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Hearing-aid (HA) prescription rules (such as NAL-NL2, DSL-v5, and CAM2) are used by

HA audiologists to define initial HA settings (e.g., insertion gains, IGs) for patients. This

initial fitting is later individually adjusted for each patient to improve clinical outcomes

in terms of speech intelligibility and listening comfort. During this fine-tuning stage,

speech-intelligibility tests are often carried out with the patient to assess the benefits

associated with different HA settings. As these tests tend to be time-consuming and

performance on them depends on the patient’s level of fatigue and familiarity with the

test material, only a limited number of HA settings can be explored. Consequently, it

is likely that a suboptimal fitting is used for the patient. Recent studies have shown

that automatic speech recognition (ASR) can be used to predict the effects of IGs on

speech intelligibility for patients with age-related hearing loss (ARHL). The aim of the

present study was to extend this approach by optimizing, in addition to IGs, compression

thresholds (CTs). However, increasing the number of parameters to be fitted increases

exponentially the number of configurations to be assessed. To limit the number of HA

settings to be tested, three random-search (RS) genetic algorithms were used. The

resulting new HA fitting method, combining ASR and RS, is referred to as “objective

prescription rule based on ASR and random search" (OPRA-RS). Optimal HA settings

were computed for 12 audiograms, representing average and individual audiometric

profiles typical for various levels of ARHL severity, and associated ASR performances

were compared to those obtained with the settings recommended by CAM2. Each

RS algorithm was run twice to assess its reliability. For all RS algorithms, ASR scores

obtained with OPRA-RS were significantly higher than those associated with CAM2.

Each RS algorithm converged on similar optimal HA settings across repetitions. However,

significant differences were observed between RS algorithms in terms of maximum ASR

performance and processing costs. These promising results open the way to the use

of ASR and RS algorithms for the fine-tuning of HAs with potential speech-intelligibility

benefits for the patient.

Keywords: random search (RS), automatic speech recognition (ASR), hearing aids (HAs), prescription rule,

age-related hearing loss (ARHL), insertion gains, compression thresholds

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.779048
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.779048&domain=pdf&date_stamp=2022-02-21
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:libio.goncalves@irit.fr
mailto:lfontan@archean.tech
https://doi.org/10.3389/fnins.2022.779048
https://www.frontiersin.org/articles/10.3389/fnins.2022.779048/full


Gonçalves Braz et al. OPRA-RS Fitting Rule

1. INTRODUCTION

The aim of hearing-aid (HA) prescription rules is to provide
an appropriate level of amplification to restore audibility to
hearing-impaired (HI) listeners while avoiding uncomfortable
loudness levels. Established prescription rules—such as NAL-
NL2 (Keidser et al., 2011), DSL-v5 (Scollie et al., 2005), and
CAM2 (initially referred to as CAMEQ2-HF and commercialized
in two software variants, CAM2A, and CAM2B; Moore et al.,
2010b)—incorporate theoretical models of speech intelligibility
and loudness perception. The amount of signal amplification
is determined by frequency-specific insertion gains (IGs). As
people with age-related hearing loss (ARHL) show a reduced
dynamic range due to the elevation of hearing thresholds
and loudness recruitment, compression of the signal amplitude
is applied. When the input level exceeds a given threshold
(referred to as the compression threshold, CT), the amount
of amplification applied by the HA decreases more or less
abruptly depending on the compression ratio (CR), defined
as the increase in input level required for a 1-dB increase in
output level. To determine IGs, in addition to the audiogram,
prescription rules additionally take into account the number
of HA channels, the maximum CR, the CTs, and the
compression speed.

Initial HA fittings based on prescription rules generally lead to
satisfactory clinical outcomes (Moore, 2008), but do not allow to
address specific needs of the individual patient (Søgaard Jensen
et al., 2019). As a consequence, audiologists often have to adjust
HA settings for a given patient over several visits. During this
fine-tuning stage, the benefits of HA settings are usually assessed
using speech intelligibility tests. Since these tests can be lengthy,
their administration may occupy a considerable part of the
consultation. Also, the patient’s performance can be affected
by fatigue and loss of motivation (Sorin and Thouin-Daniel,
1983). Finally, given that speech intelligibility is influenced by
the familiarity with the speechmaterial (Hustad and Cahill, 2003)
and that most speech intelligibility tests are composed of a fairly
small set of items, the number of HA settings that can be assessed
is limited.

In an effort to address these issues, Fontan et al. (2020b)
demonstrated that, when combined with ARHL simulation,
automatic speech recognition (ASR) can be used to assess the
speech intelligibility benefits of specific IG functions in older HI
patients listening through simulated HAs. An ASR system was
used to quantify the benefits in speech intelligibility associated
with IGs systematically varied relative to the CAM2 prescription
by 0, ±3, or ±6 dB. Single-word recordings were amplified
by an HA simulator, and then processed to simulate two of
the perceptual consequences of ARHL based on the patient’s
audiogram, namely the elevation of hearing thresholds and
loudness recruitment (Nejime and Moore, 1997). Finally, the
recordings were fed to an ASR system to compute speech-
identification scores. The IG function yielding the highest
ASR performance and CAM2 gains were implemented in a
simulated HA. Higher human speech-identification scores and
subjective ratings of speech pleasantness were observed when

speech was amplified with the ASR-based IG functions. The
method used to determine these IG functions was named
OPRA, an acronym for Objective Prescription Rule based
on ASR.

To reduce processing costs, Fontan et al. (2020b) used only
a large stepsize to vary IGs across a limited range and within
four frequency bands, while keeping compression parameters
fixed. These choices might have limited the observed amount of
benefits associated with OPRA.

The aim of the present study was to extend previous work by
using a broader range of possible gain values in five frequency
bands, and a smaller stepsize for the variation of IGs. In addition,
not only IGs, but also CTs were optimized. Given the number
of parameters and possible values, a systematic assessment of all
possible HA configurations, as done by Fontan et al. (2020b),
would have been computationally extremely costly (in the present
study, 7.77 × 1018 possible HA configurations would have to be
assessed). The solution adopted in the present study was to use a
random search (RS) approach, testing only a subset of all possible
HA configurations. RS algorithms can be applied to a wide range
of optimization problems, using different approaches, such as
tabu search, ant-colony optimization, cross-entropy, multi-start
and clustering, or genetic algorithms (for an overview, see Blum
and Roli, 2001). While these approaches differ in their search
procedure, they have in common to use probabilities for the
exploration of the search space. The basic idea of the genetic RS
algorithms used in this study is to vary randomly the value of
several variables (here, IGs and CTs), and to quantify the result of
this selection on the outcome variable (here, ASR performance).
This process is repeated for N iterations. After each iteration,
the new result is compared to the previous result. In case of
an improvement, the search range is centered around the new
configuration. From one iteration to the next, the search range
is reduced by a constant factor. This results in the RS algorithm
gradually converging on an optimal configuration. Three RS
algorithms were tested: (i) one that tuned simultaneously CTs
and IGs in all HA channels; (ii) one that tuned the CT and IGs
for each HA channel, one after the other; and (iii) one that tuned
in all HA channels first CTs, then IGs. As was done for OPRA
(Fontan et al., 2020b), the current study exclusively focused
on the optimization of speech intelligibility in quiet. It should
however later be determined if the same method can be applied
to speech in noise, and, in case of positive results, how it can
interact with the signal-processing schemes currently developed
to reduce the effects of background noise on speech intelligibility
(for example, see the current Clarity challenge; Graetzer et al.,
2021). More precisely, the current study aimed at addressing the
following questions:

(i) As already observed for OPRA, does OPRA-RS yield higher
ASR scores than CAM2?

(ii) Are there differences between the three RS algorithms in
terms of ASR scores and speed (i.e., the number of iterations
needed to reach a target ASR score)?

(iii) How reproducible are the outcomes of OPRA-RS, in terms
of ASR scores, IG functions, and CTs?
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2. MATERIALS AND METHODS

2.1. Description of the OPRA-RS
Processing Chain
Figure 1 details the different components of the processing chain
used to generate the OPRA-RS-based HA settings for a given
input audiogram.

First, the RS algorithm (implemented in Python; for a further
description, see section 2.2) randomly defines CTs for each of
the five frequency channels of the HA simulator used later in
the processing chain. The audiometric thresholds and CTs are
then inputted to the CAM2B-v2 software (Cambridge Enterprise,
2014) for the calculation of CAM2 IGs. This software also
requires information about the frequency ranges of the HA
channels (here, 0.1–0.7 kHz, 0.7–1.4 kHz, 1.4–2.8 kHz, 2.8–5.6
kHz, and 5.6—8 kHz) and the maximum CR allowed in the
HA simulator (here, 10). In the present study, CAM2B-v2 was
configured for an experienced HA user wearing a completely-in-
the-canal HA, and assuming that the reference microphone for
real-ear measurements was positioned near the tragus.

Second, IGs are defined by CAM2 for the two input levels for
speech of 65 and 85 dB SPL (referred to as IGSP65 and IGSP85,
respectively) at 11 center frequencies (0.125, 0.25, 0.5, 0.75, 1, 1.5,
2, 3, 4, 6, and 8 kHz), and fed back to the RS algorithm.

Third, the RS algorithm defines, for each of the parameters
to be tuned, the range of values to be explored. Default search
ranges were defined at the initialization of the algorithm (for
more details, see section 2.3.2). At each iteration, the algorithm
centers the ranges around the values that yield the best ASR
performance, reduces the search ranges (by a constant factor),
and assigns random values to each parameter within these ranges.
For each channel, the algorithm then calculates the CR based
on the IGSP65 and IGSP85 at the channel center frequency,
following the equation:

CR =
1input

1output
=

85− 65

85+ IGSP85− (65+ IGSP65)
(1)

Next, the algorithm checks that the CR falls within the range 1–
10 (for more details, see section 2.3.2.3). If that is not the case, the
following adjustments are applied until the CR falls within the
desired range:

• If CR < 0, IGSP85s are increased by 0.5 dB;
• If 0 ≤ CR < 1, IGSP65s are increased by 0.5 dB;
• If CR > 10, IGSP65s are decreased by 0.5 dB.

Then, the Speech Intelligibility Index (SII; American National
Standards Institute, 1997) is calculated for the input audiogram
and speech amplified according to (i) IGSP65s recommended by
CAM2 and (ii) IGSP65s modified by OPRA-RS. The difference
between the two SII values, (SIICAM2 − SIIOPRA-RS), is calculated.
Depending on the sign of the difference, the current OPRA-RS
IGs are either increased or decreased by 0.1 dB, and the difference
in SII values is re-calculated. This process is repeated until
the difference cannot be further reduced. This adjustment was
implemented as the ASR system used by OPRA-RS normalizes
the input signal, which means that its performance is not affected

by changes in overall level. Only non-linear amplification (i.e.,
amplification that modifies the shape of the speech spectrum)
impacts the ASR system’s ability to recognize spoken words. As
a consequence, using only ASR performance to guide the search
for the best HA configuration might lead to a setting that would
be inappropriate for actual patients in terms of audibility or
loudness. The systematic SII-based adjustments of OPRA-RS IGs
ensure that the audibility of the amplified speech is close to that of
speech amplified according to CAM2, which aims at maximizing
speech audibility while taking into account the overall loudness
of processed speech (Moore et al., 2010b).

Fourth, an HA simulator (described in Moore et al., 2010a)
is used to amplify 50 speech recordings of an adult male
native-French speaker according to the HA settings received
from the RS algorithm, for an input level of 65 dB SPL. Each
recording consisted of the French definite article “le" followed
by a disyllabic noun (e.g., “le parfum”—“the perfume.”) The
speechmaterial corresponded to five ten-word lists of the speech-
intelligibility test developed by Fournier (1951), and which is
commonly used in France for speech audiometry (Rembaud
et al., 2017). The HA simulator, which is implemented in
MATLAB R© (Mathworks, Natick, MA, USA), uses two dynamic
range compressors implemented in series (the second one acting
as a limiter; for more details, see Fontan et al., 2020b) in each of
the five following frequency channels: 0.1–0.7 kHz, 0.7–1.4 kHz,
1.4–2.8 kHz, 2.8–5.6 kHz, and 5.6–8 kHz.

Fifth, the HL simulator, developed by Nejime and Moore
(1997) and implemented in MATLAB R©, is used to degrade
the amplified speech material. The speech level at the output
of the HA was used as the input level for the HL simulator.
The simulator mimicks two of the perceptual consequences of
ARHL: elevation of hearing thresholds (achieved by using linear
filtering) and loudness recruitment (achieved by raising the
signal envelope to a power; Moore and Glasberg, 1993). Loss of
frequency selectivity was not simulated as it has been shown to
decrease the strength of the correlation between ASR and human
identification scores for speech in quiet (Fontan et al., 2020a).

Sixth, an ASR system is used to assess the intelligibility of the
(amplified and degraded) speechmaterial. The system is based on
the ASR engine Julius 4.4.2 (Lee and Kawahara, 2009), and uses
Gaussian Mixture Models (GMMs) and Hidden Markov Models
(HMMs). Its acoustic models were trained using the Hidden
Markov Model toolkit (HTK, version 3.4.1; Young, 1994) on the
corpora ESTER (Galliano et al., 2006) and ESTER 2 (Galliano
et al., 2009), consisting of approximately 100 h of recordings
of radio broadcast news. The language model used by the ASR
system is a finite state grammar designed to recognize the 50
noun phrases (i.e., article and noun) used in the study. Since the
same article “le" is used in all noun phrases, ASR performance
is calculated based on the recognition of final words (i.e., nouns).
For each recording, the five words with the highest log-likelihood
(a measure of the goodness-of-fit of the acoustic and language
models to the speech signal) are returned by the ASR system.
If the target word is included in the list, it is considered as
recognized by the ASR system. Based on the processing of all
recordings, two performance measures are computed: (i) the
ASR score, which corresponds to the percentage of recognized
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FIGURE 1 | Overview of the components of the OPRA-RS processing chain and associated output data. HA parameters randomized by the RS algorithm appear in

red.

words, and (ii) the average log-likelihood of all words that were
recognized by the ASR system.

In summary, the input/output function of the whole OPRA-
RS processing chain takes as its only input the audiogram. Three
outcome HA settings are eventually provided by the system: the
IGSP65s, IGSP85s, and CTs associated with the highest ASR
performance.

2.2. Description of the Random-Search
Algorithms
The present study used three genetic RS algorithms which
are based on biologically-inspired operators, such as mutations
(i.e., random variations) and selection (Goldberg, 1989). One
algorithm simultaneously tuned CTs and IGs in all HA channels.
For this algorithm, the number of possible HA configurations
is very large, and this might compromise the convergence on
optimal settings. Hence, two other algorithms were designed to
reduce the number of possible HA configurations. The second
algorithm simultaneously tuned the CT and IGs for one HA
channel at a time, from channel 1 to channel 5. The final
algorithm tuned, in all HA channels, first CTs and then IGs. Each
of the three algorithms used a total of 750 iterations to optimize
HA settings. Preliminary tests with the first algorithm showed
that this number of iterations was sufficient to achieve near-
ceiling ASR performance. The three algorithms, referred to as
GEN1, GEN2, and GEN3, are further described in the following
sections.

2.2.1. Description of GEN1
The optimization process implemented in GEN1 is shown in
Figure 2. In order to test a larger number of configurations,
GEN1 is composed of four independent search threads, run
in parallel. At initialization, each thread selects one HA
configuration by assigning random values (picked from a
uniform distribution) to all CTs and IGs. The IGs of this
random configuration are then adjusted according to the
constraints in terms of CR and SII. The configuration is sent

to the other components of the processing chain (HA and HL
simulators and ASR system in Figure 1). The ASR performance
is returned to the RS thread and used together with the associated
configuration as the baseline for the iterative search of the
optimal configuration.

At each iteration i and for each parameter P to be tuned, a
variation in the range from −1P to 1P is randomly selected and
applied to P. The value of 1P is initialized to half of the search
range and decreased after each iteration following the equation:

1Pi+1 = 1Pi −
initial 1P − stepsizeP

750
(2)

where stepsizeP corresponds to the step used to vary P (for details,
see section 2.3.2). Following this equation, the final search range
(i.e., the range explored during the 750th iteration) will equal
stepsizeP. The new configuration is then assessed. In the case
where it yields a higher ASR score than the best configuration
found so far, it becomes the new baseline for the application
of random variations. Otherwise, a rollback is applied to return
to the best configuration. In case that both configurations yield
identical ASR scores, the log-likelihoods associated with the ASR
scores are used to decide which configuration is retained. This
process is repeated for 750 iterations in each of the four threads,
and the best final configuration across threads is retained.

2.2.2. Description of GEN2
In contrast to GEN1, GEN2 tunes the CT and IGs for each HA
channel one after the other (Figure 3). For the optimization of
CT and IGs in a given channel, four threads are run in parallel.
At initialization, random values are assigned by each thread to all
parameters and, following CR and SII adjustments, the resulting
HA configuration is evaluated. Contrary to GEN1, GEN2 uses the
best configuration found across all threads as the baseline for the
next iteration.

At each iteration, the search range for each parameter is
decreased around the best value (i.e., the value yielding highest
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FIGURE 2 | Schematic representation of GEN1, which simultaneously optimizes CTs and IGs in all HA channels.

FIGURE 3 | Schematic representation of GEN2, which simultaneously optimizes the CT and IGs for one HA channel at the time, one after the other.

ASR performance) found so far. This new search range is then
[best value− 1Pi; best value+ 1Pi ] with:

1Pi = (750− i− 1)×
half-rangeP

750
(3)

with half-rangeP corresponding to the initial search range used
for the parameter P, divided by two.

Once again, random variations are applied to all parameters
within the target search ranges, and the resulting configurations
are evaluated. In the case that the configuration yielding the

highest ASR performance across all threads is better than the
best configuration found up to the current iteration, it is used
as a baseline for the next iteration. This process is repeated
sequentially for 150 iterations in each of the five channels and
the best final configuration across threads is selected.

2.2.3. Description of GEN3
Similar to GEN1, GEN3 tunes parameters in all channels
at the same time. However, GEN3 tunes CTs and IGs
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FIGURE 4 | Schematic representation of GEN3, which optimizes first CTs and then IGs in all HA channels.

sequentially (first CTs in all channels, then IGs in all channels;
see Figure 4).

Four threads are used for the search. As for the initialization of
GEN1 and GEN2, at start each thread of GEN3 assigns random
values to all parameters. After adjusting the IGs of this random
configuration according to the constraints in terms of CR and SII,
the configuration is evaluated. If it yields better ASR performance
than the best configuration found so far, then it is retained and
used by all threads as the new baseline for the search. Otherwise,
a rollback is applied. After each iteration, the search range is
reduced using the same equation than in GEN2 (see Equation
(3)). This process is repeated 250 times for the tuning of CTs, and
then 500 times for the tuning of IGs.

2.3. Experiment Protocol
2.3.1. Input Audiograms
Figure 5 shows the four mean and eight individual audiograms
that were used in the study. The mean audiograms correspond to
the audiometric data reported by Humes (2021) for levels 4 to 7
of theWisconsin Age-Related Hearing Impairment Classification
Scale (WARHICS; Cruickshanks et al., 2020). As Humes (2021)
did not report all hearing thresholds required for the HA and
HL simulations, the missing values at frequencies of 0.125, 0.25,
0.75, and 1.5 kHz were intra- or extrapolated using 3rd-order
least-squares polynomial fits.

The eight individual audiograms were selected based on
them complying with the maximum frequency-specific threshold
values defined by the WARHICS scale for levels 4 to 7. Two

audiograms were selected for each of the four WARHICS levels.
The individual audiograms came from eight older patients
diagnosed with sensorineural HL (mean age: 70 years; age
range: 63–78 years). Audiograms corresponding to different
levels of HL severity were used in order to verify that OPRA-
RS works for a wide range of HLs. Indeed, Fontan et al., 2020a
observed that ASR performance is reduced for simulated severe-
to-profound HLs. This might impact the search for the optimal
HA configuration.

As can be observed in Figure 5, the mean audiograms
show monotonic decline with increasing frequency, as is
typical of ARHL. The individual audiograms follow the same
general tendency, but are more erratic, which could impact the
performance and outcome of the RS. The pure-tone average
(PTA) of all individual audiograms bar one is identical to, or
higher than the mean audiogram corresponding to the same
WARHICS level.

2.3.2. Random-Search Ranges and Variation

Stepsizes

2.3.2.1. Compression Thresholds
For the variation of CTs, 1-dB steps were used, and the lower
and upper limits of the search range were 20 and 50 dB SPL,
respectively. These choices were based on values used in previous
studies implementing HA settings recommended by CAM2 in
the same HA simulator as used here (Moore et al., 2010a, 2011;
Moore and Sek, 2016).
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FIGURE 5 | Individual and mean audiograms for different WARHICS levels used as input to the OPRA-RS processing chain (left panel). Pure-tone average (PTA) for

frequencies between 0.5 to 4 kHz are shown for each audiogram in the right panel.

2.3.2.2. Insertion Gains
A step size of 0.1 dB was used to vary IGs. The lower and
upper limits for OPRA-RS IGs were set to ±10 dB relative to
the IGs prescribed by CAM2. This choice was based on previous
studies that compared initial prescriptions to final HA settings
(i.e., after fine-tuning based on self-adjusted user preferences).
Søgaard Jensen et al. (2019) reported that IGs after fine-tuning
differed from initially applied IGs by±9.6 dB. Similar differences
(of±10 dB) were observed by Boothroyd and Mackersie (2017).

2.3.2.3. Compression Speed and Maximum Compression

Ratio
For people with severe HLs, it may be theoretically useful to
use high CRs (> 3) to restore audibility at a comfortable
level (Moore, 2008; Moore and Sek, 2016). In the case of fast
compression, such high CRs can lead to a loss of intelligibility
due to distortions of the signal envelope (Verschuure et al., 1996;
Souza, 2002). As this study included audiograms corresponding
tomild-to-moderately-severe HLs, only slow compression speeds
were used, with CRs allowed to vary from 1 to 10, as done by
Moore and Sek (2016). More precisely, for the tuning of CTs and
IGs, attack times (ATs) were set to 200, 100, 100, 100, and 100 ms,
and release times (RTs) to 2000, 1500, 1200, 1000, and 1000 ms,
for HA channels 1 to 5, respectively.

2.3.3. Procedure
TheOPRA-RS processing chain was run on the OSIRIM platform
(http://osirim.irit.fr/site/en), a cluster of 928 central processing
units and 28 graphical processing units. Six Intel R© Xeon R© Gold
6136 processors were used for the computation of OPRA-RS
settings. Each RS algorithm was run twice to optimize CTs and
IGs for each of the 12 input audiograms. A single run of any of
the algorithms required an average processing time of 38 h.

2.3.4. Statistical Analyses
The significance of overall differences in data distribution were
investigated through linear mixed models, followed by paired
comparisons. T-tests were used, except when the assumptions
for parametric tests were not met, in which case Wilcoxon
tests were used. In case of multiple comparisons, the Holm-
Bonferroni correction was applied. To investigate the association
between PTA and ASR scores or convergence speed, Spearman
correlations were used since data were not normally distributed.
Data from the two repetitions of the RS algorithms were used
to assess the reproducibility of OPRA-RS outcomes; for all
other analyses, only data from the first repetition were used.
Only IGs specified for a 65-dB-SPL speech input level were
used, as this was the level set in the HA simulator. For these
analyses R (R Core Team, 2021), with lmerTest and emmeans
packages, and SPSS Statistics version 23 (IBM, Chicago, IL),
were used.

3. RESULTS

3.1. Comparison of OPRA-RS and CAM2
To compare the ASR scores associated with OPRA-RS and
CAM2, the optimal CTs selected by OPRA-RS algorithms were
inputted to CAM2Bv2, as this software does not provide CTs.
Figure 6 shows the distribution of ASR scores for the 12
audiograms with the IGs selected by OPRA-RS or recommended
by CAM2. In all conditions, OPRA-RS prescriptions yielded ASR
scores in excess of 90%, with median values of 98% for GEN1 and
96% for GEN2 and GEN3. By comparison, ASR scores associated
with CAM2 prescriptions are more broadly distributed, and their
median values are lower (88% for GEN1, 86% for GEN2, and 94%
for GEN3). Wilcoxon signed-rank tests show that the differences
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FIGURE 6 | Distribution of ASR scores based on IGs selected by OPRA-RS or recommended by CAM2, for each of the three RS algorithms. The horizontal lines

inside the boxes represent median ASR scores. Whiskers and horizontal limits of the boxes represent, from bottom to top, the 0, 25th, 75th, and 100th percentiles. In

the case of OPRA-RS, the medians and 75th percentiles overlap.

between ASR scores obtained with the two prescription rules
(10 percentage points for GEN1 and GEN2, and 2 percentage
points for GEN3) are statistically significant (for GEN1: Z =

3.07; p = 0.002; for GEN2: Z = 3.06; p = 0.002; for GEN3:
Z = 2.54; p = 0.011).

As the same CTs were used by OPRA-RS and CAM2, the
observed differences in ASR scores are due to the IGs prescribed
by the two rules. Figure 7 shows the IG functions averaged across
audiograms, for OPRA-RS and CAM2, as a function of the type
of RS algorithm. The IG functions for the two prescription rules
are very similar (mean absolute difference of 1.7 dB), except for
GEN1 for which, consistent with Fontan et al. (2020b), OPRA-RS
tended to prescribe higher IGs (average absolute difference of 6.8
dB) for the low frequencies (0.125–0.5 kHz).

3.2. Influence of RS Algorithm Type, HL
Severity, and Audiogram Type on CAM2
Differences between ASR scores associated with CAM2 can be
observed across the three RS algorithms, with ASR scores higher
for GEN3 than for GEN1 and GEN2. The statistical significance
of these differences was assessed by a linear mixedmodel with the
type of RS algorithm as a fixed effect and the input audiogram as
a random effect. The results show that the type of RS algorithm
is highly significant (F(2, 22) = 16.7; p < 0.001). Corrected post-
hoc comparisons indicate highly significant differences between
GEN1 and GEN3 (t(22) = −5.0; p < 0.001), as well as between
GEN2 and GEN3 (t(22) = −5.1; p < 0.001). The difference
between GEN1 and GEN2 is not significant (t(22) = 0.1; p =

0.915).

The lowest ASR scores are obtained for audiograms
corresponding to level 7 of the WARHICS scale (i.e., the most
severe HLs), whereas the highest ASR scores are obtained
for audiograms corresponding to WARHICS levels 4 and 5.
This suggests a negative association between HL severity and
ASR scores obtained with CAM2. To assess the statistical
significance of this relationship, Spearman’s correlation was
computed between ASR scores and the pure-tone average (PTA)
for frequencies 0.5, 0.75, 1, 1.5, 2, 3, and 4 kHz. For all three RS
algorithms, significant strong negative correlations are found (for
GEN1: ρ = −0.88; p < 0.001; for GEN2: ρ = −0.85; p < 0.001;
for GEN3: ρ = −0.82; p = 0.001).

Finally, ASR scores do not seem to be affected by the more
erratic nature of individual audiograms. The distribution of ASR
scores for mean and individual audiograms is rather similar, with
lowest and highest scores observed in both cases.

3.3. Influence of RS Algorithm Type, HL
Severity, and Audiogram Type on OPRA-RS
Only small differences are observed between ASR scores
associated with OPRA-RS across the RS algorithms. Highest
scores are found for GEN1 and only slightly lower scores were
found for GEN2 and GEN3. The statistical significance of these
differences was assessed using a linear mixed model with the
type of RS algorithm as a fixed effect and the audiogram as a
random effect. The results show that the type of RS algorithm has
a significant effect on the ASR scores (F(2, 22) = 5.6; p = 0.011).
Corrected post-hoc comparisons indicate significant differences
between GEN1 and GEN2 (t(22) = 2.8; p = 0.023) and between
GEN1 and GEN3 (t(22) = 3.0; p = 0.020). The difference
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FIGURE 7 | IG functions prescribed by OPRA-RS and CAM2, averaged across audiograms.

FIGURE 8 | Insertion gains prescribed by GEN1, GEN2, GEN3, and CAM2 using Humes (2021)’s average audiograms corresponding to WARHICS levels 4 to 7.

between GEN2 and GEN3 is not significant (t(22) = 0.3; p =

0.81).
Figure 8 shows the IGs prescribed by the three RS algorithms

for Humes (2021)’s average audiograms corresponding to
WARHICS levels 4 to 7. The largest difference observed between
the IGs selected by the three RS algorithms is 9.3 dB. IG
differences are often larger at low frequencies than at higher
frequencies (see for example the IGs selected by GEN1 and
GEN2 for the mean audiogram corresponding to WARHICS
level 4). The results show that highest gains are not systematically
prescribed by the same RS algorithm.

Spearman correlations do not indicate any association
between ASR scores and PTA: for all three RS algorithms,
correlation coefficients are weak (all ρ ≤ 0.35) and non-
significant (all p ≥ 0.28).

As for CAM2, the distribution of ASR scores suggests that
the more erratic nature of individual audiograms did not have
a negative impact on the outcomes of the RS algorithms, with
four out of the six highest ASR scores being associated with
individual audiograms. This effect cannot be explained by better
PTAs in individual audiograms, which are generally worse than
the mean audiograms reported by Humes (2021, see right panel
of Figure 5).

As ASR scores varied as a function of the input audiogram and
the RS algorithm, the highest ASR score achieved by all three
algorithms (ASRCommon) for the same audiogram was used to
compare their speed of convergence. Figure 9 shows the median
and individual number of iterations needed by each algorithm
to reach ASRCommon for each of the 12 audiograms. ASRCommon

is sometimes achieved very early during the RS: for GEN1,
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FIGURE 9 | Distribution of the number of iterations needed to reach the highest ASR score that was reached by the three RS algorithms. Otherwise as in Figure 6.

GEN2, and GEN3, the minimum number of iterations that were
needed to achieve ASRCommon are 9, 2, and 13, respectively.
GEN1 is generally faster and reaches, for ten out of the 12
audiograms, ASRCommon in less than 100 iterations. An outlier
is however observed for the mean audiogram corresponding to
WARHICS level 4, for which 504 iterations are used by GEN1.
The convergence speed for GEN2 and GEN3 is more broadly
distributed than for GEN1. A linear mixed model, with the type
of RS algorithm as a fixed effect and the audiogram as a random
effect, was used to assess the significance of these differences. The
results indicate that the type of RS algorithm has a significant
effect on convergence speed [F(2, 22) = 3.6; p = 0.043], and
corrected post-hoc tests confirm that significant differences exist
between GEN1 and GEN2 [t(22) = −2.5; p = 0.039] and
between GEN1 and GEN3 [t(22) = −2.1; p = 0.049].

To assess the existence of an association between convergence
speed and severity of HL (as measured by the PTA), Spearman
correlations were computed. For GEN1 and GEN2, this
relationship is not statistically significant (both ρ ≥ −0.16,
both p ≥ 0.63). In contrast, a significant positive correlation is
observed for GEN3 (ρ = 0.65; p = 0.022). The convergence
speed does not seem to depend on the type of audiogram, as fast
and slow convergence speeds are observed for both mean and
individual audiograms.

3.4. Reproducibility of OPRA-RS Outcomes
The reproducibility of OPRA-RS outcomes was assessed in terms
of ASR scores, as well as IGs and CTs, by comparing the outcomes
of the two repetitions for each RS algorithm. ASR scores obtained
after the second repetition of the RS algorithms (data not shown)
are again very high, with median scores equal to those obtained
during the first repetition: 98% for GEN1, and 96% for GEN2
and GEN3. Wilcoxon tests showed that there was no significant
difference between ASR scores across repetitions for any of the

TABLE 1 | Pearson correlations for IG functions yielded by the two repetitions of

each RS algorithm.

GEN1 GEN2 GEN3

rmin 0.89 0.84 0.90

rmax 0.99 0.99 0.99

rmean 0.97 0.95 0.97

For each algorithm, 12 correlations were computed (one correlation per audiogram).

Minimum (rmin), maximum (rmax ), and average (rmean) correlation coefficients are reported.

RS algorithms (for GEN1: Z = −1.3; p = 0.18; for GEN2:
Z = 0.00; p = 1; for GEN3: Z = −0.22; p = 0.83).

Table 1 shows the Pearson correlation coefficients computed
for IG functions outputted by the three RS algorithms after each
repetition. For a given RS algorithm, each repetition yielded 12
IG functions (one for each audiogram), each composed of 11
frequency-specific IGs. Twelve correlations were thus computed
for each RS algorithm, for a total of 36 correlations. Across RS
algorithms, correlation coefficients range from 0.84 to 0.99 and
are all highly significant (all p ≤ 0.002). Average correlation
coefficients are near perfect, ranging from 0.95 (GEN2) to 0.97
(GEN1 and GEN3), indicating that, for each RS algorithm, very
similar IG functions were found from one repetition to the
next. This consistency builds up gradually, with the correlation
coefficient between the best IG function selected at the same point
of the RS process for the two repetitions increasing as a function
of iteration number (see Supplementary Figure),

Figure 10 shows the IGs prescribed by the three RS algorithms
for Humes (2021)’s average audiograms corresponding to
WARHICS levels 4 and 6. Results are reported for these
audiograms as they correspond to the audiograms that,
respectively, yielded the weakest and strongest correlation
between IG functions found in each of the two repetitions.
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FIGURE 10 | IGs prescribed by OPRA-RS implementing each of the three RS algorithms (see rows) for Humes (2021)’s average audiograms corresponding to

WARHICS levels 4 and 6 (see columns).

To assess to which extent the optimal IG functions found
by each RS algorithm differ from the ones found by the other
two RS algorithms, Pearson correlations were computed between
the IG functions yielded by the different RS algorithms for each
audiogram. Twelve correlations were computed for each pair
of algorithms (i.e., one correlation per audiogram). Minimum,
maximum, and mean correlation coefficients are shown in
Table 2. All correlation coefficients are highly significant (all p ≤

0.002), and range from 0.82 to 0.99.
Figure 11 shows, for each RS algorithm, the absolute

differences in CTs between the two repetitions as a function of
HA channel. Across channels, median differences range from 2
to 12 dB, with a maximum individual difference of 27 dB.

4. DISCUSSION AND CONCLUSION

This study extends the previous work of Fontan et al. (2020b),
in which only the IGSP65s recommended by CAM2 were varied

TABLE 2 | Pearson correlation coefficients for IG functions obtained by the three

RS algorithms for the 12 audiograms.

GEN2 GEN3

GEN1 rmin = 0.82 rmin = 0.84

rmax = 0.99 rmax = 0.99

rmean = 0.95 rmean = 0.95

GEN2 rmin = 0.89

rmax = 0.99

rmean = 0.96

For each pair of algorithms, minimum (rmin), maximum (rmax ), and average (rmean)

correlation coefficients are reported.

in a very limited range of possible values and in four frequency
bands to maximize ASR scores for different audiometric profiles.
Here, the use of RS algorithms allowed to vary more parameters
(namely, IGSP65s, IGSP85s, and CTs) in more (i.e., five)
frequency bands and to use a broader range of possible IGs.
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FIGURE 11 | Absolute differences in CTs between repetitions for the three RS algorithms as a function of HA channel. Otherwise as in Figure 6.

For the three RS algorithms that were used, the ASR scores
yielded by optimized IGs were significantly higher than those
obtained with the IGs recommended by CAM2. However,
the observed differences were small, corresponding to the
recognition of one (GEN3) to five (GEN1 and GEN2) out of the
50 words used in the study. It is possible that this small effect size
is partly due to a ceiling effect. The observed benefits were indeed
larger for the most severe HLs, for which CAM2 yielded lower
ASR scores, therefore leaving more room for improvement. In
future studies, the use of a larger set of speech stimuli, as well as
of an ASR system with a larger lexicon (making the ASR system
more prone to confusions), should be explored in order to avoid
such ceiling effects.

The IGSP65s prescribed by CAM2 and OPRA-RS were very
similar, most likely due to the SII-based equalization. The fact
that, despite this similarity, OPRA-RS yielded higher ASR scores
than CAM2 might indicate that the other parameters tuned by
the RS algorithms (i.e., CTs and IGSP85s) were also determinant
for the maximization of ASR scores.

The analysis of the association between PTA and ASR
performances revealed that the ASR scores yielded by CAM2
were negatively impacted byHL severity. This might be explained
by CAM2 prescriptions not being designed to restore fully
audibility for severe cases of HL (Moore et al., 2010b). The
fact that, when using OPRA-RS IGs, very high ASR scores were
obtained even for the most severe HLs might be related to the
fact that OPRA-RS used lower CRs than those recommended
by CAM2 in such cases. An additional analysis conducted on
OPRA-RS and CAM2 IGs confirms that OPRA-RS CRs were
lower (by 1.7 points on average) than those defined by CAM2
for the audiograms corresponding to the most severe HLs used
in the study (i.e., audiograms corresponding to the WARHICS
level 7). Future research would therefore be warranted to check
if OPRA-RS IGs do improve speech intelligibility for actual
listeners with severe HLs (in which case the CRs recommended

by CAM2 might be regarded as too high) or not (in which
case one could put into question the representativeness, for
the most severe audiograms, of the ARHL simulation used
by OPRA-RS).

As, when simulating severe HLs, the ASR performance can
be very low (Fontan et al., 2020a), it was hypothesized that the
RS algorithms would need more iterations, and therefore maybe
yield lower ASR scores in such cases. The results showed that
only the convergence speed of GEN3 was affected by the severity
of the simulated HL. As GEN3 only used the IGs prescribed by
CAM2 during the first 250 iterations, it is possible that the ASR
scores yielded by GEN3 remained very low at this stage, which
would explain a slower convergence rate that with GEN1 and
GEN2. Contrary to CAM2, the ASR scores yielded by all three
RS algorithms were not affected by the HL severity.

Another hypothesis was that the convergence speed would be
slower for individual audiograms, whose shape is more erratic
than that of the mean audiograms, and that the ASR scores would
maybe be lower too for this type of audiograms. This was not the
case for any of the three RS algorithms.

GEN1 outperformed the two other RS algorithms in terms
of ASR scores and convergence speed, and thus might be the
best candidate for future investigations. It is possible that its
performances could be further improved if after each iteration the
best HA configuration identified across threads would be used as
a baseline for the next iteration by all threads, instead of using
independent threads.

Finally, the comparison of the outcomes of the RS algorithms
across repetitions showed that ASR performance and optimized
IGSP65s were reproducible. Some variability was however
observed across the IGSP65s selected by the different algorithms,
especially at lower frequencies (≤ 0.5 kHz). The fact that,
as already observed by Fontan et al. (2020b), ASR scores
were impacted by variations in low-frequency IGs, should be
interpreted with caution. Indeed, the ability of real HAs to apply
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IGs in frequencies below 0.2 kHz is very limited, even when
wearing ear molds, due to several reasons related to transducer
coupling, background noise intrusion, and resulting upward
spread of masking (Moore, 2008). It is thus possible that benefits
in ASR scores induced by higher gains in lower frequencies
would not translate into “real-life” situations. Contrary to the
IGSP65s, the CTs showed a high variability across repetitions of
the RS algorithms. This may indicate that in the present study
the ASR scores were more impacted by IGs and CRs than by
CTs, probably because a single presentation level of 65 dB SPL
was used.

Taken together, the results obtained in the present study are
encouraging and open the way to the use of ASR, combined with
RS, to assess very large numbers of possible HA configurations,
and to identify the settings yielding maximal speech intelligibility
for specific individual audiometric profiles. In the previous study
of Fontan et al. (2020b), a similar but simpler optimization
chain was used and the optimized settings (which yielded
improvements in ASR scores comparable to those yielded by
GEN1 and GEN2) led to significant improvements of speech
intelligibility and perceived quality in actual older HI persons.
The improvements due to this new optimization chain, varying
more parameters using smaller setpsizes, might thus be even
higher. Moreover, as RS algorithms allow to test very large
numbers of conditions, the present study could be extended in
several regards. First, only one speech presentation level was
used here. Future research should investigate the possibility to
use OPRA-RS with speech presented at different levels (e.g.,
from 50 to 85 dB SPL); this would allow the use of OPRA-RS
in real-life scenarios. The speech material should be diversified
in order to be more representative of realistic situations (e.g.,
including speakers of different genders and ages, and different
background noises). Finally, other HA parameters such as
compression speed, that also impact speech intelligibility, could
be investigated using OPRA-RS (see for example Fontan et al.,
submitted).
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