1B). This is achieved by maintaining
a central filter-update table where for each filter we store
a running value of the maximum Vmem and corresponding
IFM number (Figure 11A). While processing the “ith” IFM
over all spike cycles, we compute Vmem, fire a neuron (as
required), reset Vmem for all other cross-depth neurons but
do not initiate weight update. Instead, we estimate the Vmem

values for all the neurons at all depths due to the “ith” IFM.
If at a given depth, the Vmem generated by “ith” IFM is higher
than the maximum Vmem value stored in the table for the
corresponding filter, we update the central table to indicate
“ith” IFM results in the maximum Vmem for this filter. The
table generation is finished after processing all the IFMs. Once
completed, we show all the IFMs one more time and update
the filter weights based on the filter-update table (Figure 11B).
The overhead is cost of processing TIFMs two times, one for
generating the filter-update table and the second for updating the
weights (Figure 3B). Therefore, our PIM-friendly STDP learning
can train the weights based on the STDP algorithm without
considerable IFM movements and the bias occurring from the
sequential IFM processing.

3.4. Hardware Support for Learning
3.4.1. Synaptic Core
In the learning mode, the synaptic core uses synaptic arrays
(weights storage), routers, neuron modules, and weight update
modules. The weight update module is power gated in the
inference mode but is used in the learning mode. Synaptic core
and neuron modules calculate the Vmem and generate the output
spike. When the output spike is generated, weights are updated
with the control from the central STDP controller.

3.4.2. Synaptic Array
The SRAM array in the synaptic arrays is implemented by an
8T-SRAM array. 8T-SRAM allows transposable read and write
thereby allowing parallelism in weight update (Seo et al., 2011;
Kim et al., 2020). Figure 9 shows the synaptic array and its
connections with other modules. The 8T-SRAM includes the
6T-SRAM, the PMOS M1, and the PMOS M2. The 6T-SRAM
stores the synapse weight, and the PMOS M1 and the PMOS M2
connect RWL, synapse weight, and column-wise bitline (CBL) for
thematrixmultiplication.When the RWL sends the spike and the
synapse weight bit is 1, CBL is charged.

During the weight update phase, the syna does the same
inference function until the neuron module generates the output
spike. When the output spike is generated, the synaptic array
receives the synapse number from the neuron module and
decodes it to generate the column-wise wordline (CWLs) to read
the SRAM data stored in the 6T-SRAM cell, included in the
8T-SRAM. Total 8 CWLs are generated sequentially for each
clock to read the 8-bit synapse weight information. The CWL is
connected to the 6T-SRAM cells’ CWL vertically and reads the
data by RBL and RBLB horizontally. The RBL peripheral reads
the synapse weight data for each clock and sends it to the weight
update module. After the weight update module calculates the
synaptic weights, RBL peripheral receives the updated synapse
weights and writes them back to the 6T-SRAM cells.

3.4.3. Neuron Module
In the learning mode, Vmem comparator and the synapse update
selector are additionally used. During the inference phase in the
learning mode, the neuron module compares the Vmem at the
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FIGURE 11 | (A) Filter-update table (B) relation between IFM number and target filter based on the filter-update table.

FIGURE 12 | (A) The weight update module architecture. (B) The spike history queue function graph. (C) The weight calculator architecture. (D) The update decision

module’s state machine for stochastic STDP.

Vmem comparator and sends the maximum Vmem and the filter
number to the central STDP controller for each IFM. In the
weight update phase, the neuron module receives the active filter
number from the central STDP controller, and only the selected
filter calculates the Vmem. The selected filter calculates the Vmem

in the neuron cell and generates the output spike when the Vmem

is over the threshold voltage. When the neuron cell generates the
output spike, the neuron cell resets the Vmem to 0 and holds the
Vmem calculation while the synapse array updates the weight. The
synapse update selector receives the output spike, generates the
synapse number, and sends this number to the synapse array.

3.4.4. Weight Update Module
Figure 12A shows the architecture of the weight update module.
The weight update module calculates the updated weights based
on the current weights and the timing information using the
stochastic STDP rule. The timing information is used to check the
probability of potentiation or depotentiation (Figure 3B). The
configuration register (configs register) stores the programmable
configurations for the timing queue control and the stochastic
STDP rule. The pseudo-random number generator (PRNG)
generates the random number (RND), which decides whether to
update or not to update weights and is implemented by linear-
feedback shift registers (LFSRs). The counter is used to push the
spike history queue.

The spike history queue receives the RWL, delivered from
the synaptic array, and stores the input spike history in the
spike history queue (Figure 12B). The T[3] is connected to the
RWL and is set to 1 when the RWL is 1. When the counter
reaches the threshold time (Tthreshold), reset the T[3] to 0 and
push the queue from T[3:1] to T[2:0]. As a result, the spike
history queue stores the input spike history, and by changing
the Tthreshold in the configs register, we can control the spike
history period.

The weight queue receives the current weight from the
synaptic array one bit per clock until it receives all 8-bit
of the synapse weight. After the weight queue receives the
current weight, the weight calculator calculates the updated
weight based on the spike history and the current weight
(Figure 12C). The weight update calculator includes the update
decision module and the weight computation module. The
update decisionmodule determines whether to update the weight
or not according to the stochastic STDP rule. When the update
(UP) signal is 1 and the T[3:0] is all 0, the weight computation
module decreases the weight. When the UP signal is 1 and the
T[3:0] has at least 1, the weight computation module increases
the weight. At the end, when the UP signal is 0, the weight
computation module does not change the weight. After the
updated weight calculation, the weight update module sends the
updated weight one bit per clock to the synaptic array.
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As shown in Figure 12D, the update decision module’s
state-machine describes the stochastic STDP. The update
decision module receives the input spike history, the RND,
and the configurations (configs). The configurations include
the potentiation thresholds (P1, P2, P3, and P4) and the
depotentiation threshold (PD). The spike history determines
which potentiation/depotentiation threshold will be used. The
UP is set to 1 when the RND is smaller than the selected
threshold.When the RND is equal to or larger than the threshold,
UP is set to 0.

3.4.5. Central STDP Controller
The central STDP controller includes SRAM which stores the
filter update table, the Vmem comparator to find the maximum
Vmem of MONETA, and the control logic to control MONETA.
The central STDP controller controls the design and determines
the weights to update during the learning mode. Figure 13 shows
the architecture of the central STDP controller.

During the inference phase in the learning mode,
MONETA fills the filter update table. To generate the data

FIGURE 13 | The central STDP controller architecture.

for the filter update table, the synaptic core receives the IFM
and calculates the membrane potential. During this process, the
neuron modules calculate the Vmem and send the maximum
Vmem and the corresponding filter number to the central STDP
controller. The central STDP controller compares the current
IFM’s maximum Vmem and the previous IFM’s Vmem which is
stored in the filter update table. If the current IFM’s maximum
Vmem is larger, the filter update table will store the current IFM
and the new maximum Vmem in the filter update table. When
the weight update phase starts, the central STDP controller
reads the IFM for the maximum Vmem from off-chip memory
for each filter. The IFM is applied to the target synaptic core
to re-compute the corresponding Vmem, generate the output
spikes, and update the weights using the weight update modules.
Once all the filters are updated for a TIFM, the filter update table
is reset.

Figure 14 indicates the data flow timing diagram of the central
STDP controller. The central STDP controller receives the mode
signal from the user to determine the mode of the synaptic core.
The central STDP controller controls the function of synaptic
cores by sending the phase andmode signals to the synaptic cores.
During the inference phase in the learning mode, the central
STDP controller receives the maximum Vmem of the synaptic
cores, filter number from the synaptic cores, and the current IFM
number from the off-chip memory to generate the filter update
table. In the weight update phase, the control logic request the
IFM number to the filter update table in the SRAM with the
request (Req) signal. The filter update table sends the updating
target IFM number to the off-chip memory and the updating
target filter number to the updating target synaptic core. The
received IFM signal transmitted from the off-chip memory is
used to determine whether the IFM is delivered from off-chip
memory during the weight update phase. This is because the
central STDP controller sends non-sequential IFM requests to
the off-chip memory, so the MONETA needs to be in the idle
state until the IFM is transmitted. The control logic also receives

FIGURE 14 | The data flow graph of the central STDP controller.
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the filter number. After that, the control logic generates the
mode signal to the target synaptic core. Only the updating target
synaptic core is enabled to update weights by mode signal and
other synaptic cores are in the idle state as they do not need to
update the synapse weights. This process is continued for all the
filters in the filter update table.

3.5. Hybrid Network With Coupled
Supervised and Unsupervised Learning
As we discussed in section 2.4, hybrid networks can help us
improve the accuracy of the STDP network. Thus, in this
article, we used a hybrid supervised-unsupervised learning
methodology similar to the works done by Chakraborty et al.
(2021). Supervised learning is the surrogate gradient-based
training of the SNNs (Wu et al., 2018; Neftci et al., 2019). The
supervised learning-based weights are trained at the off-chip,
then are loaded on the synaptic array. These supervised learning-
based layers are set as the inference mode (marked blue in
Figure 6C). The unsupervised learning algorithm is our modified
STDP-based learning. These layers are set as the learning mode
and the weights are trained on-chip. Therefore, because our
design supports on-line learning, half convolutional layers have
supervised learning-based fixed weights and the other half of
convolutional layers have unsupervised on-line learning-based
flexible weights (marked orange in Figure 6C).

4. SIMULATION RESULTS

4.1. Configurations of Simulated ConvSNN
As discussed before, we use both homogeneous and hybrid
networks. Hybrid networks with supervised training can help us
improve the accuracy of the STDP network. Thus, we simulate
the hybrid supervised-unsupervised learning methodology
similar to the works done by Chakraborty et al. (2021).

Configurations: We define the type of networks to compare
our hybrid spiking neural network for image classification on the
MNIST and CIFAR-10 dataset as follows:

• Standard STDPmodel (Type 1):we use the 4-layer ConvSNN
model trained using the standard STDP model (Bi and Poo,
1998)

• PIM-friendly STDP model (Type 2): we use the 4-layer
ConvSNN model and train it using the modified STDP rule
explained in section 3.3

• Fully Backpropagated ConvSNN model (Type 3): for this
model, we use another backpropagated ConvSNN block
instead of the STDP ConvSNN block (orange block in
Figure 6). This makes the entire model to be trained with a
surrogate gradient without any unsupervised STDP block.

• Hybrid model with standard STDP model (Type 4): for this
model, we use the hybrid network as shown in Figure 6C.
However, we use the standard STDP learning rule for the
STDP ConvSNN block (orange block).

• Hybrid model with PIM-friendly STDP model (Type 5):

this is the proposed model using hybridization of STDP-
based ConvSNN and backpropagated-based ConvSNN blocks.

The STDP learning rule used to train the STDP block is the
modified STDP rule as discussed in section 3.3

Types 1–3 are based on the homogeneous network architecture.
The weights of architectures in Types 1–3 are trained by single
training algorithm. Types 4-5 are based on the hybrid network
architecture we discussed in section 2.4. Half of the weights in
Types 4-5 are trained by backpropagation algorithm and the
other half of the weights are trained by different STDP algorithms
for each network type.

4.2. Hardware Architectures for Simulation
Table 1 shows the simulated ConvSNN network architecture
with four convolutional (CONV) and one fully-connected (FC)
layer. We use 8-bit precision for the weights and 4-bit precision
for the input spikes. The total on-chip memory used for synaptic
cores is determined by the filter size of the CONV4 layer in
the homogeneous network architecture. Therefore, we need two
MONETA chips for the CONV4 layer in the hybrid network. We
divide the total capacity into 8 synaptic cores where each core has
nine 128 × 128 synaptic arrays. We consider on-chip STDP is
performed using a layer-by-layer fashion because OFMs for one
layer are used to train the next layer. Note the memory capacity is
sufficient to simultaneously map CONV1, CONV2, and CONV3

on the chip during inference.We consider that the FC layer exists
off-chip and connected with MONETA.

The hardware architecture of MONETA with 8 synaptic cores
and one central STDP controller is implemented in 65 nmCMOS
(Figure 15). We used the Virtuoso for the full-custom layout
of 128 × 128 SRAM sub-arrays and Innovus for the auto place
and route (PNR) of other logic blocks. Each synapse core and
the central STDP controller have 1.394 and 0.025 mm2 areas.
The throughput and power of the design are estimated from the
layout and after parasitic extraction.

4.3. Accuracy Analysis
The ConvSNN shown in Table 1 is simulated using
ParallelSpikeSim, an open source GPU accelerated SNN
simulator (She et al., 2019). The MNIST and CIFAR-10 datasets
are used for accuracy evaluation. All synapses are designed with
8-bit weights. The unsupervised-learning based CONV layers
are trained with STDP for unsupervised clustering of inputs. The
supervised-learning based CONV layers are trained with the
BPTT algorithm. The final FC layer is trained using Stochastic
Gradient Descent (SGD) to label the clusters with appropriate
classes. Input spike frequency is converted from image pixels

intensity to the range of 10–50 Hz. We assumed Ttotal
Tunit

= 100,
i.e., each image is shown to the network for 100 time steps. Each
layer learns the entire training set for 5 epochs.

Table 2 shows the accuracies of each ConvSNN configuration.
Type 2 is based on the data flow of MONETA (Figures 8B,
11). When we compare the accuracies with CIFAR-10, the
accuracy of Type 2 shows only 1.63 (%) lower accuracy
than a fully parallel (as shown in Figure 8A) software
implementation of the network using 8-bit precision (Type 1).
As mentioned before, the fully parallel implementation incurs
Ttotal
Tunit

× (=100×) higher data movement than our design. The
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TABLE 1 | Architecture and parameters of the tested convolutional neural network within spiking neural network (ConvSNN) networks.

Layers
Homogeneous network architecture

Hybrid network architecture

BP ConvSNN block STDP ConvSNN block

FR FC FD FR FC FD FR FC FD

CONV1 3 3 64 3 3 64 3 3 64

CONV2 3 3 64 3 3 64 3 3 64

CONV3 3 3 128 3 3 128 3 3 128

CONV4 3 3 128 3 3 128 3 3 128

FC
FR FC FD FR FC FD

1 1 512 1 1 1,024

FIGURE 15 | The overview of the physical design of MONETA.

TABLE 2 | Simulated network types and the results.

Type Learning algorithm Required

parameters

(Kb)

Inference

throughput

(TOPS)

Inference

Energy

efficiency

(TOPS/W)

On-line

learning

throughput

(TOPS)

Learning

energy

efficiency

(TOPS/W)

Accuracy

(CIFAR-

100)

Accuracy

(CIFAR-10)

Accuracy

(MNIST)

1 Standard STDP

1,152 2.304

18.69

N/A N/A 54.25 67.88 90.89

2 PIM-friendly STDP 2.2 7.25 52.19 66.25 90.13

3 Backpropagation (BP) N/A N/A 62.12 76.43 92.55

4 BP + Standard STDP
2,304 4.608

N/A N/A 63.86 78.94 93.16

5 BP + PIM-friendly STDP 4.4 10.41 62.31 77.83 92.07

accuracy of the ConvSNN accelerated using MONETA (Type
2) is 10.18% lower than a spiking neural network of the
same layer configurations trained using backpropagation (Type
3). In the end, the accuracy of the hybrid network shows
improved accuracy than supervised learning. The result of
the hybrid network using backpropagated-based ConvSNN
and the PIM-friendly STDP learning (Type 5) shows 1.4%
higher accuracy than the fully backpropagated ConvSNN
model (Type 3). This accuracy from Type 5 is only 1.11%

lower than the hybrid network applying the standard STDP

model (Type 4).
We note that the accuracy of backpropagation-based trained

SNN demonstrated in this article is lower than the state-of-

the-art, for example, 99.59% accuracy was observed on MNIST

dataset (Lee et al., 2020). This is primarily because, we have
reduced the simulation time necessary for training the network
with back propagation. For example, instead of 100 epochs of

training as performed in the Lee et al. (2020) we only trained
the network for 20 epochs. Further, we did not apply pre-
processing and the fine- tuning methodologies that are normally
applied in BP SOTA, as these techniques are applied off-chip
and are not related to the PIM-based hardware implementation
of ConvSNN.

4.4. Throughput Analysis
Table 2 shows the peak throughput of MONETA estimated
as Tera Operation per Second (TOPS). The throughput for
each synaptic array is determined by the number of parallel
multiplies (# of weights stored in a row) and accumulate.
The total throughput of all synaptic arrays is given by
# of weights × # of synaptic arrays × frequency. H-NoC
sums partial outputs from synaptic arrays resulting in a
throughput of # of weights × # of synaptic array × frequency.
The neuron modules compute membrane potential
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neurons at a throughput of # of weights × frequency.
The total throughput is obtained considering the
parallel operation of all synaptic cores. Our design has
# of weights per word line = 16, # of synaptic arrays =

9, # of synaptic cores = 8, and frequency = 1GHz. Hence,
the total throughput of one MONETA chip is 2.304 TOPS
in the inference mode. On the other hand, in the case
of the on-line learning mode, the throughput is reduced
based on the time used for the training. Because the
weight update takes 17 cycles, the throughput becomes
2.304× 1

1+17×(output spike rate)
. For example, learning mode

throughput in CONV4 layer is 2.2 TOPS with an output spike
rate of 0.0028.

In MONETA, each time-step is represented as 1 clock cycle
(1 GHz), and 100 time-steps are used for each image. The total
clock cycles required to operate on one image in each layer is
100× IR

S ×
IC
S × ID (S is a stride), where ID represents a number of

rows in the synaptic array.We compute the image processing rate
(fps) of CONV1-4 is 13.02, 2.44, 9.77, and 19.53 K, respectively,
at 1 GHz.

4.5. Area and Power Analysis
The power of the MONETA design is 123.28 mW, 303.52 mW
for the inference mode and the learning mode, respectively, at 1
GHz with 1 V supply on the one chip. This power is calculated
based on CONV4 which is the maximum power of MONETA. In
addition, the power is computed consideringCONV4’s input and
output spike activity ratio (0.0092 and 0.0028). Note, CONV4

of the hybrid network requires two MONETA chips because of
its parameters, so the total power is two times the homogeneous
networks (246.56 mW and 607.04 mW for the inference mode
and the learning mode, respectively).

Figure 16A shows the power breakdown of the synaptic core’s
inference mode. The weight update module is idle during the
inference mode by clock gating. The 8T-SRAM array consumes
the 21.86 pJ for matrix multiplication calculation, 4.48 pJ for
transposable weight read, and 12.34 pJ for transposable weight
write. The SRAM-based computation naturally transforms
sparsity in neuron firing (i.e., zero values in IFM) to power saving
during inference. If an input spike is absent in a cycle, the SRAM
power for that cycle is zero as word lines are not activated.

FIGURE 16 | Power breakdown of MONETA. (A) inference mode and (B) training mode.

TABLE 3 | Comparison with other works.

Reference

This work

DAC‘20 ISSCC‘19 JSSC‘19 VLSI‘17Homogeneous Hybrid

Inference Learning Inference Learning

Technology (nm) 65 90 65 10 40

Algorithm ConvSNN ConvSNN SNN SNN SNN

On-chip

Training
Yes No Yes Yes Yes

Voltage (V) 1.0 1.0 0.8 0.9 0.9

Frequency (MHz) 1,000 100 20 506 250

Synapse Bits 8 1 7 7 4

Area (mm2) 11.155 22.23 2.07 10.08 1.72 1.31

TOPS/mm2 0.207 0.197 0.207 0.197 0.312 0.008 0.015 0.227

Power (mW) 123.28 303.52 246.56 423.83 45.71 23.6 208.3 87

TOPS/W 18.69 7.25 18.69 10.41 14.1 3.42 0.12 3.43
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Moreover, as we use single ended sensing in 8T-SRAM, there is
no bit-line discharge when the values of the corresponding bit are
“0.” Hence, the SRAM contributes very little power to the overall
operation. The power is dominated by the Vmem calculation in
the neuron module. This is because there exists an inherent
leakage component in the membrane potential computation (a+
bVmem in LIF dynamics in Figure 3) that causes the membrane
potential to reduce when there are no input spikes. Hence, the
neuron module needs to perform the leakage computation in
each clock. However, the power in the synaptic array and the H-
NoC reduces significantly due to low spiking activity (=0.0092).
Figure 16B shows the power distribution of the synaptic cores in
the training mode. It shows the much higher power consumption
compared to the inference mode, mainly because of the complex
weight update module (Kim et al., 2020).

The central STDP controller consists of 32 × 128 SRAM,
the control logic, and the Vmem Comparator. The read energy
is 1.14 pJ, and the write energy is 3.09 pJ. The bus-width is 32
bits. It also operates at 1 GHz by following the Synapse Core’s
clock frequency. Overall, the central STDP controller has a much
smaller area (0.025mm2) and power (0.141mWduring inference
and 0.154 mW during learning).

4.6. Comparison With Prior Works
Table 3 shows the comparison of MONETA with a set of recent
SNN accelerators (Buhler et al., 2017; Chen et al., 2019; Park et al.,
2019; Chuang et al., 2020). Note that all designs use different
SNN architectures for evaluation, and most of the prior designs
considered MNIST as the dataset while our work is evaluated on
MNIST CIFAR-10 and CIFAR-100. Our design supports STDP
learning (fully for the homogeneous network and partially for the
hybrid network) and inference.

Our throughput is higher than prior works mainly due
to highly parallel in-memory computation, as well as higher
frequency (1 GHz) of operation. The PIM architecture eliminates
the arithmetic computation units used in prior designs leading
to a much higher operating speed at similar voltage. Thanks to
the PIM architecture, MONETA shows higher compute density
(TOPS/mm2) compared to the prior works using similar bit-
precision. We observe similar area efficiency compared to 4-bit
precision-based SNN in 40 nm CMOS, even though our design
is realized in 65 nm CMOS. However, compared to the binary
SNN design we observe 33% lower area efficiency (note, the

binary SNN was implemented in 90 nm CMOS). Further, we
observe a higher power efficiency compared to other designs
during inference and learning. This is mainly because the PIM-
based operation naturally translates the sparsity in neuron firing
to power reduction as discussed before.

5. CONCLUSION

This article presents a PIM-based hybrid ConvSNN acceleration
platform with an on-chip STDP based weight update. We
present an optimized data flow for sequential processing of
input feature maps to reduce off-chip data movement while
ensuring learning accuracy of the STDP process. The algorithmic
simulations show comparable accuracy for MNIST and CIFAR-
10 dataset to a pure software implementation. We also show
the hybrid architecture and the opportunity of the supervised-
unsupervised flexible weight architecture with on-line learning.
The power and throughput analysis using 65 nm CMOS
physical design show high throughput and energy efficiency.
The programming model and compiler infrastructure necessary
to map an arbitrary ConvSNN in MONETA is important
future work.
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