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Brain-computer interfaces (BCI) relying on electroencephalography (EEG) based

neuroimaging mode has shown prospects for real-world usage due to its portability and

optional selectivity of fewer channels for compactness. However, noise and artifacts

often limit the capacity of BCI systems especially for event-related potentials such

as P300 and error-related negativity (ERN), whose biomarkers are present in short

time segments at the time-series level. Contrary to EEG, invasive recording is less

prone to noise but requires a tedious surgical procedure. But EEG signal is the

result of aggregation of neuronal spiking information underneath the scalp surface and

transforming the relevant BCI task’s EEG signal to spike representation could potentially

help improve the BCI performance. In this study, we designed an approach using

a spiking neural network (SNN) which is trained using surrogate-gradient descent to

generate task-related multi-channel EEG template signals of all classes. The trained

model is in turn leveraged to obtain the latent spike representation for each EEG sample.

Comparing the classification performance of EEG signal and its spike-representation, the

proposed approach enhanced the performance of ERN dataset from 79.22 to 82.27%

with naive bayes and for P300 dataset, the accuracy was improved from 67.73 to 69.87%

using xGboost. In addition, principal component analysis and correlation metrics were

evaluated on both EEG signals and their spike-representation to identify the reason for

such improvement.

Keywords: spiking neural network, brain-computer interface, electroencephalography, P300, error-related

negativity, classification

1. INTRODUCTION

Using the brain signals to communicate with external devices without the intervention of explicit
human motor actions, called Brain-Computer Interfaces (BCI), provides a new dimension to
interactive technology (Allison et al., 2007; Rashid et al., 2020). Notable examples of BCI application
include controlling of wheelchair (Zhang et al., 2015), exoskeleton (Wang et al., 2018), speller
(Rezeika et al., 2018), gaming (Ahn et al., 2014), etc. Apart from commercial prospects, BCIs
have also been proved to be efficient in various clinical applications, for example, by-passing
information from the brain to hand muscle through external stimulation due to the damage of
motor nerves (Pohlmeyer et al., 2009), restoration of lost functionality with BCI training (Grosse-
Wentrup et al., 2011), etc. As such, BCI has shown tremendous possibility toward its integration
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into daily life activities and clinical rehabilitation. The most
common mode of neuroimaging method utilized for brain signal
assessment is Electroencephalography (EEG) due to its high
temporal resolution and ease of usage (Min et al., 2010; Zhang
et al., 2010). Rapid developments in EEG acquisition devices
enabled it to be user-friendly, portable and transit data wirelessly.
Depending on the application, different number of EEG channels
and modalities such as Motor imagery (MI) (Padfield et al.,
2019), Steady-state Visually Evoked Potentials (SSVEP) (Bin
et al., 2009) and Event-related potentials (ERP) (Kaufmann et al.,
2011; Mayaud et al., 2013). In parallel, advances have been made
toward bridging the gap between laboratory settings and real-
world usage by enhancing EEG-based BCI systems performance.
To this end, studies have focused on the development of novel
machine learning methods and feature extraction techniques
to improve the BCI system performance. In particular, Deep
learning studies have shown promising results in this regard
(Manor and Geva, 2015; Lawhern et al., 2018). For example,
Lawhern et al. (2018) introduced EEGNet based on convolution
neural network and has shown improved performance on
various BCI modalities. However, few shortcomings need to
be accounted for to yield complete advantage of such a deep
learning model such as the availability of a large sample of
training data, more EEG channels, fine-tuningmodel parameters,
etc. For example, Lawhern et al. (2018) used approximately
2,000 samples for P300 classification, more than 6,000 samples
by Manor and Geva (2015) for RSVP classification, and more
than 10,000 samples by Ma et al. (2021). In practice, EEG data
collections require a tedious experimental setup and are often
time-consuming for a user to record huge datasets. Alternatively,
classical techniques though can execute with fewer data samples
but lack efficient feature representation. However, EEG signals
recorded over the scalp surface are the collective information
of multiple neuronal action potentials underneath the surface.
We hypothesize that extracting spiking information from EEG
signals could potentially help advance the BCI performance.

A model that naturally accommodates spiking information is
Spiking Neural Network (SNN) and it is the third generation
of neural networks. Contrary to artificial neural networks,
they communicate via spikes mimicking the properties of the
biological neural circuit, and as such SNNs have been gaining
traction in the field of machine learning (Bellec et al., 2018;
Woźniak et al., 2020). For example, Bellec et al. (2018) has
leveraged adaptive properties of spiking neurons to obtain Long-
Short-Term-Memory (LSTM) equivalent performance. Similarly,
few studies have shown the efficiency of SNN toward speech
recognition (Wu et al., 2020), objection detection (Kim et al.,
2020), and language modeling (Woźniak et al., 2020). Also,
SNN was examined in its ability to classify non-stationary EEG
signals. For example, Antelis et al. (2020) encodedMotor Imagery
(MI)-based EEG to spiking data for assessing the classification
performance by SNN. Apart from BCI application, few studies
have shown that SNN can also be adopted as classifiers for
emotion recognition (Luo et al., 2020), seizure detection (Ghosh-
Dastidar and Adeli, 2009), understand functional connectivity
changes due tomind-fullness training (Doborjeh et al., 2019), and
depression (Shah et al., 2019). These mentioned studies assume

SNN to be a classifier as a standard notion similar to artificial
neural networks, where the input (such as EEG) is provided to
the network and it outputs a class label.

Recently, besides classification, our previous study has shown
that SNN can be adopted as a generator model to efficiently
generate artificial EEG signals to tackle the data augmentation
problem of MI-based BCI systems and improve the performance
(Singanamalla and Lin, 2021). In continuation of our previous
work, we believe that reverse engineering SNN to extract spiking
information from EEG signals could also improve BCI system
performance. Similar to our previous work, the SNN is trained
to produce task-relevant multi-channel EEG template signals.
However, a major difference in this study is that, instead of using
a trained model to create artificial samples, the model is used
to extract spike-representation of EEG sample and this spike-
representation is evaluated against baseline EEG classification
performance. Major bottleneck issues for the practical outdoor
usage of the BCI system are the noise/artifacts, fewer channels
(for compactness), and fewer samples (less training time).
Therefore for this study, two different BCI modalities, P300
and Error-Related Negativity (ERN) were primarily focused as
they contain their biomarker in the time-series and as such
more sensitive to noise. In addition, considering the above
bottleneck issues, datasets with limited channels and fewer
samples were considered to evaluate the proposed approach.
Based on the result, we have observed that the proposed approach
could potentially improve the BCI performance. This study
further explored the reasoning as to why there is a performance
enhancement due to the spike representation.

2. METHODS

2.1. Neuron Model
Each node in an SNN adheres to the dynamics of a spiking
neuron and computes on a time-scale contrary to an artificial
neuron which acts as a non-linear function. A family of spiking
neuron models offering different levels of detailed simulation &
complexity exists such as HodgkinHuxley (HH)model (Hodgkin
and Huxley, 1952), Izhikevich model (Izhikevich, 2003), Spike-
Response model (SRM) (Jolivet et al., 2003), Leaky-Integrate and
Fire (LIF) model (Neftci et al., 2019), Spiking Neural Unit (SNU)
(Woźniak et al., 2020) etc. LIF model is the widely adopted
model for building SNN due to its computational simplicity and
efficiency. The membrane potential dynamics of a LIF neuron is
described according to Equation (1).

τm
dui

dt
= − (ui − urest) + RIi (1)

where ui(t) describes the membrane potential of the neuron
indexed by i and it’s input current is presented by Ii(t) at
a given time point t. The constant parameters of this model
include, baseline resting membrane potential urest , membrane
time constant τm , resistance R, and the synaptic time constant
τs. The input current dynamics is described by Equation (2).
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TABLE 1 | List of spiking neuron and Adam optimizer properties.

Value

Spiking neuron

dt 1 mS

urest 0 mV

τm 10 mS

τs 5 mS

R 1 M

ϑ 1 mV

τd 2 mS

τr 3 mS

l(τ ) 0.8

Optimizer

Learning rate 0.0005

Betas (0.9, 0.999)

Epsilon 8 × 10−1

Weight decay 0

dIi

dt
= −

Ii(t)

τs
+

∑

j

WijSj(t) (2)

Si(t) =
∑

k

δ

(

t − tki

)

(3)

Si(t) is the spike train (sum of a dirac delta function, δ) of a
neuron and tki is the k

th firing time of the corresponding neuron.
The membrane potential increases with input current, and after
reaching a threshold ϑ , the neuron emits a spike and resets its
potential to urest . By incorporating this reset property the updated
membrane dynamics is presented by Equation (4):

dui

dt
= −

1

τm
(ui − urest) + RIi + Si(t) (urest − ϑ) (4)

For ease of use, the membrane dynamics can be further
simplified, as suggested in Neftci et al. (2019), where an
approximated version of the LIF membrane potential and input
current for a small simulation time step 1t > 0, as shown in
Equations (5, 6), by incorporating the numerical value of R, urest ,
and ϑ from Table 1.

Ii[n+ 1] = αIi[n]+
∑

j

WijSj[n] (5)

ui[n+ 1] = βui[n]+ Ii[n]− Si[n] (6)

where α ≡ exp
(

−
1t
τs

)

, β ≡ exp
(

−
1t
τm

)

.

In addition to LIF, we have also tested SNU (whose dynamics
are represented by Equation 7) based SNNmodel. The advantage

of SNU is that it can act as both artificial and spiking neuron
depending on the choices of activation function. To compare
with LIF, here we choose activation functions g = relu and
h = heaviside to implement spiking functionality.

ut = g
(

Wxt + l(τ )⊙ ut−1 ⊙ (1− st−1)
)

st = h (ut − ϑ)
(7)

where, xt , ut , st represent the input, membrane potential and
spike output, respectively at time step t. A detailed list of all the
parameter of LIF and SNU are presented in Table 1.

2.2. SNN Architecture
A recurrent based SNN model (RSNN) in which each node is
based on a simplified LIF or SNUmodel and computes following
Equation (5) for producing EEG signals. Similar to Singanamalla
and Lin (2021), since the source spiking information that
generates desired EEG signal is often not available, the input
layers generate spike-trains adhering to Poisson distribution with
a firing rate of 10 Hz. This spike train is then processed via the
RSNN population. Since EEG signal is continuous contrary to
spike-trains (discrete-time series), a double exponential synaptic
filter (see Section 2.2.2) is applied to the neural activity of
RSNN to smoothen the spike-trains, denoted as a latent layer.
The filtered spike-trains are then weighted averaged to produce
a multi-channel EEG signal. An overview of the proposed
architecture is depicted in Figure 1. The proposed architecture
comprises a different number of nodes(or neurons) in each layer
as follows: 50 for the input layer, 100 for RSNN, 100 for the
latent layer, and 2 for the output layer. The model was built using
pytorch, a popular python-based deep learning library, and the
weight connections between the all layers and recurrent weights
within RSNN are trained using surrogate-gradient descent (see
Section 2.2.1) with Adam optimizer.

In a given EEG dataset, no two samples are the same
for a defined stimulus. So, training the model for each
EEG sample independently to obtain latent information (i.e.,
the spike-representation of EEG sample) is computationally
demanding. Therefore, a representative EEG signal, called
template EEG, was initially obtained from a given dataset for
the training process. As suggested in Singanamalla and Lin
(2021), a classifier was trained and tested with a dataset and
the sample with the highest probability of being categorized
correctly into its respective class will be considered as the EEG
template.

The model is implemented in a two-stage process namely,
Forward process and Inverse process. In the Forward process, the
model was trained using surrogate gradient descent to reproduce
multi-channel EEG templates of a given dataset. Following this,
the Inverse process transforms each of the non-template signals
(i.e., samples other than template in a given dataset) to its
spike-representation by Equation (8) in which the pseudo-inverse
of trained weights (connecting latent-layer to output layer) is
multiplied by EEG samples.

rj = W−1
f

∗ EEGj (8)

Frontiers in Neuroscience | www.frontiersin.org 3 April 2022 | Volume 16 | Article 792318

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Singanamalla and Lin EEG to Spike-Representation Using SNN

FIGURE 1 | A recurrent spiking neural network (RSNN) model that maps a random input spike-train from Input Layer to a multi-channel EEG signal in the Output

Layer. The spike trains (δ) from RSNN are processed in the latent layer to continuous signal r using a double exponential synaptic filer before converting to an EEG

signal. This model works in two stages: (1) Forward process in which SNN generates template EEG signal, (2) Inverse process in which the non-template signal are

transformed to spike-representation for classification.

where Wf is the trained weight matrix from latent layer to EEG
signal output.

2.2.1. Surrogate-Gradient Descent
Gradient descent optimization is the most widely adopted
optimization technique in an artificial neural network. Gradient
estimation requires the function to be continuous such that it
is differentiable. However, for a spiking neuron’s spike emission
process mimics the step activation function, i.e., when the
voltage exceeded its threshold a spike is produced and resets
immediately. As such, the resulting discontinuous function
limits the usage of the standard gradient descent algorithm.
To this end, Neftci et al. (2019) developed an approach called
surrogate-gradient descent, in which the step activation applied
to membrane voltage at a time step t, Si[t] ∝ 2(ui[t]−ϑ), during
forward propagation is replaced with Sigmoid activation function
during backpropagation as follows: σ (ui[t] − ϑ), where σ (x) =
1/(1 + exp(−x)). This flexibility of using pseudo-derivatives
during backward propagation enables the use of gradient descent
optimization variants. It is important to note that, the sigmoid
replacement happens only during backpropagation while the step
function remains fixed during forward propagation.

2.2.2. Synaptic Filter
A spike train is a discontinuous time series with a value of 1
(spike) or 0 (no-spike) at each time step. Therefore, as suggested
in Nicola and Clopath (2017), a double exponential synaptic filter
is applied (latent layer) to the spike trains of RSNN in the Forward
process to obtain a continuous signal. This filtered signal is later
transformed into a multi-channel (2 channels in this study) EEG
signal. For a spike train from one node, the synaptic filter is
estimated according to Equation (9).

ṙj = −
rj
τd

+ hj

ḣj = −
hj
τr
+

1
τrτd

∑

tj<t δ
(

t − tjk
) (9)

where, τr represents synaptic rise time, τd is the synaptic decay
time, and δ is the spike train of RSNN layer (see Figure 1). The
spike is first filtered with one intermediary exponential filter hj
and followed by another exponential filter rj. The activity of rj is
the output of latent layer.

2.3. EEG Processing
Two types of ERP signal, Error-Related negativity (ERN)
and P300, are considered for this study. The datasets are
publicly available from Van Veen et al. (2019) and Kappenman
et al. (2021), respectively. A standard EEG processing pipeline
containing bandpass filtering between 0.5 and 45 Hz, epoch
extraction, and channel selection were applied to each of the
datasets. For both ERN and P300 datasets, 20 subject data
were considered. A template EEG signal was extracted (as
mentioned in Section 2.2) for each subject dataset independently
and smoothed using a moving average window. This template
was later utilized for training the SNN model. For SNU-
based model, the signal is also normalized from −1 to 1 for
better fitting.

2.4. Classification
For ERN and P300 signals, the EEG time series data are
considered as features for classification. The most predominantly
used classifiers for both ERN and P300 include Support
Vector Machine’s (SVM), Gaussian classifiers, and tree-based
algorithms (Ventouras et al., 2011; Chavarriaga et al., 2014;
Sarraf et al., 2021). Therefore, this study had adopted these
classifiers for assessing the baseline EEG classification accuracy.
For a fair comparison, the spike-representation (with both
LIF and SNU-based SNN) of EEG signals was classified with
the same classifiers. A 5 × 10-fold cross-validation (CV) was
applied for each subject data and the overall performance
of given subject data is the average of all the folds. To
test the significance in performance improvement with spike-
representation, a two-sided wilcoxon signed-rank test was
performed on the classification accuracies obtained from each
classifier independently. Refer to Section 3.2 on the outcomes of
classification and significance test results.

2.5. Explainability
Based on the classification results (see Section 3.2), we
observed that the performance be enhanced above baseline by
transforming the EEG signals to spike-representation. Debugging
the reasoning behind such accuracy increment could better
help understand the neural origins of EEG signals and to
why EEG signal is often ineffective compared to invasive
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FIGURE 2 | P300 signal reconstruction outcomes. (A) Illustration of original (blue line) and reconstructed (red line) for O1 and O2 EEG signals for both Target and

Non-Target classes before and after training. (B) Spike trains of RSNN activity before and after the training process from 30 randomly selected neurons. The yellow

box indicates the effectiveness of the training process in reorganizing the spike trains across layers. (C) The convergence of MSE loss value across epochs during the

training process.

electrode recordings. Principal component analysis (PCA)
was applied to the EEG data and its corresponding spike-
representation to estimate the variance explanation ratio. This
assisted in exploring if the proposed approach was able to
extract novel features (or more independent variables). In
addition, we have compared the confusion matrix analysis
and correlation properties to explore the attributes of spike-
transformed data.

3. RESULTS

3.1. SNN Training
For each subject dataset, a new instance of the model (LIF or
SNU-based SNN) was trained to generate a set of EEG template
signal. In the case of ERN and P300 datasets, this set comprises
of two template signals (one from each class denoted as target
and non-target). Accordingly, two Poisson spike trains (at 10 Hz
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FIGURE 3 | ERN signal reconstruction outcomes. (A) Illustration of original (blue line) and reconstructed (red line) for FCz and Fz EEG signals for both Target and

Non-Target classes before and after training. (B) Spike trains of RSNN activity before and after the training process from 30 randomly selected neurons. The yellow

box indicates the effectiveness of the training process in reorganizing the spike trains across layers. (C) The convergence of MSE loss value across epochs during the

training process.

rate) were initialized to acts as input signal to the SNN model.
For some subjects as shown in Figures 2A, 3A, the model was
able to reproduce these template EEG signals for both P300 and
ERN signals, respectively. Also, it can be observed that RSNN
activity was rearranged during the training process for both ERN
(see Figure 2B) and P300 EEG signal (see Figure 3B). Since
the objective of the model is to reproduce a time series signal
(i.e., EEG template), a Mean Square Error (MSE) loss function
was adopted as a cost function. From Figures 2C, 3C, it can be

observed this loss converged quickly for both P300 and ERN
EEG signal generation. A detailed list of neuron and optimizer
parameter are provided in Table 1.

3.2. Classification
3.2.1. P300
In the P300 analysis, 20 subjects’ data from open source
(Van Veen et al., 2019) was considered for this study. The
datasets were pre-processed according to the pipeline mentioned
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TABLE 2 | Comparison of classification performance of P300 based EEG signal and its spike-representation by LIF-based and SNU-based SNN using SVM, NVB, and

xGboost classifiers.

Dataset SVM NVB xGboost

EEG LIF SNU EEG LIF SNU EEG LIF SNU

S1 69.39 75.39 72.82 76.03 77.52 77.38 71.02 71.61 71.61

S2 69.70 70.63 71.42 71.36 72.78 72.62 68.47 68.05 68.07

S3 66.69 70.91 70.82 69.42 70.36 72.54 67.99 71.37 71.53

S4 72.94 77.96 76.23 82.18 84.20 83.11 83.09 83.27 83.59

S5 58.66 62.96 62.65 62.78 63.24 63.73 61.24 65.04 64.10

S6 70.50 74.89 75.05 66.31 71.58 71.74 69.57 71.91 72.49

S7 61.14 67.80 67.49 67.16 67.70 67.15 66.88 66.19 66.91

S8 70.50 74.81 74.19 66.31 71.42 71.58 69.57 71.91 72.90

S9 67.54 69.29 68.98 70.32 69.99 68.65 72.60 71.89 71.89

S10 57.33 58.59 58.27 58.91 61.22 63.52 59.63 58.35 62.00

S11 62.29 63.75 62.96 58.38 63.40 65.75 65.62 66.41 66.47

S12 81.69 82.95 82.78 76.26 83.21 86.27 84.86 86.23 85.53

S13 57.90 60.01 60.32 60.43 60.96 63.24 55.88 62.66 62.26

S14 54.77 57.01 56.77 56.98 57.99 57.91 57.83 59.66 59.48

S15 62.82 63.40 63.96 64.28 66.79 67.82 63.94 62.71 62.54

S16 64.18 69.81 70.35 66.57 71.16 71.55 67.22 69.70 71.90

S17 67.16 68.01 68.41 64.99 65.33 66.28 70.84 74.06 74.44

S18 60.95 68.26 68.50 65.00 66.83 69.93 64.60 68.95 68.88

S19 69.89 69.18 69.50 72.44 71.50 70.02 68.65 73.70 73.94

S20 59.24 63.41 64.24 64.58 63.20 62.26 65.08 67.48 66.78

Avg 65.26 68.45 68.29 67.04 69.02 69.65 67.73 69.56 69.87

For each subject, a 5 × 10 CV fold was applied where 90% of the samples were randomly selected for training and the remaining 10% for testing in each fold. The bold values indicate

the highest performance produced from all models.

in Section 2.3. As previously mentioned the limits of practicality,
only two channels that contribute to P300 bio-maker, FCz &
Fz were considered toward the further process. To extract the
template signal from a given subject dataset, all the samples
in the dataset are used for both training and testing with the
SVM classifier. The sample that obtained the highest probability
of being correctly categorized into its class is considered as
the template. Since P300 is a binary class (Target and Non-
target) system, we obtained two EEG templates, one for each
class. After training the model to generate this EEG template,
each of the remaining samples in the data (i.e., non-template)
were converted to its spike representation through Equation (8).
Then, different classifiers such as SVM, Naive Bayes (NVB),
and xGboost were used for comparing the performance of
EEG signals (baseline performance) and their respective spike-
representation signals. For each subject, classification accuracy
represents the average of a 5 × 10-fold CV (i.e., 5 times 10-
fold), in which each fold was executed with 90%of the randomly
selected samples as training set and remaining for the testing
set. As shown in Table 2, using xGboost, spike-representation of
EEG signals has obtained an average accuracy of 69.87% (with
SNU-based SNN), 69.56% (with LIF-based SNN), and exceeded
the baseline performance (EEG signal classification accuracy)
of 67.73%. In addition, few subjects (such as S13 and S19)
showcased significant improvement from baseline performance
by up to 5–7%. A one-sided wilcoxon-signed rank test was

applied between accuracies obtained from EEG and their spike-
representation (either from LIF or SNU) from each classifier
separately. This statistical significance analysis resulted in a p <

0.05 for all the classifiers.

3.2.2. ERN

The SNN model training process for ERN was similar to
P300 except that the channels selected for this dataset are
Pz & Oz. In total 20 subject datasets were considered for
assessing the spike-representation competency for this BCI
mode. Similar to the P300 assessment in Section 3.2.1, the
template signal for each subject was extracted based on the
probability (obtained by SVM) of each sample to be categorized
into its respective class. The classification performance of the
ERN signal and its spike representation was evaluated using
SVM, NVB, and xGboost classifiers. As shown in Table 3,
with NVB, spike-representation of EEG signals has obtained an
accuracy of 82.27% (with LIF-based SNN), 81.66% (with SNU-
based SNN) and exceeded the baseline (EEG) performance of
79.22%. In addition, few subjects (such as S15) have shown
a significant increase (up to 7%) with spike-representation.
Similar to P300, the statistical significance analysis for ERN
using one-sided wilcoxon signed-rank test has also resulted
in a p < 0.05 for all the classifiers with LIF and for SNU
p-values are 0.082 (for SVM), 0.018 (for SVB), and 0.095
(for xGboost).
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TABLE 3 | Comparison of the classification performance of ERN’s EEG signal and its spike-representation by LIF-based and SNU-based SNN using SVM, NVB, and

xGboost classifiers.

Dataset SVM NVB xGboost

EEG LIF SNU EEG LIF SNU EEG LIF SNU

S1 69.45 67.56 69.09 77.73 80.21 79.86 74.44 74.27 73.17

S2 92.83 93.00 92.33 91.83 91.83 90.50 80.67 82.00 85.00

S3 77.25 76.39 76.97 75.00 78.44 78.00 70.92 81.69 78.83

S4 86.52 86.12 85.54 88.73 89.44 89.57 86.05 89.51 89.67

S5 70.22 72.02 70.87 76.15 76.95 76.96 79.06 75.10 75.08

S6 81.67 86.33 85.00 91.67 93.67 93.00 69.67 73.33 73.33

S7 81.51 82.80 82.82 72.60 76.18 74.22 78.98 85.36 84.31

S8 69.30 72.78 70.84 63.78 58.53 58.65 64.68 74.23 72.91

S9 78.00 76.52 78.19 80.43 83.76 82.57 78.81 78.81 80.67

S10 87.29 86.73 87.43 88.27 90.52 90.79 90.41 89.61 89.08

S11 77.87 80.00 80.13 84.00 86.00 86.27 85.60 83.07 82.80

S12 67.00 73.67 74.33 76.33 75.33 70.33 53.33 80.67 80.33

S13 87.60 88.76 88.96 90.96 91.36 92.73 90.96 88.78 89.56

S14 81.09 81.71 80.60 87.56 89.02 89.24 90.64 87.80 88.51

S15 84.30 91.30 91.70 83.10 90.60 89.70 80.80 89.60 91.00

S16 55.00 61.00 80.67 59.00 63.67 71.73 63.67 60.67 80.97

S17 77.00 80.00 60.00 73.00 95.00 63.00 90.00 90.00 58.67

S18 79.87 79.60 80.00 79.76 82.02 94.00 81.60 79.60 70.00

S19 71.38 72.77 79.47 76.77 78.62 82.58 78.15 82.92 78.64

S20 80.04 85.63 72.31 67.81 74.27 79.54 74.32 80.83 81.54

Avg 77.76 79.73 79.36 79.22 82.27 81.66 78.14 81.39 80.20

For each subject, a 5 × 10 CV fold was applied where 90% of the samples were randomly selected for training and the remaining 10% for testing in each fold. The bold values indicate

the highest performance produced from all models.

To further assess the impact of SNN on performance
improvement, we have transformed the ERN signal to a high-
dimension signal (in Equation 8) in two ways as a control
study: (1) using a random weight matrix (of normal distribution
equivalent to initialized SNN weights) and (2) Liquid State
Machines (LSM; based on LIF) in which all RSNN related
weight matrices (feedforward & recurrent) are fixed except for
the output layer weights that convert filtered signal r to EEG
signal during the model training process. The performance of
the transformed signal with these two approaches is estimated
using NVB as it has obtained the best performance previously.
As shown in Table 4, the average performances with random
weight is 80.70% (p = 0.287 with one-sided wilcoxon test)
and LSM is 81.83% with p = 0.74. The effect of SNN’s
trained weights on performance is not significantly higher than
these control methods, but provided an additional edge in the
average performance.

3.3. Confusion Matrix
From Tables 2, 3, it can be observed that spike-representation
can improve the classification performance. However, the
classification metric alone does not provide enough details on the
model performance. Therefore, confusion matrix analysis with
xGboost classifier was performed on a select subject, from both
ERN and P300 datasets, that had significant improvement over
baseline performance. Based on Figure 4, we found that for ERN,

the proposed approach increased both true positive and false
negative. This indicates that the spike representation was able to
account for patterns of both target and non-target samples and
improve their detection rate. Similar behavior was identified for
the P300 dataset as well (see Supplementary Figure 1).

3.4. Explainability
Though EEG signal and its spike-representation are directly
analogous, spike-representation of the data was able to
provide better performance. Exploring the reason behind the
performance increment could better help in further enhancing
the credibility of BCI systems. To this end, PCA and correlation
measures were applied to both EEG signal and its spike-
representation data to assess the internal factor that leads to
performance enhancement.

3.4.1. Variance Explanation Analysis
It is common that not all variables in a data is useful to
provide meaningful information. Explained variance analysis is
often used to measure the ratio of information represented by
principal components. In other words, it helps to identify the
fraction of data variability contributed by a given set independent
variable (features). In this study, we indent to explore if spike-
representation of EEG signals provide additional information for
improving the accuracy. Using PCA, we analyzed this metric on
EEG signal & its spike-representation. As shown in Figure 5, it
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can be observed that for a given dataset from ERN, the spike-
representation (red line) required more components than EEG
signal (blue line) to explain 75% (black line) of variability in
the data. This could imply that the proposed method was able
to extract more unique independent features from the spike-
representation of data and this could in turn enabled the classifier

TABLE 4 | Comparison of classification performance of ERN dataset via NVB for

transformed signal with random weight and LSM.

Dataset Random-W LSM

S1 79.35 82.12

S2 91.83 89.17

S3 77.56 77.25

S4 89.86 88.71

S5 76.81 76.81

S6 93.00 93.67

S7 74.36 76.40

S8 61.56 59.20

S9 82.00 81.24

S10 89.33 91.88

S11 85.60 86.27

S12 70.33 72.33

S13 91.33 92.15

S14 87.96 90.29

S15 90.50 89.70

S16 70.79 72.38

S17 60.00 62.00

S18 85.00 94.00

S19 82.02 82.22

S20 76.62 78.92

Avg 80.79 81.84

for better classification. Supplementary Figure 2 showcases a
similar observation for P300 datasets.

3.4.2. Correlation Analysis
To further understand the reason for performance enhancement,
we analyzed the similarity among EEG samples and among
their respective spike-representation. To this end, the correlation
between all the samples of a given ERN dataset was estimated
using Pearson’s correlation technique. Figure 6, showcases the
correlation matrix for all EEG samples, all spike-representation
sample, and the difference of these two matrices (Spike-EEG
plot). Each pixel represents the correlation between any two
samples. It can be deduced from Spike-EEG plot that correlation
among the spike-representation samples is slightly higher than of
its EEG samples. This could imply that the proposed approach
tends to enhance the similarity among the samples of given class
(i.e., target and non-target classes) and this in-turn increased
the performance. A similar increase in correlation for the P300
dataset is shown in Supplementary Figure 3.

3.5. Node Prioritization
For both ERN and P300, their prominent bio-maker (feature)
can be found directly through their time-series signal. However,
each subject’s EEG template is unique and it is possible for
the template to even contain noise and information irrelevant
to the biomarker. Therefore, the number of nodes in RSNN
required to generate an EEG template may vary depending
on the complexity (i.e., variance) of the signal. As a result,
we hypothesize that not all nodes in RSNN may contain
reliable information, and considering only a few nodes’ activities
(referred to as node prioritization) could further improve the
classification performance. The nodes with weights (from latent
layer and output layer) that fall outside µ ± 1.5 ∗ σ range are
assumed to be major contributors of EEG signals and as such
only these nodes’ activity is considered from spike-representation

FIGURE 4 | Confusion matrix analysis of (A) EEG and (B) Spike-representation (from LIF) of ERN dataset. Recognition of both Target and Non-Target categories

improved for spike-representation compared to EEG signal.
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of EEG data. Here, µ and σ represent the mean and standard
deviation of the weight distribution obtained after training the
model. Also, it could be possible that such prioritization may not
be ideal for all subjects. For this reason, we have compared to
different modes: (a) node-prioritization and (b) threshold-based
node prioritization. For the threshold-based approach, we have
estimated the variance of the EEG template signal from each
subject and considered the median value (from all variances) as
a threshold for determining whether to apply node prioritization
for a given subject dataset. In other words, node prioritization
was applied to the subject data whose template signals have
higher variance. As shown in Table 5, for ERN, the two
mentioned prioritization modes improved the performance by
a minor fraction compared to the performance compared to the
original spike-representation performance. A similar observation
was seen for P300 datasets as well (see Supplementary Table 1).

FIGURE 5 | PCA-based variance explanation of EEG signal (blue line) and its

corresponding spike representation (from LIF; red line) for ERN dataset.

Blackline represents the 75% variance. Spike-representation (from LIF) was

able to extract a more independent eigenvector from EEG signal to account for

a given fraction of variance in the dataset.

4. DISCUSSION

EEG measurements had been a longstanding preferred mode
of neuroimaging technique for BCI applications development
due to its compactness, portability, and ease of use. However,
EEG signals are often noisy and affect the performance of BCI
systems. In addition, ERP-based BCI modalities such as ERN and
P300 explicitly rely on the time-series segment of the signal for
identifying the biomarkers. As such, they are often susceptible
to noise and artifacts. Broadly, an EEG signal is the result of an
accumulation of neural spiking information beneath the scalp
surface. Theoretically, though the invasive recording is less prone
to noise and contains robust information compared to EEG,
it requires complex surgical effort. Extracting such predecessor
spiking information responsible for an ERP could potentially
help to understand the internal processes of BCI relevant activity
and in turn, improve the BCI performance. Therefore, this study
designed an approach based on SNN to generate relevant EEG
signals (such as ERN and P300) and in turn extract its spike
representation from the latent layer. This spike-representation is
assessed toward BCI performance enhancements.

As shown in Section 3.2, the proposed approach was able to
re-organize its spiking activity (see Figure 2B) and generate both
ERN & P300 template signals. By evaluating using 5 × 10-fold
CV metric with different standardized classifiers such as SVM,
NVB, and xGboost, the spike-representation obtained from the
LIF-based model has shown enhanced average BCI performance
compared to baseline performance and further significantly for
certain datasets. Also, besides LIF, the classification enhancement
was observed with another spiking neuron, SNU. Besides ERN
and P300, the model was also tested with non-ERP signals such
as MI and we observed similar performance increment with
spike-representation compared to (see Supplementary Table 2).
In addition to classification, inferring the reason behind such
performance improvement using PCA and correlation analysis
has showcased that the proposed approach was able to extract
more independent eigenvector (features) and increased within-
class correlation and it facilitated the classifiers to better
categorize the samples. To further validate the impact of SNN’s
trained weights, we have also compared the performance of
transformed signal obtained with random weight, LSM and

FIGURE 6 | Pearson correlation among all the samples in an ERN dataset for both EEG signal and its spike-representation (from LIF). Spike representation forged a

higher correlation among the samples of a given class.
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TABLE 5 | Comparison of classification performance of spike-representation (from

LIF) of ERN datasets with xGboost under different prioritization conditions such

as: without node prioritization (WNP), node prioritization (NP), and

threshold-based node prioritization (TNP).

Dataset WNP NP TNP

S1 74.27 74.82 74.27

S2 82.00 83.67 82.00

S3 81.69 81.47 81.47

S4 89.51 90.10 90.10

S5 75.10 75.51 75.51

S6 73.33 73.67 73.33

S7 85.36 83.44 83.44

S8 74.23 69.76 69.76

S9 78.81 76.76 78.81

S10 89.61 88.41 89.61

S11 83.07 83.20 83.07

S12 80.67 84.33 84.33

S13 88.78 89.96 88.78

S14 87.80 90.84 90.84

S15 89.60 84.80 84.80

S16 60.67 81.19 81.19

S17 90.00 64.00 90.00

S18 79.60 90.00 90.00

S19 82.92 81.29 82.92

S20 80.83 84.00 80.83

Avg 81.39 81.56 82.75

The bold values indicate the highest performance produced from all models.

has shown that SNN’s weights provided additional edge in
performance enhancement. A current limitation of this study
is that the threshold estimation requires information many
datasets for node-prioritization. However, this technique offers
advantages in terms of faster inference in edge devices as the
prioritization enables node reduction profoundly. As a proof-of-
concept, this also suggests that novel techniques such as pruning
(Li et al., 2019) and deep-rewiring (Bellec et al., 2017) could be a
desired approach for the future direction.

The template signal extraction was based on the assumption
that a given stimulus should ideally produce similar neural
activity over repeated trials (Mainen and Sejnowski, 1995).
However, it could be plausible for a template containing

irrelevant information to influence the spike representation
too. Therefore, the future direction of this work includes the
derivation of a clean template signal such that the representation
of its in spike format can be more robust. Recent advances in
deep learning have shown that Representation learning methods
have enabled for better organization of data and in turn enhance
the performance (Bengio et al., 2013; Le-Khac et al., 2020). For
example, Khosla et al. (2020) introduced supervised contrastive
learning where a loss function accounts for similarity and
dissimilarity among samples for learning better representations.
Adopting such techniques in the future direction could further
enrich the spike representations.
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