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Automatic speech recognition (ASR), when combined with hearing-aid (HA) and
hearing-loss (HL) simulations, can predict aided speech-identification performances of
persons with age-related hearing loss. ASR can thus be used to evaluate different
HA configurations, such as combinations of insertion-gain functions and compression
thresholds, in order to optimize HA fitting for a given person. The present study
investigated whether, after fixing compression thresholds and insertion gains, a random-
search algorithm could be used to optimize time constants (i.e., attack and release
times) for 12 audiometric profiles. The insertion gains were either those recommended
by the CAM2 prescription rule or those optimized using ASR, while compression
thresholds were always optimized using ASR. For each audiometric profile, the random-
search algorithm was used to vary time constants with the aim to maximize ASR
performance. A HA simulator and a HL simulator simulator were used, respectively, to
amplify and to degrade speech stimuli according to the input audiogram. The resulting
speech signals were fed to an ASR system for recognition. For each audiogram,
1,000 iterations of the random-search algorithm were used to find the time-constant
configuration yielding the highest ASR score. To assess the reproducibility of the results,
the random search algorithm was run twice. Optimizing the time constants significantly
improved the ASR scores when CAM2 insertion gains were used, but not when
using ASR-based gains. Repeating the random search yielded similar ASR scores, but
different time-constant configurations.

Keywords: random search, automatic speech recognition, hearing aids, age-related hearing loss, compression
speed, attack time, release time

INTRODUCTION

Recent studies have shown that automatic speech recognition (ASR) can be used, in combination
with signal-processing algorithms mimicking the effects of hearing loss (HL), to predict the
speech-identification performances of older hearing-impaired (OHI) listeners [see Schädler et al.
(2015) and Fontan et al. (2020a) for a discussion of the advantages of ASR-based metrics by
comparison to other objective measures of speech intelligibility]. This was demonstrated for
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unaided (Kollmeier et al., 2016; Schädler et al., 2018; Fontan et al.,
2020a) and aided (using simulated or real hearing aids; Fontan
et al., 2020b; Schädler et al., 2020) speech perception.

Based on these findings, it has been speculated that
ASR-based prediction systems could also be used to assess
speech-intelligibility benefits resulting from various hearing-aid
(HA) configurations. Recently, Fontan et al. (2020c) used an
ASR system to evaluate and to improve the insertion gains
recommended by the CAM2 HA fitting rule (Moore et al.,
2010b). For each of their hearing-impaired (HI) participants,
625 gain functions (corresponding to systematic variations of
CAM2 gains by 0, ± 3, or ± 6 dB) were assessed. Each gain
function was applied to speech stimuli using an HA simulator.
The amplified speech material was then degraded using the HL
simulator developed by Nejime and Moore (1997). Based on each
participant’s audiogram, both the elevation of hearing thresholds
and loudness recruitment were mimicked. Spectral smearing,
which is also implemented in the original HL simulator to mimic
the loss of frequency selectivity, was not used used by Fontan
et al. (2020c), since its simulation resulted in weaker correlations
between ASR scores and human speech intelligibility (Fontan
et al., 2020a). Finally, the amplified and degraded stimuli were
fed to the ASR system for computing recognition scores. Fontan
et al. (2020c) compared the benefits associated with the insertion-
gain function yielding the highest ASR scores (the “optimized”
gains yielding a mean improvement of 13 percentage points) to
those obtained with CAM2 gains in a group of OHI participants.
Significantly higher human speech-identification scores were
observed for speech amplified with optimized gains than for
speech amplified according to the gains recommended by CAM2.
These significant improvements were observed both for word and
sentence materials.

Gonçalves Braz et al. (2022) extended this work and combined
ASR with several random-search (RS) algorithms to optimize
not only insertion gains but also compression thresholds. This
approach is referred to as OPRA-RS, which stands for “Objective
Prescription Rule based on ASR and Random Search.” Using
slow time constants for the compressor of the simulated HA,
optimized insertion gains and compression thresholds were
determined for 12 audiometric profiles corresponding to different
levels of HL severity. ASR scores yielded by the optimized
parameters were significantly higher than those obtained with
CAM2 (mean improvements ranged from 2 to 10 percentage
points for the different RS algorithms). Significant differences
were observed between RS algorithms in terms of ASR score and
convergence speed.

A limitation of Gonçalves Braz et al.’s (2022) study is that
only one set of time constants was used. However, aided speech
intelligibility depends on the attack and release times of the HA
compressor (Moore et al., 2011; Hopkins et al., 2012). Small
time constants (i.e., “fast” compression) help perceiving rapid
changes in loudness, such as those occurring when a weak speech
sound (e.g., a consonant) precedes or follows a speech sound
with higher energy (e.g., a vowel; Souza, 2002; Hopkins et al.,
2012). At the same time, when fast compression is implemented
in a multi-channel HA that processes each frequency channel
independently, it tends to reduce spectral contrasts (i.e., by

flattening the speech spectrum) and may thus have a deleterious
effect on the perception of speech formants, which are crucial
for the identification of vowels (Bor et al., 2008). By causing
rapid variations of the signal amplitude at the onset and offset of
speech sounds, fast compression speeds can also distort the signal
envelope and therefore negatively impact speech intelligibility
(Stone and Moore, 1992, 2008; Stone et al., 2009). These
distortions are more likely to happen when high compression
ratios are used (Verschuure et al., 1996). Despite their impact on
speech intelligibility, there is currently no consensus as to the best
time constants that should be used: time constants used clinically
and commercially in hearing aids vary broadly, with attack and
release times ranging from 0.5 to 2,000 ms and 10 to 5,000 ms,
respectively (Moore and Sȩk, 2016).

The present study extends the work of Gonçalves Braz et al.
(2022) by investigating whether OPRA-RS can also be used to
optimize time constants. Attack and release times were optimized
for HA configurations that corresponded to the compression
thresholds and/or the insertion gains recommended either by
OPRA-RS or by CAM2 for the same 12 audiometric profiles as
used in Gonçalves Braz et al. (2022). As these HA configurations
sometimes involved high compression ratios (>3), and that in
such cases, fast compression can distort the signal envelope
and thus affect speech intelligibility (Souza, 2002), only “slow”
compression speeds were used. To assess ASR performance,
speech stimuli were first amplified using an HA simulator and
then degraded to mimic the perceptual consequences of the
elevation of hearing thresholds and loudness recruitment. The
resulting speech signals were eventually fed to an ASR system for
recognition. The optimization of compression speed was carried
out twice in order to assess the reproducibility of the outcomes in
terms of ASR scores and optimized time constants.

METHODS

Overview of the Optimization Chain
Figure 1 describes the processing chain used to optimize time
constants for a given input audiogram. At initialization, the
RS algorithm randomly selects attack and release times within
two ranges of possible values. These time constants, as well as
the compression thresholds and the insertion gains prescribed
by OPRA-RS or CAM2 for a 65- and 85-dB-SPL speech input
level (IGSP65s and IGSP85s, respectively; see Supplementary
Datasheet for more details), are transmitted to an HA simulator.
The HA simulator amplifies 50 speech stimuli corresponding to
five 10-word lists of the speech intelligibility test of Fournier
(1951), which is the test most often used by French audiologists
for speech audiometry (Rembaud et al., 2017). The amplified
speech signals are then degraded by the HL simulator, according
to the input audiogram. The resulting speech signals are finally
processed by an ASR system developed for the French language.

A total of N iterations are used to assess N time-constant
configurations. After each iteration, the ASR score and average
log-likelihood of recognized words yielded by the current time
constants are compared to those obtained with the best time-
constant configuration found up to the current iteration. If the
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FIGURE 1 | Components of the OPRA-RS optimization chain, with associated input data (in italics) and output data (right panel). The parameters randomized by the
RS algorithm are highlighted in red.

current configuration yields a higher ASR score (or the same
ASR score but with a higher log-likelihood) than the previous
best configuration, the current configuration is used as a baseline
for the next iteration. Otherwise, the best previous configuration
serves as a baseline for the next iteration.

Based on the current number of iterations i, the search ranges
are reduced around the baseline time constants for the next
iteration, following the equation:

search range (i+1) = search range (i)−
initial search range− (2× stepsize)

N
(1)

where stepsize corresponds to the step (in ms) used to define
possible values within the search range.

Simulation of Hearing-Aid Processing
A 5-channel HA simulator implemented in MATLABTM (Moore
et al., 2010a) was used to amplify the speech signals. The
frequency ranges of the five HA channels were 0.1–0.7, 0.7–1.4,
1.4–2.8, 2.8–5.6, and 5.6–8 kHz. In each channel, the simulator
used two dynamic range compressors placed in series: the wide
dynamic range compression function was applied in the first
compressor, while the second compressor was used as a limiter.
For further details about the implementation of the HA simulator,
see Fontan et al. (2020c).

Simulation of Hearing Loss
The functioning of the HL simulator, also implemented in
MATLABTM, is detailed in Nejime and Moore (1997). As done in
Gonçalves Braz et al. (2022), the simulator was used to mimic two
of the perceptual consequences of age-related HL: Based on the
input audiogram, a linear filter simulated the elevation of hearing
thresholds, while loudness recruitment was simulated by raising
the signal envelope (Moore and Glasberg, 1993).

Automatic Speech Recognition System
The ASR system used in the study consisted of Hidden Markov
Models and Gaussian Mixture Models. It was implemented using
the Julius ASR engine (Lee and Kawahara, 2009). The acoustic
models were trained on approximately 100 h of French radio
broadcast news. These speech recordings were not processed
to mimic HA amplification or HL and did not include the 50
word recordings used in the study to evaluate time constants.
The lexicon used by the ASR system only comprised the 50
target words. A more detailed description of the ASR system is
given in Gonçalves Braz et al. (2022).

Test Procedure
The processing chain was used to optimize time constants for
12 audiograms, using the compression thresholds selected by
OPRA-RS and the insertion gains prescribed either by OPRA-RS
or by CAM2. The audiograms, shown in Figure 2, represented
mean or individual audiometric thresholds falling into levels
4–7 of the Wisconsin Age-Related Hearing Impairment
Classification Scale (WARHICS; Cruickshanks et al., 2020).
The audiograms corresponded to mild-to-moderately severe
losses, with thresholds generally increasing as a function of
frequency, as is typical of age-related HL. The mean audiograms
were based on the data collected by Humes (2021). Some of the
hearing thresholds required by the HL simulator (corresponding
to the frequencies 0.125, 0.25, 0.75, and 1.5 kHz) were not
included in the mean audiograms reported by Humes (2021).
Those missing thresholds were intra- or extrapolated using
third-least-squares polynomial regressions. The individual
audiograms corresponded to older patients (mean age: 70 years;
age range: 63–78 years) with sensorineural HL. For each of the
four WARHICS levels, one mean audiogram and two individual
audiograms were used.
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FIGURE 2 | Audiograms used as an input for the simulation of hearing loss. Corresponding pure-tone averages (PTAs) for frequencies between 0.5 and 4 kHz are
shown in the right panel. Figure reproduced from Gonçalves Braz et al. (2022).

The RS algorithm that yielded the highest ASR performance
in Gonçalves Braz et al. (2022) was used in the present study.
This algorithm tunes all parameters (here, time constants) in all
HA channels simultaneously. As in Gonçalves Braz et al. (2022),
four independent RS threads were run in parallel. Each thread
consisted of 1,000 iterations, during which time constants were
randomly varied within predefined search ranges, using 10-ms
steps. At the start of the RS, the search ranges were 10–500 ms
for attack times, and 300–2,000 ms for release times. These ranges
correspond to those generally associated with a slow compression
system (Moore, 2008a,b; Moore et al., 2010a; Moore and Sȩk,
2013). For each audiogram, the final time-constant configuration
yielding the highest ASR performance across the four search
threads was selected. In what follows, unless explicitly mentioned,
only data from the first repetition of the RS algorithm are used.

RESULTS

Figure 3 compares the ASR scores achieved with default and
optimized time constants, using either the insertion gains
recommended by CAM2 (left panel) or those calculated by
OPRA-RS (right panel). The default time constants correspond
to the fixed compression speeds used by Fontan et al. (2020c)
and Gonçalves Braz et al. (2022). Those were 200, 100, 100, 100,
and 100 ms for attack times, and 2,000, 1,500, 1,200, 1,000, and
1,000 ms for release times for HA channels 1–5, respectively.

With the insertion gains recommended by CAM2, it can
be noticed that ASR scores tended to be higher after the
optimization of time constants (median ASR score: 92%) than
with default time constants (median ASR score: 88%). As
Kolmogorov-Smirnov tests indicated that the ASR scores were
not normally distributed (p ≤ 0.044 in both conditions), a
Wilcoxon signed-rank test was used to assess the significance
of the observed difference. The results show that ASR scores

are significantly higher after the optimization of time constants
(Z = 2.8; p = 0.005). In contrast with this general trend, for
two out of the 12 audiograms, all time-constant configurations
tested during the RS yielded lower ASR scores than those
obtained with the default constants. The improvements due
to the optimization of time constants seem to be larger for
the most severe HLs than for milder HLs. For example,
for audiograms corresponding to level 7 of the WARHICS
scale, the ASR score improved by 10 percentage points on
average, whereas an average improvement of 1.3 percentage
point is observed for audiograms corresponding to level 4 of
the WARHICS scale. A Spearman correlation was computed
to assess the existence of a significant association between
HL severity, represented by the pure-tone average (PTA) for
frequencies of 0.5, 0.75, 1, 1.5, 2, 3, and 4 kHz, and the
improvement in terms of ASR score due to the optimization
of time constants. The results indicate a significant positive
relationship between the two variables (ρ = 0.62; p = 0.03), that is,
the higher the PTA, the larger the benefit due to the optimization
of time constants.

Contrary to the ASR scores obtained with CAM2 gains,
no improvement was observed after the optimization of time
constants when using the gains recommended by OPRA-RS. For
six out of the 12 audiograms, all time-constant configurations
tested during the RS yielded lower ASR scores than those
obtained with default time constants.

The reproducibility of the ASR scores was assessed by
comparing the outcomes of the two repetitions of the RS
algorithm. For CAM2, the median ASR score achieved during the
second repetition of the algorithm (91%) was very close to the
score achieved during the first repetition (92%); a Wilcoxon test
revealed that no significant difference existed between the ASR
scores yielded by each of the repetitions (Z = −1.7; p = 0.10).
For OPRA-RS, all ASR scores remained equal across repetitions
of the RS algorithm.
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FIGURE 3 | ASR scores with or without optimization of time constants, using the insertion gains recommended by CAM2 (left panel) or OPRA-RS (right panel) for
the 12 audiograms. Horizontal, thick dark lines inside the boxes represent median values. The 0 and 100th percentiles are represented by the bottom and top
whiskers, while the bottom and top limits of the boxes represent the 25th and 75th percentiles.

FIGURE 4 | Distribution of the attack times (ATs) and release times (RTs) yielding the highest ASR performances when using the insertion gains recommended by
CAM2 (left panel) or OPRA-RS (right panel) for the 12 audiograms. Otherwise as Figure 3.

Figure 4 shows the distribution of attack and release
times yielding the highest ASR performances for the
12 audiograms with the insertion gains recommended
by CAM2 (left panel) or by OPRA-RS (right panel). In
the cases for which better ASR scores were achieved
with the default time constants used by Gonçalves
Braz et al. (2022), these default values were retained as
best configurations.

Median attack and release times across channels are 135
and 1,190 ms, respectively, for CAM2 gains, and 100 and
1,200 ms, respectively, for OPRA-RS gains. Contrary to attack

times, optimized release times span the entire possible range of
values. Optimized time constants seem less variable for OPRA-
RS than for CAM2. This is at least partially due to the fact that,
for OPRA-RS, a larger proportion of the optimized time constants
correspond to the default constants used by Gonçalves Braz et al.
(2022).

Finally, the time constants obtained during the two repetitions
of the RS algorithm were compared. As default time constants
corresponded to fixed values, the HA configurations for which
the best ASR scores were achieved with default time constants
were excluded from this analysis. For the remaining HA
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configurations (N = 16), the median absolute differences across
repetitions were 85 and 355 ms for attack and release times,
respectively. The minimum and maximum absolute differences
were 0 and 420 ms for attack times, and 20 and 1,640 ms
for release times.

DISCUSSION

This study provides proof of concept that RS can be used for
the optimization of HA time constants for a given audiometric
profile. This approach might prove particularly useful since there
is currently no consensus as to the time constants that should be
used to maximize speech intelligibility for a HI individual (Moore
and Sȩk, 2016). It has been shown that knowledge of the HA user’s
cognitive abilities might help to choose slow or fast compression
(Gatehouse et al., 2003; Souza and Sirow, 2014), but the results of
studies addressing the relationship between hearing abilities and
optimal time constants are heterogeneous (Hopkins et al., 2012;
Moore and Sȩk, 2016). Within this context, OPRA-RS represents
a novel approach that, given the audiometric profile of the HA
user, can be used to systematically explore a large number of time-
constant configurations and assess their impact in terms of speech
intelligibility.

ASR scores for the optimized time constants were
reproducible across repetitions of the RS algorithm, but were
associated with different combinations of time constants. This
is possibly due to an interaction between attack and release
times, as the two parameters were optimized simultaneously.
Future studies should optimize each parameter independently to
assess their reproducibility. It might also be interesting to extend
in future studies the search ranges used for attack and release
times, which were limited in the present study to values generally
associated with slow compression.

For the mild-to-moderately-severe HLs used in the this
study, the optimization of time constants yielded significant
improvements in ASR scores for CAM2, but not for OPRA-
RS. In addition, the improvements observed for CAM2 were
small (4 percentage points, corresponding to 2 out of the
50 words used in the study). These observations are likely
due to ceiling effects in the two test conditions, even before
the optimization of time constants. Indeed, it was observed
that more severe HLs, yielding the lowest ASR scores with
CAM2 and default time constants, were associated with higher
improvements after the optimization of time constants. To limit
such ceiling effects and thus to assess if clinically significant
benefits can be obtained, future studies should use more
challenging experimental conditions (e.g., speech materials that
are shorter and/or presented in noise).

Finally, it should be determined if, as shown by Fontan
et al. (2020c) for the fine-tuning of insertion gains, the benefits
observed in ASR performance due to the fine-tuning of time
constants translate into speech-intelligibility benefits for actual
listeners with age-related HL, and if these benefits are clinically
relevant. Also, in the present study, CAM2 as a baseline
prescription since it was used in the previous experiments on
ASR-based optimization of HA parameters (Fontan et al., 2020c;
Gonçalves Braz et al., 2022). It should be determined if significant
improvements are also observed for those prescription rules that
are more widely used in clinical practice, such as NAL-NL2
(Keidser et al., 2011).
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