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Decrease in cognitive function is one of the most common causes of poor life quality
and early disability in patients with Parkinson’s disease (PD). Existing methods of
treatment are aimed at both correction of motor and non-motor symptoms. Methods
of adjuvant therapy (or complementary therapy) for maintaining cognitive functions in
patients with PD are of interest. A promising subject of research in this regard is the
method of transcranial electric current stimulation (tES). Here we reviewed the current
understanding of the pathogenesis of cognitive impairment in PD and of the effects
of transcranial direct current stimulation and transcranial alternating current stimulation
on the cognitive function of patients with PD-MCI (Parkinson’s Disease–Mild Cognitive
Impairment).

Keywords: Parkinson disease (PD), mild cognitive impairment (MCI), transcranial magnetic stimulation (TMS),
transcranial alternating current stimulation (tACS), transcranial direct current stimulation (HD-tDCS)

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease of unknown etiology with a steadily
progressive course leading to severe disability (Pringsheim et al., 2014). PD affects about 1% of
the population over 60 years of age and ranks second after Alzheimer’s disease in the structure
of neurodegenerative pathologies. The most dominant in the clinical picture of PD are motor
symptoms such as tremor, rigidity, bradykinesia, and postural instability. However, non-motor
symptoms (i.e., cognitive decline, affective disorders, and sleep disturbances) have also been shown
to be one of the main causes of reduced quality of life in patients with PD (Aarsland et al., 2017).
These symptoms appear early in the disease, increase over time, and reflect the progression of
Parkinson’s disease more accurately than motor symptoms (van der Heeden et al., 2014).

Recent epidemiological and clinical studies suggest that "mild cognitive impairment" (MCI) may
be a complex typical of the early stages of PD (Manenti et al., 2016). Patients with Parkinson’s
Disease–Mild Cognitive Impairment (PD-MCI) show changes in various aspects of cognitive
activity, such as attention, visuospatial perception, executive functions, memory (Sauerbier et al.,
2016), but in most cases these factors do not significantly affect the daily activities of patients.
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MCI is present in approximately 25% of cases of idiopathic
parkinsonism and is a risk factor for dementia.

Nevertheless, all existing methods of PD treatment
(dopaminergic replacement therapy, deep brain stimulation)
are mainly aimed at correcting motor symptoms and practically
do not affect the severity of non-motor symptoms. Thus, it is
necessary to develop and implement adjuvant therapy aimed at
maintaining cognitive functions in patients with PD.

Over the past two decades, it has been shown that
transcranial current stimulation (tCS) of the brain (TTS)
has a positive effect on cognitive activity in healthy people,
as well as a therapeutic effect in mental (depression,
schizophrenia) and neurodegenerative (Alzheimer’s and
Parkinson’s) disorders (Kuo et al., 2014). tCS is a non-
invasive, potentially portable, proven method of brain
stimulation with minimal risk of side effects. This allows us
to consider TCS as one of the methods of adjuvant therapy,
which can theoretically be used to control mild cognitive
impairment in PD.

There are a number of successful studies showing a
positive effect of transcranial direct current stimulation (tDCS)
on the cognitive functions of patients with PD, both in
single (Boggio et al., 2006) and multi-session interventions
(Manenti et al., 2016).

Transcranial alternating current stimulation (tACS) is a
relatively new neuromodulation technology aimed at changing
the functional activity of specialized brain networks using
modulation through the mechanism of involving endogenous
brain oscillations with an externally set frequency generated in
the EEG ranges (from 0.1 to 100 Hz) (Helfrich et al., 2016).
Thus, tACS modulates the natural oscillatory activity of the cortex
(Schutter, 2014).

One target for tACS that is of interest for research in patients
with MCI is the mean frontal theta rhythm (FMT): its amplitude
is thought to be positively correlated with cognitive areas such as
executive functions and working memory (Cavanagh and Frank,
2014). Moreover, studies in patients with Parkinson’s disease have
shown a decrease in FMT amplitude due to deterioration in
cognitive control functions (Singh et al., 2018).

Thus, one of the causes of cognitive impairment in PD is a
decrease in the activation of neurons in the prefrontal cortex
due to a decrease in dopamine concentration (Kehagia et al.,
2013). On the other hand, it is believed that a positive effect
from the use of TCS techniques is achieved by modulating
neuroplasticity processes (Zimerman and Hummel, 2010). In
addition, transcranial electrical stimulation has been shown
to have neuroprotective properties, reducing the severity of
oxidative stress in dopaminergic neurons (Lu et al., 2015).

Significant progress in the methods of transcranial
magnetic stimulation should be noted; new stimulation
protocols are being developed to increase its effectiveness.
Of particular interest are Theta-burst stimulation (iTBS),
transcranial random noise stimulation (tRNS) (Monastero
et al., 2020) and amplitude modulated transcranial
alternating current stimulation (AM-tACS) in the treatment
of Parkinson’s disease. however, they require a separate
systematic review.

As part of the review, we are investigating two methods of
transcranial stimulation: AC and DC stimulation.

PATHOGENESIS OF COGNITIVE
IMPAIRMENT IN PARKINSON’S DISEASE

Cognitive impairment is one of the most common non-motor
manifestations of Parkinson’s disease (Draoui et al., 2020): as
a rule, it is already present at the time of diagnosis, and the
total prevalence of PD-associated dementia reaches 75–90%
with a disease duration of more than 10 years (Aarsland and
Kurz, 2010). Cognitive impairment negatively affects the daily
activity of PD patients (Rosenthal et al., 2010) and increases
the mortality rate and the risk of developing other diseases
(Levy et al., 2002).

The pathophysiological mechanisms underlying the PD-
associated dementia have not been sufficiently studied
to date. As a rule, cognitive deficiency in PD is usually
associated with neurochemical shifts in the work of
dopaminergic, cholinergic and other mediator systems of
the central nervous system. Lewy bodies in the neurons
of the brain’s limbic system, amyloid plaques, as well
as cerebrovascular changes (Gratwicke et al., 2015;
Hanagasi et al., 2017) act as a neuropathological substrate
during these shifts.

The clinical cognitive profile of patients with PD-associated
dementia reflects the damage to the subcortical structures
and dysregulation in the “cortex – basal ganglia – thalamus”
system. Degeneration of the main dopaminergic cortical
terminals leads to dopaminergic deficiency and disruption
of the normal functioning of neuronal ensembles in the
corresponding parts of the cerebral cortex (Figures 1A,B).
In this regard, with mild cognitive impairment primarily
noted changes are in the executive functions (Gratwicke
et al., 2015), and domains such as declarative memory,
language and praxis, on the contrary, remain intact
for a long time.

Executive functions are such cognitive abilities as
decision making, planning, behavior in a paradigm shift
and inhibition of the response to the stimulus (Dirnberger
and Jahanshahi, 2013). Disruptions in the normal functioning
of the executive function domain are usually observed in
patients with Parkinson’s disease at the time of diagnosis
(Muslimovic et al., 2005), and such disorders can be part of
the prodromal period (Goldman, 2014). Changes progress
along with the disease (Christopher et al., 2014), and
symptoms such as decreased attention span, forgetfulness,
and loss of planning and organization skills gradually increase
(Bronnick et al., 2006).

It is known that prefrontal cortex (PFC) is associated
with executive functions. This area of the brain actively
interacts with the structures of the striatum through the
dopamine-dependent corticostriate neuronal pathway
(Middleton and Strick, 2000), as well as with the ventral
tegmental area (VTA) of the midbrain via the mesocortical
pathway (Fuster, 2015). The work of both pathways is
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FIGURE 1 | Interaction between the structures of the central nervous system: (A) at normal; (B) with Parkinson’s disease; (C) in the pathogenetic therapy of
Parkinson’s disease using tDCS.

disrupted in Parkinson’s disease due to degeneration of
dopaminergic neurons of the substantia nigra and VTA
with failures in the modulation of neuronal ensembles and
the equilibrium between direct and indirect loops (Draoui
et al., 2020). Thus, cognitive deficits in Parkinson’s disease
can be explained by a decrease in neuronal activation in the
prefrontal cortex due to a decrease in dopamine concentration
(Kehagia et al., 2013).

However, in addition to the classic executive function
dysfunction syndrome, the clinical phenotype of PD-associated
dementia also includes memory, attention, and visual-spatial
perception impairments (Pagonabarraga and Kulisevsky, 2012;
Kehagia et al., 2013), cognitive fluctuations, and sometimes
visual hallucinations (Emre, 2003). Thus, disorders in the
cholinergic system contribute to the formation of cognitive
deficit in PD due to degeneration of the Meinert basal nucleus,
a decrease in cholinergic transmission in the cerebral cortex,
which leads to a decrease in attention and learning functions
(Gratwicke et al., 2015). “Dual syndrome hypothesis” (Kehagia
et al., 2013) refers to the presence of two different types of
cognitive impairment in PD. The first type is a fronto-striatal
deficit of attention and/or executive functions, that presents
mild cognitive impairment (MCI) in the form of an executive
and working memory deficit, and is caused by a deficiency
of the catecholaminergic system. The second type of cognitive
impairment presents itself in the form of visual-spatial perception
impairments, and is associated with a higher risk of developing
dementia with a characteristic pattern of cognitive decline,
agnosia, apraxia, and aphasia.

Based on the entire spectrum of clinical manifestations,
criteria for diagnosing PD-associated dementia were developed
(Emre et al., 2007), according to which diagnosis must be made
based on changes in at least two cognitive domains (attention,
executive functions, visual and spatial functions or memory) and

at least one symptom of a behavioral disorder (apathy, daytime
sleepiness, hallucinations, delirium, affective disturbances).

In addition to “dementia,” the term “mild cognitive
impairment,” which reflects a more subtle decrease in cognitive
function in patients compared to age-related control, and may
be a prodromal state of dementia (Baiano et al., 2020), has been
widely used in clinical practice in recent decades.

Mild cognitive impairment suggests changes in at least one
of the five cognitive domains: long-term memory, attention and
working memory, visual-spatial abilities, executive functions,
and language. In addition, mild cognitive impairment is further
devided into a mono- or multi-domain lesion MCI. MCI
diagnosis in PD is based on the MDS (Movement Disorder
Society) criteria developed in 2012 (Litvan et al., 2012).

Mild cognitive impairment is believed to be a major risk
factor for the development of PD-associated dementia (Baiano
et al., 2020). Thus, therapeutic interventions aimed at improving
cognitive function in PD-MCI patients are potentially promising.

CHANGES IN BRAIN OSCILLATORY
ACTIVITY IN PARKINSON’S
DISEASE–MILD COGNITIVE
IMPAIRMENT

Changes in the oscillatory activity of the central nervous
system in resting state in patients with Parkinson’s disease
compared to healthy controls of the same age were repeatedly
recorded (Tessitore et al., 2019). According to the latest data
(Geraedts et al., 2018), in most studies using quantitative
EEG in patients with PD, a decrease in the frequency of an
individual alpha peak, combined with an increase in power
in the delta range, was recorded in comparison with healthy
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controls. In addition, a general slowdown in the oscillatory
activity of the brain is noted in PD, which correlates with
the severity of cognitive deficit (Caviness et al., 2007, 2015).
Currently, EEG analysis using non-linear methods is gaining
momentum. There are studies on the relationship between
Parkinson’s disease and various non-linear changes in EEG
signals (Lee et al., 2021).

Earlier studies (Soikkeli et al., 1991) revealed a decrease
in the relative amplitude of alpha and beta rhythms and an
increase in the amplitude of the theta rhythm in patients with
Parkinson’s disease compared to the controls. Neufeld et al.
(1994) showed a decrease in the relative amplitude of EEG activity
in the alpha range in patients with PD-associated dementia
compared to healthy controls and patients with PD without
cognitive impairment.

However, not all studies have revealed the same patterns
of change in the power of oscillations. Tanaka et al. (2000)
and Moazami-Goudarzi et al. (2008) showed an increase in
power in all ranges in PD, while Stoffers et al. (2007) and
Stanzione et al. (2011) only observed changes in individual
ranges: increase in mean power δ, as well as a decrease in
power β1, increase in theta and power α, decrease in power
γ. Nevertheless, there seems to be a pattern that the ratio of
EEG power at high frequencies to power at low frequencies,
as well as the individual frequency of the alpha peak, correlate
with the state of the cognitive domain (Caviness et al., 2015;
Guner et al., 2017).

MIDDLE FRONTAL THETA RHYTHM
CHANGES IN PARKINSON’S
DISEASE–MILD COGNITIVE
IMPAIRMENT

It is believed that oscillations of the medial frontal cortex in
the theta range (the so-called middle frontal theta rhythm)
characterize the course of decision-making processes (van Rijn
et al., 2011). Moreover, it is one of the candidates for the
role of a biophysical substrate for cognitive control (Cavanagh
and Frank, 2014). It is believed that one of the sources of
the FMT is the anterior cingulate cortex (ACC) (Tsujimoto
et al., 2006; Womelsdorf et al., 2007). This area is related to
the processes of memory involvement, attention, learning and
decision making (Debener et al., 2005; Marco-Pallares et al.,
2008). Other sources are considered to be the middle cingulate
cortex (MCC) and the pre-supplementary motor area (preSMA),
where the FMT oscillations take part in mechanisms connected
to adaptive control in situations with an ambiguous outcome
(Cavanagh et al., 2012).

Executive functions, attention and working memory are
cognitive functions that are one way or another dependent on
FMT, and their impairment is an essential part of the clinical
symptoms of patients with PD-MCI (Gratwicke et al., 2015).

Studies on animal models showed that oscillatory activity
in the delta range at the time of performing a cognitive
task was reduced in mice with a local dopamine deficiency

in MFC (medial frontal cortex) (Parker et al., 2015). In
human studies, it was found that low-frequency EEG activity
in healthy volunteers is positively correlated with the success
of performing neuropsychological tests for executive functions
[WCST (Wisconsin Card Sorting Test), TMT (Treadmill test),
Stroop], while such differences could not be detected in patients
with Parkinson’s disease (Parker et al., 2015). Based on this, it
can be assumed that a stable supply of dopamine through the
mesocortical pathways is necessary for the normal functioning of
low-frequency oscillations at the level of the medial frontal cortex.

CHANGES IN RESTING STATE
FUNCTIONAL MAGNETIC RESONANCE
IMAGING FUNCTIONAL CONNECTIVITY
IN PARKINSON’S DISEASE–MILD
COGNITIVE IMPAIRMENT

To date, a large number of studies have been published on
changes in resting state functional magnetic resonance imaging
(rs-fMRI) functional connectivity between brain regions in
patients with PD and cognitive impairment. However, the
heterogeneity of existing data regarding the pattern of changes in
connectivity, as well as the relationship between the functioning
of individual cognitive domains and the level of connectivity in
their specific brain regions (Baggio et al., 2019) should be noted.

Nevertheless, in one of the first studies in this area (Tessitore
et al., 2012), a decrease in rs-fMRI functional connectivity was
recorded in the lower parietal cortex bilaterally and in the
medial temporal cortex of the right hemisphere in patients
with PD, in contrast to the control group. At the same time,
indicators of the temporal cortex connectivity correlated with the
successful performance on the memory evaluation tests, while the
connectivity indicators in the parietal cortex correlated with the
state of visual-spatial functions.

Changes in resting state rs-fMRI functional connectivity in
PD-MCI patients have been most studied within the default mode
network (DMN) (Baggio et al., 2019).

Hou et al. (2016) showed a decrease in rs-fMRI functional
connectivity within the DMN in patients with PD compared to
the control group. The level of connectivity between the anterior
temporal cortex and the middle temporal gyrus correlated with
attention and working memory functions, while the level of
connectivity between the hippocampus and the lower frontal
gyrus correlated only with the memory functions.

Lucas-Jiménez et al. (2016) showed a decrease in rs-fMRI
functional connectivity between the posterior cingulate cortex
(PCC) and the medial portions of the temporal cortex bilaterally.
The level of connectivity between PCC and the right medial
temporal cortex correlated with the state of visual and verbal
memory, while the level of connectivity between PCC and the left
medial temporal cortex correlated with visual recognition.

Baggio et al. (2015) revealed a decrease in rs-fMRI functional
connectivity between the dorsal attention network and the right
islet in patients with PD-MCI, and the changes correlated with
the state of executive functions and attention. It was also shown
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that a registered decrease in the level of connectivity is not
accompanied by structural degeneration of the brain tissue. In
general, this fact can be attributed to the hypothesis about
the role of dopamine imbalance in the anterior islet cortex in
the etiology of attention loss and executive functions in PD
(Christopher et al., 2014).

On the other hand, the same study (Baggio et al., 2015)
recorded an increase in the level of connectivity between the
nodes of the DMN and the posterior parietal cortex in patients
with PD-MCI compared to healthy controls, which correlated
with a deterioration in visual and spatial functions, as well as with
the thickness of the occipital-parietal cortex. These data confirm
the hypothesis that the deterioration of visual-spatial functions
in Parkinson’s disease is a consequence of the parieto-occipital
cortex degeneration due to sinucleinopathy, but not secondary to
dopamine deficiency (Williams-Gray et al., 2009).

Gorges et al. (2015) revealed an increase in the level of
connectivity within the main resting state networks (DMN,
frontoparietal network, attention network) in patients with
PD without cognitive impairment compared to the healthy
control group. In the PD-MCI patients, its level, on the
contrary, was reduced. This fact can be explained by the use of
compensatory mechanisms in the relatively early stages of the
development of the disease.

TRANSCRANIAL DIRECT CURRENT
STIMULATION AND TRANSCRANIAL
ALTERNATING CURRENT STIMULATION:
REVIEW OF THE METHOD AND
MECHANISMS OF ACTION

Transcranial Direct Current Stimulation
Transcranial direct current stimulation (tDCS) is a non-invasive
brain stimulation technique used to modulate the excitability of
the cortex (Ferrucci et al., 2018).

It is believed that the main effects of tDCS are achieved due to
a subthreshold shift of the resting potentials of the neuronal cell
membrane toward de- or hyperpolarization (depending on the
direction of the current relative to the orientation of the axons)
(Bindman et al., 1964).

During the tDCS procedure, a weak electric current is
applied to the scalp between two electrodes: the anode and
the cathode (Figure 2). The interaction between the current
and nerve tissue causes a shift in membrane excitability:
as a rule, nerve tissue is depolarized under the anode,
and hyperpolarized under the cathode. Thus, the therapeutic
potential of this method is based on the fact that local
displacements of excitability in various regions of the brain can
affect abnormal patterns of neuronal activity that form under
various pathological conditions, including PD (Ferrucci et al.,
2018), by starting processes that form the neuroplasticity and
compensatory mechanisms.

It is known that anodal tDCS increases the excitability of
the stimulated cortex, which is manifested in an increase in
the amplitude of the motor evoked potential (MEP), while the

cathodal tDCS, on the contrary, decreases cortical excitability
(Nitsche and Paulus, 2000). In order to cause the described
changes in excitability, stimulation lasting several seconds is
sufficient (Nitsche and Paulus, 2000). An increase in stimulation
time (several minutes) increases the persistence of changes that
can last for more than 1 h (Nitsche and Paulus, 2001; Nitsche
et al., 2003; Priori, 2003).

The mechanisms of action of tDCS (including therapeutic
tDCS) have not yet been fully understood. Nevertheless, there
are several hypotheses that explain the effect. For example, the
use of NMDA receptor antagonists reduced the duration of
stimulation effects, which probably indicates the key role of
synaptic plasticity of glutamatergic neurons in mechanisms of
long-term offline effects of tDCS (Liebetanz et al., 2002; Nitsche
et al., 2003).

In addition, tDCS can locally reduce the neurotransmission
of gamma-aminobutyric acid, regardless of the polarity of
the stimulation (Stagg et al., 2009), which can also affect
glutamatergic synaptic transmission due to the close relationship
between the two neurotransmitter systems. It is also suggested
that activation of neurons not only changes their membrane
potential and excitation rate, but also reduces electrical resistance.
This may be of key importance, since current exposure
can cause more significant changes in the transmembrane
potential in resting neurons with low membrane conductivity
than in active neurons with high membrane conductivity
(Paulus and Rothwell, 2016).

In addition to the local effects of tDCS, its effect on the rs-
fMRI functional connectivity of the brain has been described.
Neural networks react more sensitively to direct current than
individual neurons (Francis et al., 2003), and tDCS can change
rs-fMRI functional connectivity, synchronization, and oscillatory
activity in various cortical and subcortical neuronal networks.
This effect has been shown for tDCS of the primary motor cortex
(M1) (Polanía et al., 2011a,b, 2012a) and the prefrontal cortex
(PFC) (Keeser et al., 2011).

In addition, since tDCS modulates the resting state membrane
potential throughout the axons, its use can lead to non-synaptic
effects that are likely to affect the persistence of tDCS effects
(Ardolino et al., 2005). The non-synaptic mechanisms of tDCS
may be based on changes in the conformation and functions
of various axonal molecules involved in transmembrane ionic
conductivity, axonal transport, as well as changes in the
properties of the cell membrane and cytoskeleton (Jefferys, 1995).

Another important fact is that almost all tissues and
cells are sensitive to electric fields and, therefore, tDCS can
cause changes outside the nervous tissue – in endothelial
cells, lymphocytes and glial cells (Ruohonen and Karhu,
2012). This effect, which has not yet been systematically
studied, can also contribute to the therapeutic effects of
tDCS, since in patients with cerebral diseases, in addition
to damage to neurons, other pathological processes (such as
neuroinflammation) usually occur.

Due to a possible effect on the inflammatory response, tDCS
can theoretically influence the course of the disease (Rabenstein
et al., 2019). In addition, DC fields can enhance axon regeneration
and neurite growth (Fehlings and Tator, 1992; Wood and Willits,
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FIGURE 2 | The tDCS mechanism. Shift of membrane excitability when exposed to a weak direct current.

2006; Pelletier et al., 2014) and, therefore, stimulate the recovery
of cognitive functions.

As a result, we can say that tDCS can affect some pathological
processes and pathogenetic cascades in the central nervous
system, and not just change the excitability of neurons.

Transcranial Alternating Current
Stimulation
Transcranial alternating current stimulation (tACS) is a non-
invasive method of stimulating nerve tissue through alternating
current of a certain frequency (Paulus, 2011).

Unlike tDCS, the advantage of tACS is that it allows
to modulate the oscillatory activity of neural networks
due to frequency stimulation at an almost imperceptible

current strength (Figure 3). Oscillatory activity during
exposure is synchronized with external rhythmic stimuli
(Herrmann et al., 2013).

During stimulation, the resting potential of the neuron
membrane changes at a subthreshold level, which leads to
long-term potentiation, in which the suprathreshold peak
activity of neurons enhances the connection between neurons
and signal propagation through postsynaptic dendrites. This
suggests that information on the frequency and phase is
the main parameter of the functions of the nervous tissue
(Antal and Herrmann, 2016).

Modulation of the oscillatory activity of neural
networks by alternating current leads to an “imposition”
of exogenous rhythm and an increase in amplitude
at an externally specified frequency (Herrmann et al.,
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FIGURE 3 | In-phase and antiphase tACS for modulation of the middle frontal
theta rhythm.

2013). To date, it is not clear how long the effects
of the imposition of exogenous frequencies after the
termination of stimulation can last. One of the mechanisms
for preserving the effects of stimulation is changes in
neuroplasticity detected after multi-session tACS interventions
(Vossen et al., 2015).

An important parameter of tACS is the intensity of the
applied alternating current. When stimulating the primary
motor cortex with alternating current at a frequency of
140 Hz and simultaneously registering motor evoked
potential (MEP) in response to single TMS pulses, it was
found that a low stimulation intensity (0.2 mA) leads to
inhibition of the cortex, which manifested itself in the form
of an increase in the motor response threshold. On the
other hand, high intensity (1 mA) leads to lower threshold
values, that is, to excitation of the cerebral cortex. The
intermediate intensity (0.6 and 0.8 mA) does not affect the
motor threshold.

Thus, changes in the excitability of the human cerebral cortex
non-linearly depend on the intensity of tACS (Moliadze
et al., 2012). This, apparently, indicates that inhibitory
neurons are more susceptible to electrical stimulation and
are activated even at low current intensities. Excitatory neurons,
in contrast, are less susceptible and require more intense
stimulation, but dominate inhibitory neurons, which leads

to the general excitation effect at high current intensities
(Herrmann et al., 2013).

TRANSCRANIAL DIRECT CURRENT
STIMULATION AND TRANSCRANIAL
ALTERNATING CURRENT STIMULATION
INFLUENCE ON COGNITIVE FUNCTIONS

Neuroplasticity mechanisms are physiological properties
that provide reorganization of the nervous tissue. They
work by modifying existing neural networks in response to
changes in behavior or in the environment (Pascual-Leone
et al., 2005; Rossini et al., 2008). It is generally accepted
that the same mechanisms are triggered in response
to the occurrence of pathological processes in various
neurological disorders (Monfils et al., 2005; Kleim and Jones,
2008).

Neuroplasticity is provided by processes such as long-term
potentiation (LTP) and long-term depression (LTD), which
cause changes in synaptic transmission between neurons
(Südhof and Malenka, 2008). These neurophysiological
processes significantly affect the functioning of memory
and learning mechanisms (Malenka, 1994; Ziemann and Siebner,
2008).

Long-term depression and LTP are controlled and modulated
by changing the concentration of dopamine in the basal
nuclei (Shen et al., 2008; Schroll et al., 2014). However, in
patients with Parkinson’s disease, neuroplasticity processes are
disrupted due to pathological processes such as degeneration
of dopaminergic neurons and a decrease in dopamine levels in
the striatum (Udupa and Chen, 2013; Schroll et al., 2014). This,
in turn, can be directly related to memory impairment and a
decrease in learning ability (Calabresi et al., 2007; Schroll et al.,
2014).

These changes in dopaminergic transmission affect
neuroplasticity mainly due to dysregulation between direct
and indirect connections in the basal-thalamo-cortical pathways
(Figure 1C; Nitsche et al., 2006; Helmich et al., 2009). It has
been shown using animal models, that LTP and corticostrial
neuroplasticity can be restored by prolonged use of dopamine
therapy or transplantation of dopamine neurons (Picconi et al.,
2003; Rylander et al., 2013).

Transcranial direct current stimulation has great
therapeutic potential because of its modulation of postsynaptic
connections effect that is similar to long-term potentiation
(Liebetanz et al., 2002). As a result of tDCS, researchers
noted an increase in the success rate on tests evaluating
the following functions: attention (Elder and Taylor,
2014), semantic (categorical) fluency and overall cognitive
function (when combined with physical therapy) (Manenti
et al., 2016), executive functions (Doruk et al., 2014),
phonetic fluency (Pereira et al., 2012), working memory
(Boggio et al., 2006).

Cognitive functions at the neurophysiological level are
manifested in the oscillatory activity of neurons, the dynamics
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of which depend on synaptic activity and membrane potential
(Tavakoli and Yun, 2017).

Oscillatory activity of the brain at certain frequencies reflects
the activation of specific cognitive or sensorimotor functions
(Antal and Paulus, 2013; Herrmann et al., 2013). Thus, tACS can
enhance or suppress current processes by exogenously increasing
or decreasing the amplitude of oscillations (Herrmann et al.,
2013, 2016). Therefore, tACS has the potential to synchronize
frequency-specific neural networks, thereby causing changes in
behavior (Fröhlich, 2015).

Next, we will examine current views on the effects of tDCS
and tACS on cognitive functions such as working memory and
cognitive control.

WORKING MEMORY

Transcranial Direct Current Stimulation
One of the key functions in the cognitive domain is working
memory, which provides storage and processing of information
for a short period of time. Working memory is associated with
various cognitive abilities including selective attention, analysis
and decision making (Klingberg, 2010; Jausovec and Jaušovec,
2012; Johnson et al., 2013). The functions of working memory
are impaired in various pathological conditions, including
Parkinson’s disease (Gilbert et al., 2005).

The nature of working memory deficit in Parkinson’s disease
is not yet fully understood. Some researchers (Gabrieli et al.,
1996) suggest that dopaminergic dysfunction affects the overall
decrease in the rate of psychomotor processes in patients with
PD, which causes cognitive impairment, including that associated
with working memory.

It is also believed that the working memory deficit in PD is
primarily associated with impaired executive functions localized
in the dorsolateral prefrontal cortex (DLPFC) (Taylor et al., 1986;
Morris et al., 1988; Gabrieli et al., 1996; West et al., 1998).
This is explained by a decrease in the dopamine concentration
in DLPFC due to degeneration of dopaminergic neurons of
the substantia nigra and the ventral region of the tegmentum,
disruption of the normal interaction between direct and indirect
connections between the cortex, basal nuclei and the thalamus,
as well as impaired functioning of neuroplasticity mechanisms
(Owen, 2004; Leh et al., 2010). In addition, research results
show changes in rs-fMRI functional connectivity in DLPFC in
Parkinson’s disease (Wu et al., 2012; Wen et al., 2013; Szewczyk-
Krolikowski et al., 2014; Amboni et al., 2015; Trujillo et al.,
2015).

In this light, transcranial direct current stimulation of the
DLPFC may have a positive effect on working memory deficiency
in patients with PD. A possible positive effect of tDCS specific
for patients with PD can be the induction of dopamine release
into the caudate nucleus via glutamatergic corticostrial pathways,
which has been shown in studies on animal models (Whitton,
1997; Strafella et al., 2001; Li et al., 2011; Tanaka et al.,
2011; Lu et al., 2015). In addition, it was hypothesized that
tDCS in patients with PD can result in neuroprotective effect,
which is achieved by reducing oxidative stress in dopaminergic

neurons (Lu et al., 2015). Researchers have also found that
tDCS modulates rs-fMRI functional connectivity of the cortico-
striatal and thalamo-cortical pathways of the human brain
(Polanía et al., 2011a).

An analysis of the results presented in the available research on
tDCS suggests a positive effect of course stimulation on cognitive
function in patients with PD. For example, Boggio et al. (2006)
demonstrated the positive effect of anodal tDCS on the working
memory of patients with PD. It is worth noting the specificity
of the changes, their sensitivity to the brain region and the
intensity of stimulation: only the anodal tDCS of the dorsolateral
prefrontal cortex was effective by current 2 mA.

Another study evaluated the long-term stimulation effects
during the repeated procedure in patients with PD-MCI (Biundo
et al., 2015). The authors showed that there was a tendency
of working memory functions improvement in the active
tDCS group that was observed for 16 weeks. Another study
(Lawrence et al., 2018) provided evidence of the effectiveness
of cognitive training in combination with tDCS for patients
with PD-MCI. The stimulation target for the participants was
the left DLPFC (current strength was 1.5 mA), and cognitive
training was conducted for 45 min three times a week for
4 weeks. For the active stimulation group, statistically significant
improvements were recorded in terms of executive function,
attention, working memory, language, daily activity and quality
of life. For the same target, in another study (Pereira et al.,
2012), one anodal tDCS session increased semantic fluency in
patients with PD.

In a placebo-controlled study by Manenti et al. (2016)
that used course tDCS of DLPFC in combination with a
physiotherapy program, it was shown that such a combination of
methods can improve cognitive abilities, fluency of speech, and
also increase the results on the PD-CRS (Parkinson’s Disease-
Cognitive Rating Scale). It should be noted that the effects
persisted for 3 months.

Thus, tDCS of the DLPFC as a method of cognitive deficits
correction is a promising approach to adjuvant therapy in
patients with Parkinson’s disease and needs further study.

Transcranial Alternating Current
Stimulation
Oscillatory activity of neural networks is probably central
to memory processes (Hanslmayr et al., 2019). The
functioning of working memory is significantly affected by
the coordinated interaction between brain regions mediated
by the oscillatory activity of neurons (Roux and Uhlhaas,
2014). In particular, it is assumed that fluctuations in the
theta range play a decisive role in organizing patterns of
neuronal activity into a serial code, thereby maintaining
temporal relationships between objects stored in working
memory (Lisman and Jensen, 2013; Roux and Uhlhaas,
2014).

Neural oscillations can organize the information contained
in the working memory in time through oscillations in
the gamma range (Lisman and Jensen, 2013). In particular,
individual gamma cycles can encode individual units of
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information, and a sequence of objects can then be encoded
through several gamma cycles embedded in a theta cycle
(Lisman and Idiart, 1995). Moreover, the amplitude of gamma
cycles depends on the phase of the theta cycle. Thus, the
functioning of such a phase amplitude coupling explains the
existence of a hierarchical organization of cortical rhythms
(Canolty et al., 2006).

Usually from 4 to 8 gamma cycles are combined into
one theta cycle, which allows to encode messages with the
corresponding number of elements. Typically, the working
memory capacity (also called the range) is seven elements with
a standard deviation of up to two elements. It was shown
that the range of an individual’s working memory correlates
with the number of gamma cycles that fit in one theta cycle
(Lisman and Jensen, 2013).

This concept suggests that slowing down the theta
rhythm frequency can increase the number of embedded
gamma cycles, which, in turn, should increase the working
memory bandwidth (Axmacher et al., 2010). Conversely,
the acceleration of oscillations in the theta range should
reduce the number of gamma cycles and, therefore, reduce
the capacity of working memory. This hypothesis has been
confirmed by two recent tACS studies, which showed that
stimulation at a lower theta frequency increases working
memory bandwidth (Vosskuhl et al., 2018; Wolinski et al.,
2018).

Wolinski et al. (2018) found that stimulation at higher theta
frequencies reduces the working memory bandwidth. Thus, the
results of these studies show the existence of a causal relationship
between the dynamics of the interaction of theta-gamma-
oscillations and a change in the capacity of working memory.

It is assumed that there is an inverse relationship between
the frequency of oscillations and the distance between the
interacting areas of the brain. Low-frequency oscillations are
a fairly global phenomenon that can cover the entire cortex.
In contrast, high-frequency oscillations appear to be a local
rhythm within a limited cortical region (Tseng et al., 2016).
Thus, it is likely that delays in signal propagation between
distant regions of the brain are a significant obstacle to the
generation and synchronization of oscillatory activity of the
brain. It turns out that the shorter the distance, the less the
delay in the propagation of action potentials along the axon,
and the easier it is to synchronize them at higher frequencies
(Fröhlich, 2016).

A recent study on primates showed that theta synchronization
between prefrontal and parietal neural ensembles allows more
efficient reproduction of information stored in working memory
(Jacob et al., 2018). An attempt was also made to test the role
of synchronization between the prefrontal and parietal neural
networks in the theta range, stimulating the prefrontal and
parietal regions inphase (i.e., with zero phase) or antiphase (i.e.,
180◦ from each other).

Both studies showed that working memory performance was
improved during synchronization (i.e., inphase stimulation)
compared with antiphase stimulation (Polanía et al.,
2012b; Violante et al., 2017). Inphase theta stimulation
has been found to shorten the response time in the visual

memory task, while antiphase stimulation decreases memory
performance and increases reaction time (Polanía et al.,
2012b). Such a negative effect during antiphase stimulation
in the theta range may be explained by the large amount
of information contained in each theta cycle compared
to the oscillatory cycles of higher frequency ranges,
because of which desynchronization during antiphase
stimulation leads to a loss of a noticeable amount of
information and a decrease in working memory performance
(Tseng et al., 2018).

In addition, the desynchronization of the theta phase can
lead to impaired integration of distant regions of the brain
(Tseng et al., 2018).

COGNITIVE CONTROL

Cognitive control is part of the executive function domain and
plays a key role in decision-making processes. This term was
first used by researchers M. Posner and S. Snyder in their work
“Attention and Cognitive Control” (Posner and Snyder, 1975)
to define one of the systems responsible for the selection of
information, coordination and execution of relevant processes
and suppression of irrelevant ones.

The involvement of cognitive control occurs most intensively
in situations where there is competition for limited mental
resources (Desimone and Duncan, 1995). Its function is to reduce
uncertainty in the decision-making process at various levels by
regulating the importance of information and its relevance.

For example, during information processing when, in addition
to relevant signals, there are factors distracting from the task
[as in the Color Stroop (1935) or Eriksen flanker (Eriksen
and Hoffman, 1974) tasks], participants must ignore irrelevant
information and competing options in order to give an accurate
answer. The successful performance in such tasks is based on the
use of cognitive control, the function of which is the targeted
detection and resolution of conflicts, reduce in uncertainty and
facilitation in decision-making (Mackie et al., 2013).

Transcranial Direct Current Stimulation
According to the conflict monitoring theory (Botvinick et al.,
2001), the anterior cingulate cortex (ACC) is involved in
detecting conflict and automatically triggering control processes
in the DLPFC (Miller and Cohen, 2001; Kerns et al., 2004).

The development of a cognitive control functions deficit in PD
is explained by a decrease in the concentration of dopamine in the
frontal parts of the cerebral cortex. In addition, it may be due to
a decrease in the amplitude of the medial frontal theta rhythm
(see the Pathogenesis section) in the anterior cingulate gyrus and,
as a result, the cessation of signals from it to the dorsolateral
prefrontal cortex.

Based on the literature analysis, it is possible to assume
that tDCS of the DLPFC can positively affect cognitive control
processes (Reinhart and Woodman, 2014; Zmigrod et al., 2014;
Steinhauser et al., 2016). The results of a study by Gbadeyan et al.
(2016) using the flanker task, showed the following: cognitive
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control levels of participants that underwent tDCS over DLPFC
were 30% higher compared to the sham group.

Another study by Gbadeyan et al. (2019) presents data
showing the effectiveness of tDCS on cognitive control
improvement in older people. Regarding the persistence of the
effects, there is a study showing the long-term positive effects of
tDCS on executive functions of patients with PD (Doruk et al.,
2014). In this study course therapy was carried out using anodal
tDCS over the right DLPFC.

Transcranial Alternating Current
Stimulation
It is believed that increase in the amplitude of the midfrontal theta
rhythm is a marker of the involvement of physiological processes
that provide cognitive control (Cavanagh and Frank, 2014). It is
also known that its amplitude increases significantly when new
stimuli are presented, when solving conflicting problems, and
also after making mistakes (Singh et al., 2018).

When solving problems that test the functioning of cognitive
control, bursts in the activity of the midfrontal theta rhythm
can synchronize the activity of the prefrontal cortex with the
underlying structures of the brain, such as the ventral region
of the tegmentum, tonsil, septum, and hippocampus. Thus, the
medial frontal theta rhythm is likely to be one of the key
mechanisms of cognitive control (Cavanagh and Frank, 2014;
Singh et al., 2018).

Artificial disfunction of dopamine secretion in rodent models
significantly reduces the amplitude of the midfrontal frontal theta
rhythm (Parker et al., 2014). Parkinson’s patients also show a
decrease in the amplitude of FMT against the background of a
deterioration in cognitive control function (Singh et al., 2018) and
a decrease in the ability to adapt to new stimuli (Chen et al., 2016;
Cavanagh et al., 2017).

HYPOTHETICAL MECHANISMS
EXPLAINING POSITIVE EFFECTS OF
TRANSCRANIAL BRAIN STIMULATION

Much has been said about the importance of physiological
rhythms of the brain. In the present review we focused on
studies of rhythm and frequency of signals generated during
non-invasive stimulation therapy. Mechanisms of the generation
of abnormal activity in the basal ganglia, which cause the
classic symptoms of PD, e.g., appearance of tremor, rigidity,
and bradykinesia, are of interest for research. These mechanisms
may explain the short-term and long-term therapeutic effect of
non-invasive tDCS therapy. New data indicate that fluctuations
in certain frequency ranges that occur in the basal ganglia
can be used to diagnose PD. However, not enough is known
about the physiological role of such rhythms, the cellular
networks that generate them and the functions of such
rhythms. It seems plausible that such rhythms can only be
an epiphenomenon.

Rhythmic oscillatory activity is present in many different
events. The most famous phenomenon associated with

oscillators is the hippocampal theta rhythm, the pacemaker
of which is the medial septal region (Colgin, 2013). This
rhythm is of key importance to the binding of the bursts
of impulses of the cell to the place (the phenomenon
of phase precession), and is also of great importance in
the processes of memory and attention. Generation of
spontaneous activity by the brain leads to the appearance
of a rhythm of varying amplitude and frequency. Little
is known about the role of such spontaneous activity,
but it occurs in almost all animals with a nervous system
(Hanson, 2021).

Normally, the activity of a neuron is associated with
the provision of a signal by it, and depends on a set
of input stimuli that it receives. However, the neuron also
produces spontaneous activity at the very early stages of
the development of the nervous system (Luhmann et al.,
2016). Such generators are described, for example, in Marder
and Calabrese (1996) Rhythm generators synchronize small
neural populations (Ramirez et al., 2004). Other researchers
insist that some generators may be fundamental to the whole
brain, as such generators can synchronize large populations
of neurons (Heck et al., 2017). For humans, the role of
Default Mode Network (DMN) in ensuring the operation of
generators of various amplitudes is known. The connection
between DMN and impaired executive functions was established
in PD patients (van Eimeren et al., 2009). When awake, a
person produces synchronous rhythmic movements in the form
of stereotypical cyclical behavior, such as walking, chewing,
breathing, etc. Periodic movements generate the activity of
neurons of a certain amplitude and frequency, and vice
versa, the frequency of rhythmic activity is associated with
the anatomy of movable limbs. de Hemptinne et al. (2013)
found that people with Parkinson’s disease have abnormal
synchronicity between low-frequency beta waves and high-
frequency gamma waves. In particular, the phase of the beta
waves was correlated with the amplitude of the gamma waves.
They hypothesized that breaking this abnormal synchronicity
has a therapeutic effect in the treatment of PD (de Hemptinne
et al., 2013) Excessive Phase-amplitude coupling (PAC) leads
to degenerate activity of the rhythmic type, which leads to the
onset of PD symptoms.

Other studies focus not on rhythm, but on the correlation
between the times of spike activity of neurons. Synchronization
of spikes on a certain time scale can lead to the appearance
of oscillations. Such models insist on pseudo-oscillatory activity
of neural networks. It was shown that simultaneous neuronal
activity affects neuronal plasticity (Gerstner et al., 1996).
Spike-timing-dependent plasticity (STDP) is necessary for the
hippocampus to function properly and depends on the frequency
and timing of spike synchronization. Synchronized activity of
cells innervated by the dopamine system loses its essential
properties and gives rise to PD symptoms (Touboul et al.,
2020; Bashkirtseva et al., 2021). The PD symptoms in such
a model are generated as a result of stochastic resonance,
which leads to an increase in periodic oscillations. Due to
a decrease in the temporal accuracy of the pulsation of
SN cells, which is necessary to maintain the synchronous
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actuation of the cortical networks, transitions to synchronous
states occur at lower frequencies and on a larger scale (Bragin
et al., 2002). Accordingly, tACs can synchronize large groups of
cortical neurons and lead to amelioration of the PD symptoms.

CONCLUSION

Parkinson’s disease manifests itself in both motor and cognitive
symptoms. Cognitive deficit significantly affects the quality of life
of patients with PD, however, the possibilities of therapy for its
correction are significantly lower when compared to therapy of
motor manifestations. That is why there is a need in additional
methods aimed at correcting cognitive deficits in PD. In this
regard, tCS can be potentially effective. The search and adaptation
of stimulation protocols, the effectiveness of which will be the
highest, requires special attention. Research in this area can
not only improve the quality of life of patients with MCI, but
also significantly improve understanding of the physiological
mechanisms of cognitive impairment in Parkinson’s disease.

Based on the facts presented in this paper, it is possible
to suggest the potential effectiveness of MCI correction by
stimulating the areas of the brain responsible for these disorders,
that is, in particular, the dorsolateral prefrontal cortex (DLPFC),
since this area is one of the key anatomical areas for
cognitive functions such as working memory and cognitive

control. In addition, the prefrontal cortex and, in particular,
DLPFC, is involved in compensatory mechanisms in MCI (Gigi
et al., 2010) and in reduction of episodic memory in general
(Rosano et al., 2012).

On the other hand, the combined evidence of the relationship
between FMT and the cognitive domain allows us to hypothesize
that it is theoretically possible to modulate the work of cognitive
functions impaired in Parkinson’s disease by performing tACS
in the theta range. Studies show that the amplitude of the
median frontal theta rhythm associated with cognitive control
is reduced in Parkinson’s disease. In addition, the theta rhythm
is an important mechanism for synchronizing distant regions of
the brain and, in particular, is involved in the process of updating
the working memory.
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