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The performance of myoelectric control highly depends on the features extracted from
surface electromyographic (sEMG) signals. We propose three new sEMG features based
on the kernel density estimation. The trimmed mean of density (TMD), the entropy of
density, and the trimmed mean absolute value of derivative density were computed for
each sEMG channel. These features were tested for the classification of single tasks as
well as of two tasks concurrently performed. For single tasks, correlation-based feature
selection was used, and the features were then classified using linear discriminant
analysis (LDA), non-linear support vector machines, and multi-layer perceptron. The
eXtreme gradient boosting (XGBoost) classifier was used for the classification of two
movements simultaneously performed. The second and third versions of the Ninapro
dataset (conventional control) and Ameri’s movement dataset (simultaneous control)
were used to test the proposed features. For the Ninapro dataset, the overall accuracy
of LDA using the TMD feature was 98.99 ± 1.36% and 92.25 ± 9.48% for able-bodied
and amputee subjects, respectively. Using ensemble learning of the three classifiers, the
average macro and micro-F-score, macro recall, and precision on the validation sets
were 98.23 ± 2.02, 98.32 ± 1.93, 98.32 ± 1.93, and 98.88 ± 1.31%, respectively,
for the intact subjects. The movement misclassification percentage was 1.75 ± 1.73
and 3.44 ± 2.23 for the intact subjects and amputees. The proposed features were
significantly correlated with the movement classes [Generalized Linear Model (GLM);
P-value < 0.05]. An accurate online implementation of the proposed algorithm was also
presented. For the simultaneous control, the overall accuracy was 99.71 ± 0.08 and
97.85 ± 0.10 for the XGBoost and LDA classifiers, respectively. The proposed features
are thus promising for conventional and simultaneous myoelectric control.

Keywords: electromyography, ensemble learning, kernel density estimation, machine learning, myoelectric
control, prosthetics
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INTRODUCTION

The electromyographic (EMG) signal is the electrical
manifestation of the neuromuscular activation when muscles
contract (Raez et al., 2006). The non-invasive EMG (surface
EMG, sEMG) finds applications in rehabilitation (Parker et al.,
2006), sport science (Clarys, 2000), kinesiology and ergonomics
(Hogrel, 2005), muscle architecture identification (Marateb
et al., 2016), neuromuscular pathology (Haig et al., 1996), and
neurological disease diagnosis (Zwarts et al., 2000). Among
the applications in rehabilitation technology, the myocontrol
of active upper limb prostheses has a relevant clinical impact.
For this purpose, sEMG provides information on the neural
control of the motor intention of the users (Jordanic et al., 2016).
However, although current robotic technology has reached a
satisfactory level, EMG-based controlling schemes are still coarse.

One paradigm for myoelectric control is pattern recognition.
Pattern recognition systems are trained to recognize patterns
from the sEMG and select the corresponding function to execute.
This control scheme assumes that sEMG features recorded from a
given electrode location are repeatable for a given state of muscle
group activation and are different from one state of activation to
another (Ameri et al., 2014).

In sEMG pattern recognition research, several features and
classifiers have been tested. For example, Zardoshti-Kermani
et al. (1995) evaluated a feature extraction method called
histogram and proved that its accuracy for classifying three
movements was approximately 95%. Boostani and Moradi (2003)
selected the best feature set from 19 features that included
wavelet coefficients to classify 15 movements and observed that
the energy of wavelet coefficients and the cepstrum coefficients
led to the best performance. Yonghong and Englehart used
a Gaussian Mixture Model (GMM) and the combination of
Root-Mean-Square (RMS) and Auto-Regressive (AR) features
to discriminate between six hand movements with an average
accuracy of 96.26%. Atzori et al. systematically evaluated seven
feature sets and five classifiers on 27 intact subjects performing
52 hand, wrist, and forearm movements. They showed that
simple time-domain features, as proposed originally by Hudgins
et al. (1993), performed as well as complex and computationally
more demanding features, such as marginal discrete wavelet
transform (mDWT) and Short-Time Fourier Transform (STFT).
Nonetheless, for 52 movements, the classification accuracy was
below 80% in the best case (Atzori et al., 2015). AbdelMaseeh
et al. (2016) extracted multi-channel EMG activation trajectories
and classified the extracted trajectories using a metric based on
multi-dimensional dynamic time warping. They evaluated their
proposed method on the second version of the NinaPro dataset,
with an overall accuracy of 89% for classifying 40 movements.
Ameri et al. applied a customized transfer learning method based
on Convolutional Neural Network (CNN), pretrained without
electrode shift, and tested on 2.5 cm electrode displacement
during flexion-extension and pronation-supination. Using ten
channels, the error rate of 21.5 ± 2.3% and 46.0 ± 4.1%
were obtained for flexion-extension and pronation-supination
(Ameri et al., 2020). Marano et al. (2021) showed that inter- and
intra-subject domain adaptation does not significantly improve

movement classification accuracy in NinaPro DB2, DB3, and DB6
datasets regardless of the transfer learning method. Triwiyanto
et al. (2020) optimized CNN’s hyperparameters, such as the
number of convolution layer filters, type of optimizer, and
dropout and achieved an accuracy ranging 77 and 93% for
10-class gesture classification in different motion ranges. Sri-
Iesaranusorn et al. (2021) used a feed-forward deep neural
network model for the classification of 41 hand and wrist
movements of DB5, and DB7 (Ninapro project), and achieved an
overall accuracy of 93.87± 1.49 and 91.69± 4.68%, respectively.

In addition to the above representative examples, there have
been many more attempts to compare the efficacy of various
feature sets (Hudgins et al., 1993; Englehart et al., 1999) or
classifiers (Atzori et al., 2015, 2016). Scheme and Englehart
(2011) provided a comprehensive review of pattern recognition
methods for myoelectric control. In general, few novel features
have been proposed with respect to the classic time-domain
features, and when compared to the time-domain features, new
features usually did not substantially improve the performance.
With these approaches, classification accuracy is usually reported
as approximately 95% for up to 10 classes. However, it decreases
substantially with increasing the number of classes.

Results on EMG pattern recognition are mostly reported
for able-bodied individuals, with relatively few evaluations on
amputees. Because of stump conditions, the performance of EMG
pattern recognition usually reduces substantially for amputees
with respect to able-bodied subjects. For example, Atzori et al.
(2014a) evaluated their benchmark on 11 hand-amputated
subjects and reported an average classification accuracy for 50
movements of <50%, which did not improve when using deep
learning (Atzori et al., 2016).

This study proposes new sEMG features to enhance the
classification accuracy for a high number of hand movements.
We present three new features based on the Kernel Density
Estimation (KDE) of sEMG signals used for ensemble
learning. Using these features on 40 intact subjects and 11
amputees for discriminating 40 movements, we prove a
substantial improvement with respect to the state-of-the-art.
Moreover, because daily activities require simultaneous control
of more than one movement (Iqbal et al., 2018), we further
tested the performance of the proposed features in detecting
simultaneous movements.

The paper is organized as follows: in the next section, the
experimental protocol, the pattern recognition methods used
in this study, and the validation framework are presented.
Section Results describes the results of the proposed movement
detection algorithm. Finally, the conclusion is summarized in
Section Discussion.

MATERIALS AND METHODS

Ninapro Database
Ninapro V.2
The second version of the Ninapro database was used for
reporting results on conventional myoelectric control. This
dataset provided a benchmark for hand prosthesis evaluation on
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intact subjects (Atzori et al., 2014a, 2015; Gijsberts et al., 2014).
The database consists of recordings with 12 sEMG wireless
double-differential (DD) electrodes (DelsysTringo Wireless
System; OttoBock MyoBock 13E200 sEMG electrodes) at the
sampling rate of 2 ksps, with the baseline noise <750 nV RMS.
Eight DD electrodes were equally spaced around the forearm at
the level of the radio-humeral joint; two electrodes were placed
on the main activity spots of the flexor digitorum superficialis and
the extensor digitorum superficialis, and the last two electrodes
were located on the main activity spots of the biceps brachii and
of the triceps brachii. The main activity spots were identified
by palpation (Gijsberts et al., 2014). This database contained
data obtained from 40 intact subjects (70% men, 85% right-
handed; age 29.9 ± 3.9 years; weight 70.9 ± 14.2 kg; height
172.8 ± 10.4 cm). The subjects were seated at a desk during the
acquisitions, resting their arm comfortably on a desk. A laptop
provided visual stimuli in front of the subject while recording
the sEMG signals. Each subject performed six repetitions of
40 hand movements (Figure 1). Each movement lasted 5 s
followed by 3 s rest.

Ninapro V.3
The third Ninapro database (Atzori et al., 2014a) contains data
obtained from 11 trans-radial amputated subjects (11 males; 10
right-handed, one left-handed; age 42.36 ± 11.96 years; weight
79 ± 8.4 kg; height 176.9 ± 5.7). This dataset provided a
benchmark for hand prosthesis evaluation on amputees (Atzori
et al., 2014a,b). Amputees were asked to think to repeat the
movements as naturally as possible with the missing limb. It is
important to remark that amputees cannot, in general, produce
reliable ground truth. In related literature, this fundamental
problem has been circumvented either by (a) instructing the
subjects to execute a task bilaterally while recording the ground
truth from the intact limb or by (b) asking them to follow
a visual stimulus (to think to repeat) (either on a screen or
performed by the experimenter) (Nielsen et al., 2011). There is
no consensus on the best procedure, so each subject was left
free to choose after a short training phase, which resulted in
only two subjects undergoing bilateral execution. As a result, the
database contains only the stimulus as ground truth for the rest
of the amputees. Analyses with the stimulus as ground truth have
already been successfully performed [for example, see ref. Nielsen
et al. (2011)]. The experimental protocol was the same as the
intact subjects for the other details (Atzori et al., 2014a). Since the
data for the first amputee was only available in 29 movements, it
was excluded from the analysis resulting in 10 total amputees.

All intact subjects and amputees gave informed consent to
the experimental procedure. The experimental protocol was
approved by the Ethics Commission of the Canton Valais
(Switzerland) and conformed to the Declaration of Helsinki
(Atzori et al., 2014a).

Simultaneous Movement Detection
In addition to the Ninapro database, a database recorded by
Ameri et al. (2018) was used to report the performance of
proposed features on the detection of simultaneous movements.
This database was obtained from 17 intact subjects (15 right-
handed; age 29.5 ± 3.7 years). The sEMG signals were recorded

with eight bipolar electrodes, which were equally spaced around
the forearm. The sampling rate of data was 1.2 kHz. Four
movements, including flexion, extension, pronation, supination,
and simultaneous combinations of two movements, were
considered in this data set. Four repetitions of 3 s were collected
for each motion (Ameri et al., 2018).

Pre-processing
For Ninapro datasets, signals were digitally band-pass filtered
using a fourth-order Butterworth filter with 20 and 500 Hz cut-
off frequencies. The signal in each channel was then standardized
to have zero mean with unit standard deviation. The outliers
were detected in each channel using the 3-sigma rule and then
removed from the dataset. Windowing was performed on the
signal with a fixed size of 400 ms and an overlap of 100 ms
(Gijsberts et al., 2014).

Signals collected by Ameri were filtered using an eight-order
Butterworth band-pass filter with cut-off frequencies of 5 and
500 Hz. The feature extraction was based on windows of 160 ms
with an increment of 40 ms (Ameri et al., 2018).

Feature Extraction
The proposed features were calculated based on the Kernel
Density Estimation (KDE) of each channel’s time samples of
sEMG signals. The application of KDE in movement detection
was inspired by the application of histogram, with a predefined
number of bins, as proposed by Zardoshti-Kermani et al.
(1995). The KDE extends the Histogram method, as described
in the following.

Kernel Density Estimation
Density estimation is an essential tool in statistics and machine
learning. It is divided into parametric and non-parametric
methods. Parametric density estimation refers to methods in
which the data are drawn from one of the known distribution
families, and the goal of estimation is finding the parameters of
the distribution from the given data (Silverman, 1986). On the
other hand, there is no assumption about data distribution in
the non-parametric approach (Botev et al., 2010). The histogram
is the simplest non-parametric density estimation method. It is
highly dependent on the number of bins and bin edges.

Moreover, it is not possible to estimate its derivatives. The
KDE was proposed to overcome these drawbacks (Silverman,
1986). The task of KDE is to compute a density estimate based
on n i.i.d. samples x1...xn ∈ R drawn from an unknown density
function f :

f̂ (x) =
1
nh

n∑
i = 1

K
(
x−xi
h

)
(1)

where K is the kernel function, such that K(u) ≥ 0 and h ∈ R
is the bandwidth parameter of the kernel. The selection of an
appropriate kernel function and its bandwidth parameter has
been discussed in the literature (Heidenreich et al., 2013).

The most common data-driven bandwidth selection
technique, the plug-in method (Jones et al., 1996), is dependent
on the normal reference rule. Moreover, the popular Gaussian
kernel density estimator lacks local adaptivity and is sensitive
to outliers. Also, most kernel estimators suffer from boundary
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FIGURE 1 | Forty movements included in the acquisition protocol. (A) Isometric, isotonic hand configurations (“hand postures”). (B) Basic movements of the wrist.
(C) Grasping and functional movements [modified from Atzori et al. (2014a), with permission].

bias when, for example, the data is non-negative (Botev et al.,
2010). Botev et al. (2010) introduced an adaptive kernel density
estimation method based on the smoothing properties of the
linear diffusion procedure. The idea is to view the kernel from
which the estimator is constructed as the transition density of
a diffusion process. It incorporates information from a pilot
density and then estimates the final density by the general linear
diffusion procedure (Botev et al., 2010). This method has an
improved plug-in bandwidth selection approach that avoids
the standard reference rules deteriorating the performance of
plug-in methods. Moreover, since the KDE method proposed by
Botev et al. (2010) does not require an optimization procedure
to compute the bandwidth parameter, it is fast and suitable for
online analyses.

In addition to the proposed kernel derivative, three other
methods were also used to compare this study. The first-order
difference operator was first used as represented in Equation (2);

DF1 (xi) =
1
Ts

(xi − xi−1) (2)

where xi is the kernel sample, and Ts is the sampling time. This
formula approximates the continuous-time derivation. However,
it amplifies the high-frequency fluctuations if presented in the
kernel density output. The point central difference operator (also
known as three-point Lagrange derivative) (Marble et al., 1981)
was further used. In this method, two consecutive outputs of the
first-order difference are averaged using Equation (3):

DF2 (xi) =
1

2 × Ts
(xi − xi−2) (3)

The direct KDE proposed by Sasaki et al. (2014) was also
used. Assuming that n i.i.d. samples X = {xi}

n
i = 1 driven from

unknown density p(x), belonging to Rd are available, the goal is

to estimate the kth order (partial) derivative of P(x).

pk,j (xi) =
∂k

∂xj11 ∂xj22 . . . ∂xjdd
(4)

where ji ∈ {0, 1,..., k}, j1 + j2 + . . . + jd = k and d is the dimension
of x. in a case, when k = 2 and d = 2, pk,j(x) corresponds to the
Hessian matrix of p(x) as follow:

p2,j (x) =

[
∂2

∂x2
1

∂2

∂x2∂x1

∂2

∂x1∂x2

∂2

∂x2
2

]
(5)

In this method, the kth order derivative of density Pk(x) is
modeled by the pilot function gk(x). Then, the pilot function is
learned to minimize the mean integrated square error (MISE)
criterion, as shown in Equation (6):

Jj
(
gk,j
)
=

∫ {
gk,j (x)− pk,j (x)

}2dx−
∫ {

pk,j
}2dx

(6)
where Jj(gk,j) is the mean integrated square error, finally, a
density derivative estimator gk,j(x) is obtained by minimizing the
expression (5) (Sasaki et al., 2014).

In this study, sEMG samples over predefined windows were
used for KDE. The time samples of the sEMG signal in each
channel for each repetition of each movement were divided
into three equal time windows during the contraction, and their
density was computed over the middle window. After this step,
three feature sets were computed from the estimated density, as
detailed in the following.

Trimmed Mean of the density
The central tendency of the density values obtained by KDE
was estimated using the trimmed mean operator. Random
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variables with asymmetric distributions have many applications
in non-stationary signal processing. Due to discrepant values in
samples, the standard sample mean is not a robust parameter.
Various methods have been proposed in the literature to improve
the stability of the sample mean (Horn and Kafadar, 2006).
A standard method is based on removing the larger or smaller
observations than certain limits and then computing the mean of
the remaining observations, as in Equation (7) (Burdett, 1996).

trimmed mean = E
{

x| lowerth < x < higherth
}

(7)

where lowerth is the lower limit and higherth is the higher limit
for the mean calculation. Our study removed 5% of the data in
the low range and 5% in the high range.

The Entropy of the Density
The complexity of the density values was assessed using
the Approximate Entropy (ApEn) (Pincus, 1991). The ApEn
determines the conditional probability of similarity between a
chosen data segment of a given duration and the next set of
segments of the same duration; the higher the probability, the
smaller the ApEn value, indicating less complex data. We used
ApEn of the estimated density of the sEMG signal. Calculating
ApEn requires prior determination of two unknown parameters:
m, the embedding dimension, and r, the tolerance value.
These parameters are usually estimated based on an exhaustive
search, which is time-consuming. Conversely, in this study, we
used the fast heuristic stochastic tuning approach proposed by
Chon et al. (2009).

Trimmed Mean Absolute Value of the Density
Derivative
The density derivative, a versatile tool in statistical data analysis,
has been previously used for mean shift clustering in image
processing (Duong et al., 2016) and nearest-neighbor Kullback-
Leibler (KL) divergence approximation for feature selection
(Tangkaratt et al., 2015) in machine learning. A traditional
approach is the computation of the derivate of the density values
obtained by KDE. Although the direct kernel density derivative
estimator (KDDE) proposed by Sasaki et al. (2014) is a suitable
choice for the kernel derivation, its computational complexity is
high. Therefore, we used a simple estimator for density derivative
by computing the gradient of the kernel density estimation
(Schuster, 1969; Jordanić et al., 2017), which has less complexity
and comparable performance. When the kernel K is differentiable
r times, then the rth density derivative estimate f̂ (r)(x) of f can be
computed as Equation (8):

f̂ (r) (x) =
1

nhr+1

n∑
i = 1

K(r)(
x− xi

h
) (8)

where K(r) is the rth derivative of the kernel K.
A widely used kernel is the Gaussian kernel with zero

mean and unit variance, that is K (u) = 1
2π

e−
u2
2 . We used

the Gaussian kernel so that the entire rth derivatives could
be easily estimated through the rth derivative of the kernel
estimate. A similar algorithm can be derived for other kernels

as well. The rth derivative of the Gaussian kernel K(u) is given
by K(r) (x) = (−1)r Hr (x) K(x), where Hr (x) is the rth Hermite
polynomial. Hence, from Equation (8), the density derivative
estimate with the Gaussian kernel can be written as Equation (9):

f̂ (r) (x) =
(−1)r
√

2πnhr+1

n∑
i = 1

Hr

(
x− xi

h

)
e
− (x−xi)

2

2h2 (9)

where r indicates the degree of derivation, h is the estimated
bandwidth of the kernel, x is the vector of samples, and n is the
number of samples.

The trimmed mean absolute value of the kernel derivative was
used as a feature. The trimming parameters were the same as for
the trimmed mean of the density.

The new sEMG features were compared with classic
features as well as wavelet features. The classic features
included the Root Mean Square (RMS), the Waveform Length
(WL) (Boostani and Moradi, 2003), and the Mean Absolute
Value (MAV). The wavelet features were the energies of the
Discrete Wavelet Transform (DWT) coefficients of the EMG
signals over three scales, using the sym4 as mother wavelet
(Boostani and Moradi, 2003).

Classification
Conventional (Sequential) Control
Feature Selection for Ensemble Learning
The features were extracted from the middle sEMG epoch
for each of the 12 channels. The sEMG signals recorded
from nearby channels are usually correlated. Moreover, the
recorded data may contain either redundant or irrelevant
features and can thus be removed. For this purpose, we
used a filter-based feature selection method, Correlation-
based feature selection (CFS), which uses a heuristic
based on correlation to evaluate the importance of the
features (Hall, 2000). This method hypothesizes that
good feature subsets contain highly correlated features
with the class yet uncorrelated with each other. Based
on this hypothesis, the heuristic is formalized as follow:

Merits =
krc−f√

k+ k(k− 1)rf−f
(10)

where Merits is the heuristic “merit” of a feature subset S
containing k features, rc−f the average feature-class correlation,
and rf−f the average feature-feature inter-correlation. In order
to find the best subset, CFS uses a heuristic search known as
Best First (Rich and Knight, 1991) to evaluate its usefulness. CFS
thus first calculates a matrix of feature-class and feature-feature
correlations from the data and then searches the feature subset
space using the best first search. The best first search starts with
an empty set of features and generates all possible single feature
expansions. The subset with the highest evaluation is chosen
and expanded in the same manner by adding single features. If
expanding subset results in no improvement, the search drops
back to the following best-unexpanded subset and continues
from there. The best subset found is returned when the search
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TABLE 1 | The number of misclassifications for each movement in each hold out repetition scenario.

Over intact subjects

# mov. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Sum

Split1 1 1 1 1 1 0 0 2 2 1 3 2 1 1 2 0 0 5 5 5 34

Split2 1 1 2 0 0 2 0 0 1 0 1 1 2 0 0 1 1 1 3 0 17

Split3 1 0 1 0 1 0 0 1 0 1 0 0 2 0 1 1 1 3 0 2 15

# mov. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 39 40 Sum

Split1 3 2 2 2 1 1 3 5 0 7 4 2 3 1 2 2 0 0 1 0 41

Split2 5 1 2 1 1 2 1 1 1 4 3 2 1 0 0 1 1 1 1 0 29

Split3 2 1 5 0 1 1 3 3 3 3 2 1 0 0 2 1 2 0 1 1 32

Over amputee subjects

# mov. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Sum

Split1 3 4 3 1 2 2 3 4 3 0 3 1 5 2 6 5 5 6 1 5 64

Split2 2 1 2 1 3 3 2 1 3 0 3 2 6 3 3 2 8 8 4 4 61

Split3 1 2 1 1 0 1 4 3 5 1 4 1 5 3 2 1 4 6 2 4 51

# mov. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 39 40 Sum

Split1 3 6 5 4 5 2 4 3 3 5 4 9 5 5 4 0 5 0 2 1 75

Split2 5 6 4 4 4 4 4 8 7 8 4 9 3 5 8 0 6 1 1 0 91

Split3 6 4 3 2 5 3 1 3 8 8 3 3 5 6 7 1 2 0 0 1 71

#mov. (movement number) for each considered split; the number of misclassifications was calculated as the total number of cases in the entire training or test sets and
40 subjects, in which the specific movement was not correctly (either False Positive or False Negative error) estimated.

terminates. CFS uses a stopping criterion of five consecutive
fully expanded non-improving subsets (Hall, 2000). CFS usually
outperforms the wrapper methods on small datasets, such as our
sEMG dataset, based on accuracy and efficiency.

Classification and Ensemble Learning
As the focus of this study is to introduce new features, commonly
used classifiers were applied as a base learner for Ensemble
learning. These were Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), and Multi-Layer Perceptron
(MLP). An ensemble of classifiers is a set of classifiers whose
individual decisions are combined to obtain a system to
outperform each of its members. The ensemble members, known
as base learners or base classifiers, must be both accurate
and diverse to achieve this goal. A classifier is accurate if its
classification error is lower than obtained when the classes are
assigned randomly. Two classifiers are diverse if they make errors
on different instances.

In our analysis, an MLP with one hidden layer was trained
with the Back Propagation algorithm. The number of neurons
in the hidden layer was set to 15 based on trial and error, and
its activation function was the tangent sigmoid function for the
hidden layer and linear function for the output layer.

Non-linear SVM was applied with the radial basis function
(RBF) kernel. The soft-margin parameter and the radius of
the RBF kernel were set with the method proposed by
Wu and Wang (2009).

For each classifier, the class output, and the posterior
probability matrix, the degree of decision making given to each
class, were derived. The Behavioral Knowledge Space (BKS)

method was used for combining the output of the base learners
[for review see Polikar (2006)].

Simultaneous Control
To enhance the performance of myoelectric prostheses, it is
essential to control multiple tasks simultaneously. For this
reason, the features proposed in this study were used to
classify simultaneous movements. This section used the database
registered by Ameri motion (Ameri et al., 2018).

Classification
The XGBoost (eXtreme Gradient Boosting) algorithm was used
to classify simultaneous movements. The XGBoost algorithm
is an implementation of the decision tree gradient boosting
designed for high speed and performance. Due to the fast learning
and efficient memory, this algorithm was chosen. This algorithm
combines several weak predictors to create a robust classifier
(Swamynathan, 2017; Nguyen et al., 2020).

Parameters of the XGBoost were selected by testing the
accuracy under different estimator numbers, maximum tree
depths, and learning rate. The number of boosted trees was set
to 600 (estimators). Furthermore, the maximum tree depth and
learning rate were set to 18 and 0.1, respectively.

Performance Evaluation
The performance of the proposed classification system was
assessed in terms of accuracy and the number of subjects
with at least one wholly misclassified movement. For each
movement class Ci (i ε{1,. . ., c}; c = the number of classes),
the following parameters were extracted based on the traditional
signal detection theory (Sokolova and Lapalme, 2009):
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True Positive (TPi): the number of samples correctly
identified as class Ci;
True Negative (TNi): the number of samples correctly
identified as any class except the class Ci;
False Positive (FPi); the number of samples incorrectly
identified as class Ci;
False Negative (FNi); the number of samples belong to class
Ci but incorrectly assigned to other classes;

precisioni (PRi) =
TPi

TPi + FPi
(11)

Recalli (RLi) =
TPi

TPi + FN i
(12)

Accuracyi (Acci) =
TPi + TN i

TPi + FPi + TN i + FN i
(13)

F − scorei (Fi) =
2PRi × RLi
PRi + RLi

(14)

For each subject, the overall validity of the proposed multi-
class classification system was assessed using the micro (Fmicro)
and macro (Fmacro) averaged F-scores and the overall accuracy.
The macro averaged F-score is the average of the entire F-scores
calculated for the entire classes (Equation 14) while, the micro
averaged F-score is assessed by calculating the F-score over the
micro averaged Precision (PRu) and Recall (RLu) (Equations 15,
16; Sokolova and Lapalme, 2009). The overall accuracy was then
calculated as the sum of the diagonal elements of the multi-class
confusion matrix divided by the sum of the entire confusion
matrix elements. It is easily shown that Fmicro, PRu, RLu, and the
overall accuracy measure are identical.

Fmacro =

∑c
i = 1 Fi

c
(15)

PRu =

∑c
i = 1 TPi∑c

i = 1 (TPi + FPi)
(16)

RLu =

∑c
i = 1 TPi∑c

i = 1 (TPi + FNi)
(17)

Theoretically, when at least one of the movements is
completely misclassified in a fold (i.e., TP = 0 in the entire two
recording repetitions), the macro averaged F-score (Fmacro) could
not be calculated (shown as NaN in the results). The number
of subjects with at least one misclassified movement was then
determined based on this measure. In these cases, the number of
correctly classified movements was reported for each subject.

Repeated hold out (N = 3) validation method was used to
assess the classifier’s performance in the conventional myoelectric
control. The repeated method was used in order to overcome a
possible pessimistically biased error estimate. For each subject,
the data were split into two mutually exclusive training (four
repetitions data) and test sets (two repetitions data), that is
twofolds (Gijsberts et al., 2014). Such validation was repeated
three times (Split1, Split2, Split3) by changing the permutation
of the recorded data repetitions as below (Gijsberts et al., 2014):

Split1: test set = {Rep1, Rep4}, training set = {Rep2, Rep3,
Rep5, Rep6}.
Split2: test set = {Rep2, Rep5}, training set = {Rep1, Rep3,
Rep4, Rep6}.
Split3: test set = {Rep3, Rep6}, training set = {Rep1, Rep2,
Rep4, Rep5}.

Where Repi represents the ith repetition of each
movement. The results of different folds were then averaged
for each movement.

For Ameri’s dataset, a fourfolds cross-validation method was
used. The data was divided equally into fourfolds, threefolds
were used for training while the remaining fold was used
for evaluation, and this procedure continued until the entire
folds were tested.

Statistical Analysis
All statistical analyses and calculations were performed using the
SPSS statistical package, version 18.0 (SPSS Inc., Chicago, IL,
United States). Data are reported as means± standard deviation.
The normality of the data was checked using the Kolmogorov–
Smirnov test. The Generalized Linear Model (GLM) was used
for assessing the correlation between the proposed features and
the movement classes. The association between the movement
classification and the remaining forearm was assessed using
the partial correlation, controlling for the DASH (Disability of
the Arm, Shoulder and Hand) score (Atzori et al., 2014a). We
used Generalized Estimating Equation (GEE) method (Hardin
and Hilbe, 2014) for modeling factors associated with repeated
responses [i.e., overall accuracy of the proposed classification
system in different movement class categories (Figure 1)].
A Kruskal–Wallis (KW) one-way analysis of variance was used
to test for differences in the overall accuracy of the LDA
classifier using trimmed mean absolute value of derivative
density (TMAVDD) feature calculated using different kernel
derivative estimation methods. When KW identified a significant
difference, the Mann–Whitney U-test with Bonferroni correction
was used for pair-wise comparisons. Fleiss’ kappa (Gwet, 2014),
a statistical measure for assessing the reliability of agreement
between the output of the ensemble classification system and
that of the gold standard, was calculated on the pooled test-
set confusion matrices on the analyzed threefolds in the intact
and amputee subjects. McNemar’s test (MN) was used to
compare different classifiers to identify whether one classifier
statistically significantly outperforms the other (Dietterich, 1998).
A two-sided P-value of < 0.05 was considered statistically
significant. Finally, the proposed movement detection system was
implemented using Matlab and Statistics Toolbox Release 2011a
(The MathWorks, Inc., Natick, Massachusetts, United States).

RESULTS

Ninapro Database
The features trimmed mean of density (TMD), TMAVDD,
and entropy of density (ED) were extracted from each
channel to obtain a feature vector in 36 dimensions. The
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number of features was reduced using the CFS method
ranging from 17 to 29. Such features were then randomly
distributed to the base learner classifiers. The performance of
the proposed ensemble classification system for each subject is
shown in Supplementary Tables 1, 2 for intact and amputee
subjects, respectively.

For intact subjects (dataset 2), overall, in the training set, the
average (micro) F-Score, and (macro) F-Score across the full
subject sample were 99.96 ± 0.19, and 99.99 ± 0.01 in percent,
respectively. These values for the test set were 98.32 ± 1.93, and
98.23± 2.02 in percent, respectively.

For amputees (dataset 3), in the training set, the average
(micro) Fscore, and (macro) Fscore across the entire subject
sample were 97.65± 3.2, and 99.88± 0.16 in percent. Such values
for the test set were 90.25 ± 10.5 and 99.5 ± 0.53 in percent,
respectively. The partial correlation between (micro) Fscore and
the remaining forearm (%) was 0.752 (P-value = 0.020).

Fleiss’ kappa (inter-rater reliability) for the movement
detection in intact and amputee subjects were 0.9660 [C.I.
95%: (0.9659–0.9661)] and 0.8123 [C.I. 95%: (0.8119–
0.8126)], respectively (P-value < 0.001). It thus showed
“almost perfect agreement” between the output of the
ensemble classifier and that of the gold standard, indicating
the observed agreement was not accidental in the entire subjects
(Fleiss et al., 2013).

The performance of the proposed classification system was
further assessed based on the total misclassification for a specific
movement for the entire subject sample, sets (training and test),
and six repetitions (Table 1). In fact, instead of analyzing each
fold, including two recording repetitions, each repetition was
analyzed. Overall, the average misclassified movements, and
their percentage in the entire recordings were 1.40 ± 1.38
and 1.75 ± 1.73 (%), respectively, in the entire recording
sets and subjects.

Eighty percent of the movements had less than four
misclassified cases in the entire validation folds and subjects
for intact subjects. The overall performance of the proposed
algorithm for the class categories (b: movement classes 9–
17) and (c: classes 18–40) was similar but was statistically
significantly lower than that of the category (a: classes 1–
8) (GEE; P-value < 0.05). For amputee subjects, 83% of the
movements had less than seven misclassified cases in the entire
validation folds and subjects. The overall performance of the
proposed algorithm for the class categories (b: movement classes
9–17) and (c: classes 18–40) was similar but was statistically
significantly lower than that of the category (a: classes 1–8) (GEE;
P-value < 0.05).

The performance of the proposed system was compared
with that of other commonly used methods and features in
terms of the number of subjects with at least one completely
misclassified movement in a validation fold (Table 2). DWT
features were calculated using the Symlet mother wavelet with
three vanishing moments up to the third level decomposition
(Boostani and Moradi, 2003). DWT (with LDA classifier) showed
better performance (11 misclassifications).

Supplementary Figure 1 shows the number of ideally
classified movements in each intact subject’s best and worst TA
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FIGURE 2 | The overall classification accuracy of three new features individually as well as their combination (A), and classic features (B) in the whole and also
middle period of recording in the intact subjects. Individual features were classified using linear discriminant analysis (LDA) and support vector machine (SVM), and
ensemble of LDA, SVM, and multi-layer perceptron (MLP) classifiers. The results of the MLP classifier were not shown as they were very low, compared to those of
LDA and SVM. Error bars show standard deviation over the test folds. WL, waveform length; MAV, mean absolute value; RMS, root mean square; DWT, discrete
wavelet transform; ED, Entropy of density; TMD, Trimmed Mean of Density; TMAVDD, trimmed mean absolute value of derivative density.

FIGURE 3 | The scatter plot of the features trimmed mean of density (TMD) (A) and discrete wavelet transform (DWT) (B) in the second versus first recording
channels in a subject. Features related to a specific movement calculated at different recording data repetitions were grouped on the left panel. The color bar shows
the colors assigned to each recording channel.

folds. For the intact subjects, at least 28 movements were
ideally classified, while for the amputees, excluding subject
six, a number of 15 movements were ideally classified in
the entire analysis folds. Moreover, the performance of

the proposed classification system was assessed on each
movement of the entire intact subjects (Supplementary
Figure 2). A similar plot was provided for the amputees
(Supplementary Figure 3).
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FIGURE 4 | The effect of different methods of estimating the kernel density derivative on the overall performance of classification. Upper panel represents the kernel
density and its derivatives estimated using four methods (basic difference, central difference, kernel derivative, and direct kernel derivative) on a signal for the
movements no. Twenty (left) and 13 (right). Lower panel shoes the overall classification performance of the linear discriminant analysis (LDA) classifier with trimmed
mean absolute value of derivative density (TMAVDD) feature when derivative of estimated density was calculated using those four methods.

The effect of ensemble learning to improve the performance
of the proposed classification system was shown in Figure 2
over intact subjects. The three new features ED, TMAVDD,
and TMD were first separately used with the LDA and SVM
classifiers in this figure. LDA with TMD showed the best
performance with average accuracy (98.99 ± 1.36). Ensemble
learning not only improved the average accuracy (99.91 ± 0.10),
but it also reduced the number of cases with at least one
completely misclassified movement in a validation fold from 4
to 0 (Table 2).

The class discrimination capability of the first proposed
feature (TMD) was shown compared to that of DWT in
Figure 3. The proposed movement detection algorithm showed
an overall accuracy of 99.91 ± 0.10 across the entire subject
sample and movements. No movement was missed entirely in
a validation fold that includes two recording data repetitions
(Table 2). Each analyzed fold was further examined, and the
average misclassified movements in the entire recordings were
1.40 ± 1.38 for intact subjects. The success of the proposed
algorithm was highly dependent on the extracted features and
ensemble learning.

The reduction in the feature vector in each recording
electrode compared to that of commonly used features resulted
in higher accuracy (Figure 2) and reduced the number
of misclassified movements (Tables 1, 2). Meanwhile, the
ensemble learning used in our study further improved the
number of misclassified movements (Table 1) and the overall
accuracy (Figure 2).

Different KDDE methods were used to estimate the kernel
density derivative. LDA classifier was then used with the
feature TMAVDD calculated for each recording channel,
and the overall performance was reported for the entire
subjects and movements (Figure 4). The performance of
the proposed kernel derivative estimation was statistically
significantly better than the three other methods (KW;
P-value < 0.05).

We also implemented an online version of the proposed
movement detection algorithm. TMD features with LDA
classifier were used to analyze epochs of 300, 200, 100, and
50 ms and were validated on three split sets. The average
accuracy of 40 hand-movement classifications in the entire
intact subjects on the test sets was reported. The average
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TABLE 3 | The performance of the online classification system on different epoch
widths over the entire movements and intact subjects as well as its average
running time on the training and test sets.

Epoch width
(ms)

Training time (ms) Test time (ms) Overall accuracy

300 67.72 ± 7.98 67.69 ± 7.96 85.75 ± 6.98

200 63.44 ± 6.62 63.43 ± 6.62 82.20 ± 7.72

100 56.25 ± 5.64 56.24 ± 5.64 73.97 ± 9.04

50 53.53 ± 5.60 53.53 ± 5.60 61.51 ± 8.99

The average running time included the feature extraction, selection and
classification times. The overall accuracy was calculated on three tests sets in the
Split1, Split2, and Split3 sets.

running time of the entire classification system (feature
extraction, feature selection, and classification) was also reported
on the training and test sets (Table 3). The analysis was
performed on an Intel i5-4300U 1.90 GHz CPU with 8 GB
of RAM. Table 3 indicates that, for example, the online
movement detection method could be used for the analysis
window of 200 ms with an average accuracy of 82% and a
processing time of 63 ms.

Ameri’s Database
Epochs of 200 ms filtered sEMG signals, during flexion,
pronation, and simultaneous flexion, and pronation were shown
in Figure 5. The corresponding raw sEMG signals were shown
in Supplementary Figure 4. In the Ameri dataset (Ameri et al.,
2018), the average classification accuracy, F-Score (micro), and
F-Score (macro) (mean ± standard deviation) for all subjects
for the XGBoost classifier were 99.71 ± 0.08 and 98.79 ± 0.37,
respectively. The performance of the algorithm for each subject
was shown in Supplementary Table 3. Moreover, the cross-
validated confusion matrix and the target versus predicted classes
were provided as the following for each subject: https://doi.org/
10.6084/m9.figshare.18865121.

The performance of the XGBoost was compared with
that of the LDA, as one of the most commonly used
classifiers applied to movement detection (Supplementary
Table 3). In both classifiers, the proposed new features
were used. The average classification accuracy, F-Score
(micro), and F-Score (macro) (mean ± standard deviation)
for all subjects for the LDA classifier were 97.85 ± 0.10
and 91.02 ± 0.37 in percent, respectively. The XGBoost
significantly outperformed the LDA classifier (MN;
P-value < 0.05). Moreover, the performance of the XGBoost
and LDA classifiers was compared for each movement
class (Figure 6).

DISCUSSION

Comparison With the State-of-the-Art
Gijsberts and Caputo (2013) used the combination of DWT,
RMS, and HIST sEMG features with Kernel Regularized Least
Squares (KRLS) classifier with the exp-χ2 kernel to discriminate
40 hand and wrist movements in 20 intact subjects (Ninapro

V.2 dataset). The authors reported an overall accuracy of
77.75%. The accelerometer information was further added to
the DWT features to reach an accuracy of 82.59%. Gijsberts
et al. (2014) used DWT, RMS, and HIST features with KRLS
classifier to discriminate 40 hand and wrist movements (and
the rest posture) in 40 intact subjects (Ninapro V.2 dataset).
The authors reported an overall accuracy of 77.48%. The
accelerometer information was further added to the DWT
feature, and the accuracy of 82.49% was obtained. In a
recent study, Li et al. (2017) proposed the combination of
sEMG and electroencephalography (EEG) to improve the
accuracy of hand movement detection. They used four time-
domain features with an LDA classifier to discriminate five
hand motion classes in four transhumeral amputees. The
authors reported overall accuracy (per five movements per four
subjects) of 91.7%.

We used TMD, TMAVDD, and ED sEMG features with the
LDA classifier to discriminate 40 hand and wrist movements
in 40 intact subjects (Ninapro dataset). The correlation-
based feature selection was used to reduce the feature
space. The overall accuracy was 98.99, 91.23, and 83.00%,
for such features, respectively (Figure 2). When those three
features were used in ensemble learning using LDA, SVM,
and MLP base classifiers, the overall accuracy increased to
99.91%. Atzori et al. tested Convolutional Neural Network for
classifying 40 movements on both NinaPro datasets 2 and 3.
The classification accuracy obtained with convolutional neural
networks using their proposed architecture was 60.27 ± 7.7%
on dataset 2 and 38.09 ± 14.29% on amputees (dataset 3)
(Atzori et al., 2016).

Geng et al. (2016) proposed a real-time method for
recognizing eight hand gestures. Their method was based on
HDsEMG image in which instantaneous values of recorded
sEMG via an array of the electrode are mapped to an image
and classified using a deep convolutional neural network.
They also evaluated the method on the NinaPro dataset
2. They achieved recognition accuracy of 76.1% over DB2.
AbdelMaseeh et al. (2016) extracted multi-channel EMG
activation trajectories and classified the extracted trajectories
using a metric based on multi-dimensional dynamic time
warping. An accuracy of 89% with an average movement
error rate of 0.09 was obtained. The best results reported on
the NinaPro dataset 3 were by Atzori et al. (2014b), who
used both sEMG and accelerometry data. They showed a
maximum average classification accuracy for 40 movements
in five amputees of 61.14%. These results showed that our
method based on Kernel Density of sEMG signal combined with
an ensemble of learners outperforms state-of-the-art methods
for movement recognition, even for the sEMG signals from
amputee subjects.

In our study, the repeated hold-out validation (N = 3)
was used to overcome a possible pessimistically biased error
estimate and guard against testing hypotheses suggested by the
data (Type III errors). In each hold-out, four data recording
repetitions were used for training and two for testing. The second
hold-out was the same as what was used in Gijsberts et al.
(2014) for validation.
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FIGURE 5 | A sample filtered signal array for three movements of Ameri’s dataset.

FIGURE 6 | The comparison between the performance of the eXtreme gradient boosting (XGBoost) and linear discriminant analysis (LDA) classifiers for each
movement class. Error bars show standard deviation over the test folds. Flx, Flexion; Ext, Extension; Pro, Pronation; Sup, Supination.

Ameri et al. (2018) used four time-domain features with
CNN and SVM classifiers to discriminate nine simultaneous
movements in 17 intact subjects (Ameri dataset). The authors
reported overall classification accuracies for the CNN and SVM,
91.61± 0.39, and 90.63± 0.31, respectively.

We used TMD, TMAVDD, and ED sEMG features with the
XGBoost and LDA classifier to discriminate nine simultaneous

movements in 17 intact subjects (Ameri dataset). The overall
accuracy for the XGBoost and LDA were 99.71 ± 0.08 and
97.85± 0.10%, respectively.

Thus, the comparison of our result with the state-of-the-art
showed that the proposed features, regardless of the type of
classifier, can improve movement detection performance. Such
features could capture the distribution of the sEMG time samples
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and their derivatives in a non-parametric framework, and also
the complexity of the signal. Moreover, each signal epoch is
represented by three features. Lower dimension of the proposed
feature vector can generally improve the classification, compared
with DWT and the histogram.

The Formulation of the Proposed
Features
The dispersion of the first feature TMD was much lower than
that of the two other features. This feature also showed better
class separation than that of the other features. Using the TMD
feature, the overall classification was better than a univariate
application of the other features (Figure 2). The TMAVDD
and ED features also showed class separation but were less
discriminative than TMD.

The proposed TMAVDD feature uses the same Irregularity
Coefficient (dc) concept proposed by Zalewska and
Hausmanowa-Petrusewicz (1995). It is defined as Equation
(18):

dc =
1

max (yi; i = 1, . . . , ns)

ns−1∑
i = 1

∣∣yi − yi−1
∣∣ (18)

where yi are the samples and ns is the number of samples.
The authors used this feature for decomposing iEMG
signals. Such a feature showed an acceptable performance
in discriminating different motor unit action potentials
(Zalewska and Hausmanowa-Petrusewicz, 1995). If we use the
estimated kernel density values as the input of this feature, the
nominator of its formula will be the sum of the kernel density
derivative samples. However, we divide this by the number
of samples and use its trimmed average while the authors
normalized it by the peak-to-peak of the input waveform.
However, due to its similarity with the first-order difference
operator (Equation 1), kernel derivative was shown to be more
accurate (Figure 4). TMAVDD is, in fact, a shape measure of
estimated kernel density values.

On the other hand, the approximate entropy was used to
quantify the amount of fluctuations and the complexity in the
time-series data in EMG signals in the literature (Guo et al.,
2016). We calculated the complexity of the estimated kernel
density values using ApEn. Given that enough information is
needed to calculate the entropy (Pincus, 1991), the number of
samples could not be reduced for more efficient implementation.
Meanwhile, TMD and ED were moderately corrected in our
dataset (Spearman’s rho = 0.589; P-value < 0.05). Thus, part of
the KDE complexity could be assessed by TMD feature, as well.
It could be the justification that using TMD feature with LDA
classifier resulted in an acceptable overall performance in our
analysis (Figure 2).

Final Considerations
Overall, the misclassified movement percentage was about 2% in
our study in the entire intact and amputee subjects. Moreover, at
least 28 and 15 movements were ideally classified for the intact
and amputee subjects, respectively in the entire analysis folds.

The main goal of developing such algorithms is to predict the
intent of an amputee to control dexterous, self-powered hand
prostheses. Unlike previous studies, we used repeated hold-out
analysis (N = 3), guarding against testing hypotheses suggested
by the data (type III errors). If a movement was not correctly
classified in a fold, it was marked as missed.

The application of the proposed system in prosthesis control
implies efficient online implementation of the algorithms. The
following methods could be expanded for online implementation.
We proposed using TMD features and an LDA classifier on
200 ms analysis epochs (Table 3). The average running time of
the proposed online algorithm could be further reduced by using
the Vectorization package in Microsoft Visual C++ to implement
vector and matrix operations efficiently. Such implementation
showed a significant running time improvement in the literature
(Marateb and Mcgill, 2009).

CONCLUSION

In conclusion, we developed a new movement detection
algorithm using the sEMG signal recorded from intact subjects
and amputees. This classification system is a promising new
tool for online prosthesis control. Due to the importance of
simultaneous control, the performance of the proposed features
was also evaluated for simultaneous movements. The results
showed superior performance of these features with respect to
previous approaches.
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