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Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins
known to play critical roles in the regulation of fatty acid uptake and transport as
well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in
astrocytes and has been implicated in sleep/wake regulation and neurodegenerative
diseases; however, the precise mechanisms underlying the role of FABP7 in these
biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and
docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we
propose a dichotomous role for FABP7 in which ligand type determines the subcellular
translocation of fatty acids, either promoting wakefulness aligned with Alzheimer’s
pathogenesis or promoting sleep with concomitant activation of anti-inflammatory
pathways and neuroprotection. We hypothesize that FABP7-mediated translocation
of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes
glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-
2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose
that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron
lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by
activating anti-inflammatory pathways through the peroxisome proliferator-activated
receptor-y transcriptional cascade. Importantly, this model generates several testable
hypotheses applicable to other neurodegenerative diseases, including amyotrophic
lateral sclerosis and Parkinson’s disease.

Keywords: BLBP, astrocyte, neurodegeneration, circadian, omega-3 fatty acid

FATTY-ACID BINDING PROTEINS

Fatty acids are critically important in the functioning of all living organisms as they are an
important energy source and serve as key regulators of cell signaling processes. Polyunsaturated
fatty acids (PUFAs) have traditionally been known as a major structural component of cell
membranes; however, they also regulate signaling pathways related to gene expression, growth,
survival, inflammation, and metabolism (Saltiel and Kahn, 2001; Hotamisligil, 2006, 2017). PUFAs
are particularly abundant in the brain and are estimated to comprise 50% of the total mass of
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neuronal membranes (Zérouga et al., 1991; Bourre et al., 1992).
They are also hydrophobic, and therefore must be escorted
through the cytoplasm by a lipid chaperone. Fatty acid binding
proteins (FABPs) are a family of small (14-15 kDa) intracellular
lipid chaperone proteins that reversibly bind the hydrophobic
long chain of PUFAs (Furuhashi and Hotamisligil, 2008; Storch
and Corsico, 2008) and transport them to many different
cellular locations, thereby enhancing their ability to affect a
wide range of cellular processes. Of note, FABPs transport fatty
acids to the endoplasmic reticulum for signaling, trafficking, and
membrane synthesis as well as to the nucleus for lipid-mediated
transcriptional regulation (Furuhashi and Hotamisligil, 2008).

Fatty acid binding proteins were first discovered in the cytosol
of intestinal mucosa, liver, and myocardium tissues (Ockner et al.,
1972), and were subsequently identified in other cell types and
tissues. FABPs have phylogenetically conserved homologs in mice
(Mus musculus), fruit flies (Drosophila melanogaster), nematodes
(Caenorhabditis elegans), and humans suggesting evolutionarily
conserved cellular functions (Smathers and Petersen, 2011).
There are currently ten known members of the mammalian
FABP family, each exhibiting a unique expression profile
(D’Anneo et al., 2020). However, there is reported overlap in the
expression patterns of the different FABPs, with each FABP being
expressed in multiple cell and tissue types. For example, heart
FABP (H-FABP/FABP3), epidermal FABP (E-FABP/FABP5), and
brain FABP (B-FABP/FABP7) are all present within the adult
mammalian brain. FABP3 is primarily expressed in neurons,
FABP5 is expressed in neurons and glia, and FABP7 is most
abundantly expressed in astrocytes and precursor cells (Owada,
2008; Storch and Thumser, 2010).

The sequence homology among FABPs ranges from 15 to
70%; however, the 3-dimensional structure is highly conserved
(Chmurzynska, 2006). All FABPs have three fatty acid binding
motifs, a 10-stranded, antiparallel B-barrel structure (formed
by two perpendicular, five-stranded p-sheets), a binding pocket
inside of the B-barrel, and an N-terminal helix-turn-helix
motif that forms the “cap” domain (Storch and Thumser,
2010; Figure 1). With the exception of liver FABP (FABP1),
which can accommodate two fatty acids, all other FABPs
bind one ligand at a time (Thompson et al, 1997). Despite
variable sequence identities, FABPs display highly consistent
binding patterns, with a direct correlation between FABP
binding affinity and fatty acid hydrophobicity (Richieri et al.,
2000). FABP structure-function studies have revealed that ligand
binding triggers subtle conformational changes within FABPs
that then strengthen different FABP-protein or FABP-membrane
interactions (Storch and McDermott, 2009). For instance, FABP4,
which binds multiple ligands with similar affinities, has been
found to adopt different functional roles depending on the ligand
bound and the conformational changes induced by each ligand
(Gillilan et al., 2007).

FATTY ACID BINDING PROTEIN 7

Fatty acid binding protein 7, also known as brain-type FABP,
is ontologically expressed with a decrease in levels following

normal lifespan (Clarke et al., 2018). FABP7 is abundant in
radial glia during the mid-term embryonic stage of development
and becomes primarily expressed in astrocytes and neural
progenitors in adulthood (Owada et al., 1996; Owada, 2008).
While the specific role of FABP7 remains unclear, it has been
proposed to be important for cell growth and differentiation,
with evidence suggesting that most neuronal cell populations are
derived from FABP7-expressing progenitors (Feng et al., 1994;
Anthony et al., 2004). Clinically, FABP7 has been implicated in
a wide range of diseases including cancer, Down’s syndrome,
schizophrenia, and the neurodegenerative diseases amyotrophic
lateral sclerosis (ALS), Parkinson’s disease, and Alzheimer’s
disease (AD; Sanchez-Font et al., 2003; Watanabe et al., 2007;
Teunissen et al., 2011; De Rosa et al, 2012; Thumser et al,
2014; Islam et al.,, 2019). Here, we propose a FABP7-mediated
cellular signaling model applicable to neurodegenerative disease
that is supported by evidence derived from FABP7 studies in
other diseases, particularly cancer.

FABP7’S DICHOTOMOUS ROLE IN
CANCER

In the aggressive brain cancer glioblastoma, FABP7 expression is
upregulated compared to healthy adult brain, and this increase
has generally been associated with decreased survival times
(Liang et al, 2005; Tso et al, 2006; De Rosa et al., 2012).
Cancer progression has been proposed to be mediated not
directly through FABP7 expression, but rather via the subcellular
trafficking of fatty acids by FABP7 (Thumser et al., 2014). For
example, in triple negative breast cancer, which also shows
increased FABP7 expression, Alshareeda et al. (2012) found that
FABP7 localization had prognostic implications, with nuclear
FABP7-expressing tumors having significantly better prognosis
than those with only cytoplasmic expression.

The differential functionality of FABP7 has been shown to
be dependent upon the ratio of n-3:n-6 fatty acids (Mita et al.,
2010). Although FABP7 can bind a variety of ligands, it has
a strong affinity for n-3 PUFAs. Docosahexaenoic acid (DHA),
an n-3 PUFA, and arachidonic acid (AA), an n-6 PUFA, are
two common ligands for FABP7; however, FABP7’s affinity for
DHA (Kp ~ 10 nM) is approximately 4-fold higher than it is
for AA (Xu et al,, 1996). While FABP7 is also thought to bind
the important n-3 PUFA eicosapentaenoic acid (EPA; Balendiran
etal., 2000), little is known about the physiologic effect of FABP7-
EPA binding, hence our focus on DHA as the primary n-3 ligand
for FABP7. Upon binding DHA, FABP?7 is reported to undergo
a 3D conformational change that exposes a nuclear localization
signal (NLS) and leads to FABP7-mediated transport of DHA
to the nucleus (Ayers et al., 2007; Wolfrum, 2007). Once in the
nucleus, DHA can trigger the expression of a range of anti-
inflammatory genes via the activation of peroxisome proliferator-
activated receptors (PPARs; Li et al., 2005; Kagawa et al., 2019).
PPARs, divided into isotypes o, $/8, and y, are nuclear receptor
proteins that function as transcription factors upon their binding
of fatty acid ligands (Wolfrum, 2007; Crowder et al., 2017).
FABPs are known to have varying affinities for the three PPAR
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Motif 1

Motif 2 Motif 3

FIGURE 1 | Fatty acid binding protein structure. FABP7 primary protein and ribbon structures displaying structural components common among all FABPs.

(A) Representative primary protein structure showing the three distinct fatty acid binding motifs found in all FABPs. (B) Primary protein structure depicting the
distribution of alpha helices (light blue and teal) and beta sheets (red). (C) Ribbon structure of FABP7 depicting the three conserved motifs shown in (A). (D) Ribbon
structure of FABP7 highlighting the placement of the ten-stranded beta barrel (red) and N-terminal helix-turn-helix motif forming a “cap” domain (light blue) shown in

(B). This figure depicts FABP7 (PDB code: 6L90) and was created using PyMOL.

isotypes, with FABP7 specifically interacting with and activating
PPARy (Mita et al., 2010; Tripathi et al,, 2017). Genes under
the control of PPARy include anti-inflammatory (Martin, 2010)
and neuroprotective targets (Kumar et al., 2020). Activation of
PPARY is also responsible for the anti-migratory phenotype seen
in malignant glioma cell lines cultured with DHA (Mita et al,,
2010; Elsherbiny et al., 2013).

In contrast, FABP7-mediated migration in malignant glioma
is dependent upon the translocation of FABP7-bound AA
to the ER to activate cyclooxygenase 2 (COX-2) dependent
pro-migratory and pro-inflammatory pathways (Elsherbiny
et al, 2013). COX-2 is an enzyme that plays a key role in
the generation of inflammation via the conversion of AA
to pro-inflammatory prostaglandins (particularly PGE,) as
well as the production of pro-inflammatory chemokines
and cytokines (Chen, 2010). Interestingly, PPARy activation
leads to the downregulation of COX-2 (Bren-Mattison et al.,
2007), indicating potential autoregulatory feedback loops
with reciprocal effects. By altering the expression level of
FABP7 and the ratio of DHA:AA in malignant glioma cells,
it was found that DHA and AA affect migration in an
FABP7-dependent manner, with DHA inhibiting migration

and AA promoting migration (Mita et al, 2010). Elsherbiny
et al. (2013) later confirmed these results, suggesting that
there is a deregulation of lipid homeostasis in malignant
gliomas that significantly increases the ratio of AA:DHA and
promotes migration.

Taken together, these findings lay out a dichotomous role
for FABP7 in regulating both pro-inflammatory and anti-
inflammatory pathways. More specifically, higher relative levels
of DHA promote FABP7-mediated delivery of DHA to the
nucleus, resulting in subsequent activation of PPARy and the
transcriptional activation of downstream neuroprotective and
anti-inflammatory pathways, while, alternatively, higher relative
levels of AA promote FABP7-mediated delivery of AA to the
ER to interact with COX-2, leading to an increase in pro-
inflammatory factors and a pro-migratory phenotype.

LIPID TRANSPORT IN ALZHEIMER’S
DISEASE

Alzheimer’s disease is a progressive neurodegenerative disease
resulting in neuronal death and cognitive decline. Pathologically,
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AD is characterized by the accumulation of intracellular
neurofibrillary tangles (NFTs) and extracellular amyloid plaques
(Breijyeh and Karaman, 2020). With a growing aging population
and AD prevalence on the rise (Alzheimer’s Association, 2021),
there has been a significant effort to characterize the molecular
mechanisms underlying AD pathogenesis. Many researchers have
investigated heritable forms of AD for clues as to what initiates
AD neuropathies. Carriers of the 4 allele of the lipid binding
protein apolipoprotein E (APOE) are currently at the highest
risk of developing AD, with an estimated 40-80% of AD patients
possessing at least one APOEe4 allele (Mahley et al., 2006). In the
brain, APOE released by astrocytes and microglia binds essential
lipids and delivers them to neurons via APOE receptors expressed
on neuronal membranes (Holtzman et al., 2012). Since APOE is
involved in lipid transport and metabolism, this has led many
to hypothesize that lipid dysregulation plays a significant role in
AD pathogenesis.

Alzheimer’s disease brains have been shown to have a high
occurrence of intracellular lipid deposits, suggesting that aberrant
lipid metabolism is a feature of AD (Foley, 2010; Di Paolo
and Kim, 2011). However, such deposits may also result from
abnormal lipid storage and/or transport. Lipid droplets (LDs)
are lipid storage organelles with a neutral lipid core, mostly
consisting of esterified cholesterol and triglycerides, surrounded
by a monolayer of polarized lipids (Fujimoto and Parton, 2011;
Welte, 2015; Cohen, 2018). LDs store lipids to be used for
membrane structures, lipid signaling, and energy metabolism
(Walther and Farese, 2012), and they are receiving increased
attention for their role in neurodegenerative diseases, including
AD (Farmer et al., 2020; Ralhan et al., 2021). Indeed, Alzheimer
(1907) originally observed “adipose inclusions” in many glia
in AD patients (Stelzmann et al., 1995), and tissues harvested
from along the lateral ventricle in both human AD post-mortem
brains and 3xTgAD mouse model brains have been shown to
accumulate LDs (Hamilton et al., 2015).

Recent studies have shown that neuronal activity can initiate
lipid peroxidation, lipoprotein export, and peroxidized lipid
storage of LDs in astrocytes (Ioannou et al., 2019). Oxidative
waste products from neurons have also been described to
be transported to glia via apolipoproteins (Liu et al., 2017).
The efficiency of this lipid shuttling is dependent upon the
type of APOE isoform, with ApoE &4 lipoproteins being less
effective at transferring lipotoxic products to glia than ApoE
€3 lipoproteins. The ApoE €4 isoform has also been associated
with increased unsaturation of fatty acids and the accumulation
of intracellular LDs, compared to the ApoE €3 isoform,
in both yeast and human iPSC-derived astrocytes (Sienski
et al, 2021). Human astrocytes with excess triacylglycerol-
laden LDs, a phenomenon associated with aging and stress,
redirect ApoE toward LD secretion, which is exacerbated
by ApoE e4 (Lindner et al, 2022). ApoE e4 also lacks
cysteine residues that are present in ApoE €2 and ApoE €3
that are thought to scavenge the harmful lipid peroxidation
end-product 4-hydroxynonenal (HNE), a highly reactive and
neurotoxic molecule (Butterfield and Mattson, 2020). Various
FABPs, such as epithelial and adipocyte FABPs, have also been
shown to bind HNE (Bennaars-Eiden et al, 2002; Hellberg

et al., 2010; Smathers and Petersen, 2011), but whether this
occurs in FABPs expressed in the central nervous system
remains to be explored.

A definitive relationship has been established between the lipid
transport protein APOE and AD risk, but the role of FABP7 in
AD remains less clear. Interestingly, FABP7 has been shown to
protect astrocytes from reactive oxygen species toxicity through
LD formation (Islam et al., 2019).

Moreover, recent evidence suggests that APOE and FABP7
may interact, with the APOE isoform determining the functional
expression of FABP7 (Asaro et al, 2021). In mouse brains
expressing the ApoE &3 isoform (the most common isoform),
this transporter delivers lipids to the neuronal receptor sortilin,
which mediates the transfer of lipids from the exterior of the cell
to the interior (Carlo et al., 2013). Sortilin directs the uptake and
conversion of polyunsaturated fatty acids into endocannabinoids,
lipid-based neurotransmitters that act through nuclear receptors
to sustain neuroprotective gene expression in the brain (Asaro
et al, 2020). In a mouse model, sortilin was also shown to
promote the stability of FABP7 in an APOE isoform-dependent
manner, with APOE &3 promoting the proper intracellular sorting
of FABP7 and APOE ¢4 disrupting it (Asaro et al., 2021). APOE
isoform-related differences in FABP7 have also been seen in
humans (Asaro et al., 2021). Indeed, APOEe3/APOEe3 patients
were observed to have significantly higher levels of FABP7 than
APOEe4/APOEe4 patients, providing a novel connection between
APOE e4 and FABP7 and suggesting that inhibition of FABP7
signaling may be one mechanism of APOE e4-induced AD
development and/or progression.

In a proteomic screen of post-mortem AD brains, alterations
in the levels of FABP5 and FABP7 were not observed, while
FABP3 levels were significantly decreased (Cheon et al., 2003).
However, another proteomic screening study of post-mortem AD
brains found that both FABP3 and FABP7 levels were elevated
in the brains of symptomatic AD patients compared to those of
asymptomatic AD patients, with the increase of FABP7 being
significantly higher than that of FABP3 (Johnson et al., 2018,
2020; Higginbotham et al., 2020; Hampel et al., 2021a; Rayaprolu
etal, 2021; Wingo et al., 2021). Differences in the levels of FABP
types outside the brain have also been observed in AD. Indeed,
serum levels of FABP7, but not FABP3, were observed to be
elevated in 29% of AD patients (Teunissen et al., 2011). Future
studies in AD patients will be needed to establish clear patterns of
brain and peripheral FABP7 expression levels, with consideration
of which APOE isoform is expressed as well as the stage and
symptomology of disease.

LIPIDS AND INFLAMMATORY
PATHWAYS IN ALZHEIMER’S

In addition to amyloid plaques and NFTs, altered inflammatory
processes are thought to be another key hallmark of AD.
Signs of inflammation were first noted by Alois Alzheimer
in his initial description of the disease in 1907, though
they were largely ignored due to the long-held thought that
the brain is immunologically privileged (Alzheimer, 1907;
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Stelzmann et al, 1995; Akiyama et al., 2000). However,
McGeer et al. (1987) reported that AD brains showed activated
microglia expressing human leukocyte antigen - DR isotype
(HLA-DR), an immunological marker previously associated
exclusively with peripheral leukocytes. Given this link to
inflammation, it was thought that those taking conventional
non-steroidal anti-inflammatory drugs (NSAIDs) should have
lower incidences of AD (McGeer et al, 1996). A series of
epidemiological studies later confirmed AD sparing in patients
consuming NSAIDs; however, this effect was only seen when
the drugs were started at least 6 months prior to the clinical
diagnosis of AD (McGeer et al., 1996). While the research
efforts surrounding AD and inflammation tend to be highly
compartmentalized, the neuroinflammation seen in AD is likely
multifaceted, involving an array of inflammatory processes
working in conjunction with one another (Akiyama et al., 2000).
The anti-inflammatory effects of many NSAIDs are dependent
upon COX-2 inhibition or PPARYy activation (Jiang et al., 1998;
Zarghi and Arfaei, 2011), suggesting that alterations in these
pathways could be involved in the chronic neuroinflammation
associated with AD. AA and DHA are known modulators of these
inflammatory pathways (Higgins and Lees, 1984; Calder, 2010,
p. 3) and thus may represent mechanisms linking FABP7 with
glial inflammatory activation in neurodegenerative diseases. To
test the responses to DHA and AA in AD, many have turned to
animal models. In a mouse model of AD, a diet enhanced with AA
was found to significantly increase AP burden, furthering disease
progression (Amtul et al., 2012; Hosono et al., 2015). COX-
2 is thought to convert AA into the inflammatory compound
PGE; in astrocytes and microglia, suggesting that increased
AA levels may translate into increased inflammation via this
pathway (Mohri et al., 2007). Conversely, DHA has been shown
to display neuroprotective properties in AD. DHA first emerged
as a compound of interest in AD research when fish consumption
was linked to the decreased prevalence of AD (Grant, 1997;
Horrocks and Yeo, 1999). Since then, more than 20 large-scale
epidemiological cohorts have been used to study the relationship
between PUFAs and AD, with many of them finding a negative
correlation between DHA consumption and AD risk (Cederholm
et al., 2013). These findings led to the development of many
clinical trials studying the impact of DHA intervention on AD;
however, these studies largely failed to establish DHA as a viable
treatment option (Cunnane et al., 2013; Burckhardt et al., 2016).
While the epidemiological evidence supporting a beneficial
role for DHA is robust, the lack of clinical trial success has
made DHA a controversial topic among AD researchers (Cole
et al., 2009; Pan et al., 2015; Radcliffe et al., 2016). Within
animal models, however, early administration of DHA has shown
positive effects in slowing the progression of AD (Lim et al., 2005;
Cole and Frautschy, 2006, 2010; Perez et al., 2010; Arsenault et al.,
2011; Park et al.,, 2020), suggesting that DHA may need to be
given prior to clinical manifestations in order to be beneficial.
Moreover, Arellanes et al. (2020) recently proposed that clinical
trials of DHA may have failed to show positive effects on AD due
to the dosages simply being too low. In a randomized, placebo-
controlled clinical trial using 2,152 mg of DHA per day, there
was a 28% increase in the cerebrospinal fluid (CSF) level of

DHA in the treatment group compared to the placebo group
(Arellanes et al., 2020). With previous studies having established
that AD patients have decreased DHA levels in the brain
(Conquer et al., 2000), this study suggests that supplementation
may be able to delay disease progression. While the molecular
mechanisms underlying DHA-mediated neuroprotection in AD
are not well understood, we hypothesize that FABP7, which plays
a key role in the trafficking of DHA, will emerge as an essential
factor for mediating DHA’s neuroprotective effects.

FABP7 SIGNALING AND
NEUROINFLAMMATION IN
ALZHEIMER’S DISEASE

Based on the signaling cascades and mechanisms observed in
cancer (described above), the increased level of FABP7 in AD
brains, and the evidence for AA-mediated AD progression and
DHA-mediated neuroprotection, we hypothesize that FABP7
serves a dichotomous role in neurodegeneration, with the
relative AA:DHA ratio ultimately determining FABP7’s cellular
function (Figure 2) and, consequently, AD pathogenesis and
progression. The release of AA and DHA are dependent upon
the phospholipases (PLAs; Elsherbiny et al, 2013) calcium-
dependent PLA; (cPLA;) and calcium-independent PLA,
(iPLA;), respectively (Chakraborti, 2003). Interestingly, elevated
levels of cPLA, immunoreactivity have been found in the
astrocytes of post-mortem AD brains (Stephenson et al., 1996),
and a genetic polymorphism in cPLA; has been associated with
late-onset AD (Cordeiro et al, 2010). These findings suggest
that ¢cPLA, may play a role in the upstream initiation of
neuroinflammation in our model. Given that cPLA, acts on AA
and iPLA; acts on DHA in cell membranes, we propose that
increased cPLA; activity may be responsible for the increased AA
availability and, consequently, increased inflammation observed
in AD. More specifically, increased AA leads to FABP7-
mediated translocation to the endoplasmic reticulum, where
AA is converted to PGE, by COX-2. PGE; then triggers an
inflammatory cascade by binding to one of its G protein-coupled
E-prostanoid receptors (Ricciotti and FitzGerald, 2011). While
an increase in the PGE, receptor E-prostanoid 3 (EP3) has been
linked to inflammation in AD (Shi et al., 2012), we provide a novel
explanation for the mechanism underlying PGE, production.

In addition to stimulating EP3, we suggest that AA-induced
PGE; production contributes to astrocytic inflammation in
AD by elevating levels of the major inflammatory cytokine
interleukin 6 (IL-6). IL-6 has been found at significantly increased
levels in AD patients and has been suggested to be one of the
major drivers of AD-linked neuroinflammation (Cojocaru et al,,
2011; Wang W.-Y. et al., 2015; Wu et al., 2015; Lyra e Silva et al,,
2021). We theorize that this increase in IL-6 may be mediated
by PGE, since PGE, has been found to induce IL-6 synthesis
in a human astrocytoma cell line (Fiebich et al., 1998), human
synovial fibroblasts (Inoue et al., 2002), cultured astrocytes
(Fiebich et al.,, 2001), and a murine model of inflammation
(Hinson et al., 1996).
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FIGURE 2 | A dichotomous role for FABP7 in AD. Depending on the relative activity of cPLA, and iPLA,, AA and DHA are released from the phospholipid
membranes of astrocytes. Upon release, AA or DHA bind FABP?7 to initiate distinct signaling cascades within the cell. Under conditions of normal sleep (left), the
sleep promoting substance adenosine activates adenosine receptors (A2B) that signal adenylyl cyclase to increase cAMP levels, leading to the cAMP-dependent
activation of iPLA, and subsequent release of DHA from the membrane. The released DHA binds to FABP7 and is translocated to the nucleus where it activates the
anti-inflammatory transcription factor PPARYy, leading to the induction of sleep-mediated neuroprotective pathways. With disrupted sleep (right),
wakefulness-associated increases in glutamate result in increased levels of intracellular Ca2+ that activate cPLA, to release AA from the membrane to bind FABP7.
FABP7 then delivers AA to the endoplasmic reticulum, triggering a COX-2:PGE,-dependent pro-inflammatory cascade and cytokine (TNFa and IL-6) -mediated

progression of neurodegeneration.

TNFa, another major inflammatory cytokine that is elevated
in the blood of AD patients, may play an even larger role in not
only the exacerbation of inflammation late in disease progression
but also in the early stages of disease prior to diagnosis. In a study
comparing the CSF levels of TNFa in patients with mild cognitive
impairment (MCI) versus age-matched healthy controls, TNFa
was markedly increased (p = 0.0009) in the patients with MCI
(Tarkowski et al., 2003). Of the 56 patients with MCI that took
part in the study, 31 had developed AD by the 9-month follow-
up. When the initial CSF levels of TNFa in MCI patients that
had and had not developed AD were separated and compared
to control levels, only those that had developed AD showed
significant increases compared to controls, suggesting that high
TNFa levels may be an early marker for AD. This early rise in
TNFa may indicate the beginning of an inflammatory cascade,
as TNFa not only causes inflammation itself but has also been
found to stimulate the COX-2 pathway, resulting in increased
PGE; levels (Zhang and Dziak, 1996). In our model, we suggest
that FABP7-mediated translocation of AA to the ER leads to
increased production of PGE; and the subsequent generation of
inflammation mediated by both IL-6 and TNFa.

Recent studies have highlighted the role of glial cells,
specifically astrocytes and microglia, in disease-related
inflammatory processes (Kaur et al., 2019; Nordengen et al,
2019; Hampel et al,, 2020; Kwon and Koh, 2020; Leng and
Edison, 2021). Microglia, the brain’s resident macrophages, have

been hypothesized to play a role in regulating inflammatory
changes as they perpetually survey the brain for pathogens,
injuries, and other disturbances in the environment (Nayak
et al., 2014; Colonna and Butovsky, 2017; Hansen et al., 2018). In
the early stages of AD, microglia are able to keep amyloid beta
(AB) plaques at bay by (a) phagocytosing A (Koenigsknecht
and Landreth, 2004; Simard et al., 2006; Bolmont et al., 2008;
Pan et al,, 2011), and (b) surrounding AP plaques, creating a
physical barrier to prevent spreading and toxicity to neighboring
regions (Condello et al., 2015). While these processes are initially
sufficient to clear AP in the normal brain, there is thought to
be a tipping point in AD pathogenesis at which microglia are
no longer able to manage the AB burden and, for reasons that
remain to be fully elucidated, become harmful to the brain
(Aguzzi et al., 2013; Sarlus and Heneka, 2017; Hansen et al., 2018;
Kaur et al., 2019).

Disease-associated microglia (DAM; Keren-Shaul et al., 2017;
Deczkowska et al., 2018), an activated form of microglia, have
been identified near AB plaques; however, the role they play
in AD pathogenesis has been a topic of controversy, with
some suggesting that they play a neuroprotective role (Jay
et al, 2017; Keren-Shaul et al, 2017; Ulrich et al, 2017;
Yeh et al, 2017) and others suggesting that they contribute
to neurodegeneration (Colonna and Butovsky, 2017; Liddelow
et al., 2017). More recent studies have indicated that the role
of microglia in AD is less black and white, with a shift from
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neuroprotection to neurodegeneration occurring as the disease
progresses. Genomic profiling studies of microglia in mice
have revealed that the transition to DAM includes alterations
in the expression of hundreds of genes (Orre et al, 2014;
Wang Y. et al., 2015; Srinivasan et al., 2016; Keren-Shaul et al,,
2017). As AP plaques accumulate, microglial genes related to
homeostasis are downregulated, and genes known to play a
role in neurodegeneration are upregulated (Hansen et al., 2018).
While homeostasis genes are generally downregulated as AD
progresses, there is an exception to this pattern. Among the
genes whose expression are markedly increased in DAM is the
homeostatic gene TREM?2 (Kamboh, 2018; Hampel et al., 2020),
which encodes a microglial cell surface receptor that promotes
microglial phagocytosis of A (Guerreiro et al., 2013; Zhong
et al, 2017; Zheng et al., 2018). Despite being upregulated in
pro-inflammatory DAM, the most common mutation in TREM2,
which is a loss of function mutation, confers a threefold increased
risk of developing AD (Guerreiro et al., 2013; Jonsson et al,
2013, p. 2). TREM2 has also been shown to suppress the release
of pro-inflammatory cytokines (Zhong et al., 2015; Zhang et al.,
2017; Zhu et al., 2020), suggesting that it plays a neuroprotective
role in the brain.

Despite its likely beneficial role, overexpression of TREM?2 is
insufficient to ward off AD progression. While there are likely
a multitude of factors that contribute to microglial activation,
lipopolysaccharide (LPS) associated with AP plaques has been
hypothesized to trigger the mTOR pathway, causing microglia
to release pro-inflammatory cytokines, including TNFa and IL-
6 (Riazi et al.,, 2008; Welser-Alves and Milner, 2013; Wang Y.
et al,, 2015; Zhan et al., 2018). As shown above, these cytokines
lead to neuroinflammation and are thought to contribute to
neuronal dysfunction and death (Rothwell, 1999; Aktas et al.,
2007; Wang Y. et al, 2015; Kempuraj et al., 2017). They can
also upregulate B-secretase, an enzyme that cleaves amyloid
precursor protein (APP) to create aggregation-prone Af (Cole
and Vassar, 2007; Hampel et al., 2021b), further perpetuating
AD progression. Additionally, cytokines released by microglia,
particularly IL-1a, TNFa, and Clq, have been shown to cause
astrocytes to transform into a reactive state called Al (Liddelow
etal,, 2017). Al reactive astrocytes then release pro-inflammatory
cytokines, creating further neuronal damage and contributing
to AD pathogenesis. The mechanism for microglia-induced
astrocytic activation is not fully understood; however, we propose
that FABP7 may play a role since TNFa has been shown to induce
cPLA; expression (Yang et al., 2014), which we hypothesize sets
off an FABP7-dependent pro-inflammatory cascade.

ALZHEIMER’S DISEASE, FABP7, AND
SLEEP

Although AD is best known for its detrimental impact on
memory, sleep disturbances are another common feature of
the disease, with epidemiological data suggesting that such
interruptions are experienced by up to 45% of AD patients
(McCurry et al., 2000; Moran et al., 2005; Peter-Derex et al., 2015).
Sleep deficits are known to worsen with disease progression,

often resulting in early institutionalization; however, more recent
evidence suggests that sleep disturbances may arise years before
cognitive deficits (Ju et al.,, 2013; Lim et al., 2013; Zhang et al.,
2019; He et al., 2020; Lloret et al., 2020). While the relationship
between AD and sleep disturbances is complex and bi-directional
(Lucey, 2020), the early appearance of changes in sleep suggests
that sleep disturbances may be a useful prodromal marker for AD.

In addition to its role in lipid transport and metabolism,
FABP?7 plays an important role in the regulation of normal sleep
in multiple species including flies, mice, and humans (Gerstner
et al., 2017b). FABP7 has also been shown to have diurnal
regulation in the astrocytes of adult rodents (Gerstner et al,
2008). Of particular relevance to AD, FABP7 induction was found
to enhance both sleep and long-term memory consolidation in
flies (Gerstner et al., 2011a,b), two processes that are consistently
dysregulated in AD (Musiek et al., 2015). Furthermore, there
seems to be a positive feedback loop between fragmented sleep
and AD progression in which fragmented sleep leads to an
accumulation of AP, and AP accumulation, in turn, leads to
more fragmented sleep (Gerstner et al., 2012a; Roh et al., 2012;
Ju et al., 2014; Lim et al., 2014; Musiek and Holtzman, 2016).
Previously, we proposed an astrocyte-specific mechanism for
this feedback loop (Vanderheyden et al., 2018) in which age-
associated sleep decline decreases AP clearance, leading to the
formation of AP plaques that act as “sinks” for AP oligomers.
It is thought that these “sinks,” along with the concentration
gradient of oligomers around them, attract glia-mediated clearing
mechanisms, resulting in the dysregulation of the astrocyte-
neuron-lactate-shuttle (ANLS), a system that normally serves to
regulate the metabolic demands of neurons via lactate release
(Pellerin and Magistretti, 1994, 2012; Petit et al., 2013), which
is closely tied to glutamate release. With the uncoupling of the
ANLS, excess glutamate accumulates and causes increased AP
release, excitotoxicity, and wakefulness that perpetuates the cycle
(Vanderheyden et al., 2018).

Alongside uncoupling of the ANLS, we propose that
FABP7-mediated subcellular localization in astrocytes is directly
influenced by sleep, with FABP7-dependent nuclear translocation
of DHA promoting healthy, sleep-mediated outcomes, and
wakefulness driving the translocation of FABP7-AA to the
ER, thus promoting pathological outcomes. This FABP7-DHA-
mediated activation of anti-inflammatory pathways includes the
inhibition of NF-kB (Lee et al., 2009; Zgorzynska et al., 2021),
a transcription factor responsible for the upregulation of COX-
2 expression. COX-2 converts AA into PGE, (Kim et al., 2009),
which is known to play a role in regulating the sleep-wake cycle
(Hayaishi, 1988; Matsumura et al., 1989), and within astrocytes
specifically, it promotes wakefulness via the stimulation of
glutamate release (Bezzi et al., 1998). Therefore, we suggest that
FABP7-DHA nuclear translocation results in decreased NF-«B
expression, which, in turn, leads to decreased expression of COX-
2 and decreased production of wake-promoting PGE,, ultimately
resulting in an increase in sleep. Interestingly, improved sleep
quality has been correlated with reduced NF-kB levels in older
adults (Black et al., 2015), implying that sleep is beneficial not
only for the clearance of accumulated Af but also for promoting
the downregulation of wake-promoting PGE,. Additionally, a
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placebo-controlled, double-blind study found that healthy adults
consuming an oil rich in DHA had significantly improved sleep
efficiency and latency compared to those taking a placebo (Patan
etal., 2021), further suggesting that DHA levels play an important
role in sleep quality.

Conversely, we propose that FABP7-mediated delivery of
AA to the ER promotes wakefulness, via the conversion of
AA to PGE; by COX-2 (Mohri et al., 2007). PGE, was found
to upregulate NF-kB in a macrophage cell line (Camandola
et al.,, 1996), suggesting a feedback loop in which high levels
of AA promote COX-2-mediated production of PGE,. PGE,
then upregulates NF-kB, and NF-kB, in turn, upregulates COX-
2, leading to even more PGE;. Along with upregulating COX-2,
NF-kB is responsible for promoting the transcription of pro-
inflammatory cytokines and chemokines that have been proposed
to induce cellular damage as well as stimulate AP release in
astrocytes (Shi et al., 2016; Gonzalez-Reyes et al., 2017). As
previously mentioned, an increase in Af release is thought to
promote wakefulness (Musiek et al., 2015; Vanderheyden et al.,
2018), raising the possibility that AA-mediated activation of
NF-kB further perpetuates sleep disturbances in AD. While
the specific effect of AA on sleep has not been studied, sleep
disruptions have been shown to lead to the overexpression
of NF-kB in humans (Angelo et al., 2014), supporting the
hypothesis that early alterations in sleep trigger a positive
feedback loop in which more wakefulness, A accumulation, and
inflammation occur.

Docosahexaenoic acid and AA are released from the cell
membrane by iPLA; and cPLA;, respectively (Elsherbiny
et al., 2013). One known activator of cPLA; is the excitatory
neurotransmitter glutamate (Kim et al., 1995; Hartz et al.,, 2019).
Given that glutamate is associated with wakefulness (Watson
et al, 2011), we hypothesize that sleep disruption triggers a
cascade that ultimately leads to excessive PGE, production.
PGE, increases both COX-2 expression (Hsu et al., 2017) and
wakefulness (Matsumura et al., 1989), setting up a vicious cycle
in which sleep deprivation leads to the production of pro-
inflammatory PGE,, and PGE, leads to more wake. A study in
healthy adults found that 88 h of total sleep deprivation induced
a 30% increase in PGE, (Haack et al., 2009), demonstrating that
increased wakefulness does in fact increase PGE, in vivo. We
propose a mechanism for this increase in which wakefulness
increases glutamate levels, which activates cPLA; to release AA
from the membrane, thus allowing FABP7 to deliver AA to the
ER where it is converted into PGE, (Figure 2).

In addition to the relationship between sleep disturbance and
AA release, we propose that normal sleep promotes the activation
of iPLA;, leading to increased DHA release, FABP-mediated
translocation of DHA to the nucleus, and the subsequent
activation of anti-inflammatory pathways. Cyclic adenosine
monophosphate (cAMP), a compound thought to increase
during sleep and decrease during sleep deprivation (Vecsey et al.,
2009), has been shown to activate iPLA, (Strokin et al., 2003),
providing a basis for the finding that sleep is neuroprotective
(Eugene and Masiak, 2015; Schneider, 2020). The levels of
cAMP present during sleep may also have larger implications
for the memory issues seen in AD. Indeed, Havekes et al. (2014)

showed that sleep deprivation-associated memory deficits could
be prevented by transiently increasing cAMP levels during
periods of sleep loss, and others have proposed cAMP enhancers
as potential therapeutic agents for AD (De Felice et al., 2007).

ALZHEIMER’S DISEASE, FABP7, AND
THE CIRCADIAN CLOCK

Alongside sleep disturbance, another mechanism that may
influence FABP7-signaling in AD is disruption of the circadian
system. Circadian expression of Fabp7 is regulated by the
core-clock gene BMALIL (Gerstner and Paschos, 2020) and
the circadian transcriptional repressor REV-ERBa (NRI1D1)
(Vanderheyden et al., 2021) and exhibits time-of-day changes
at the tripartite synapse (Gerstner et al., 2012b). Many studies
in humans and in animal models have shown a link between
the circadian clock and AD (Weldemichael and Grossberg, 2010;
Cermakian et al., 2011; Musiek and Holtzman, 2016; Homolak
et al,, 2018; Wu et al.,, 2019; Lananna and Musiek, 2020; Carter
et al., 2021; Fusilier et al., 2021; Nassan and Videnovic, 2022).
For example, gene ablation of Bmall in mice has been shown to
exacerbate amyloid burden and astrogliosis (Musiek et al., 2013;
Kress et al., 2018). It is interesting to note that a recent study
showed that plaque burden was unaffected in astrocyte-specific
Bmall knockout mice, but these mice still exhibited increased
Fabp7 gene expression and astrogliosis (McKee et al., 2022).
In contrast, pharmacological activation of REV-ERB using the
agonist SR9009 was shown to reverse cognitive decline and Af
burden in the SAMP8 mouse model of AD (Roby et al., 2019).
However, in another study, inhibition of REV-ERBs using the
drug SR8278 or via gene knockdown was shown to promote
microglial clearance of Ap in 5XFAD mice (Lee et al., 2020). Such
discrepancies between studies may be due to differences in cell-
type, the particular AD animal model, or the specificity/efficacy
of the of the drug/knockdown strategies used. Given that our
model supports a dichotomous role for FABP7, either increasing
or decreasing its expression may have different consequences
depending on the relative levels of DHA:AA present in the
cell (Figure 2). Future studies focused on determining the
molecular-genetic interactions of the circadian system with AD-
related pathophysiology in glial cells will be important for our
understanding of AD progression and etiology.

ASTROCYTES AND ALZHEIMER’S
DISEASE ETIOLOGY

Astrocytes were once thought to merely support the metabolic
needs of neurons due to their lack of action potentials. However,
there is now clear evidence demonstrating that astrocytes play
active and critical roles in the functioning of the central nervous
system (Somjen, 1988; Agulhon et al., 2008), and these cells are
receiving more attention in the treatment of neurodegenerative
diseases (Finsterwald et al., 2015; Valori et al., 2021). Astrocytes
respond to external stimuli by modulating intracellular calcium
levels and releasing neurotransmitters in a phenomenon known
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as gliotransmission (Volterra and Meldolesi, 2005). Additionally,
neurons and astrocytes are now understood to be integrated
through the tripartite synapse, a model demonstrating that
astrocytes surround neuronal junctions, taking part in both
pre- and post-synaptic activities (Araque et al., 1999; Halassa
et al., 2009; Perea et al, 2009; Papouin et al., 2017). More
recent evidence indicates crucial metabolic cooperation between
astrocytes and neurons in which glycolytic metabolism in
astrocytes produces metabolites such as L-lactate and L-serine,
which are then shuttled to neurons to meet their high metabolic
needs (Bonvento and Bolafios, 2021). Among many other factors,
the disruption of this metabolic relationship may be a very early
contributor to the synaptic dysfunction seen in AD (Demetrius
and Driver, 2013; Gordon et al., 2018; Bonvento and Bolafios,
2021).

Reactive astrocytes, astrocytes that have undergone molecular
and functional changes in response to pathological conditions,
have been detected in the early stages of AD before neuronal
death (Perez-Nievas and Serrano-Pozo, 2018; Li et al., 2019).
Given that there are high levels of these cells localized
around amyloid plaques and that they persist throughout
AD progression, reactive astrocytes have been suggested as a
hallmark sign of AD (Pike et al., 1995; Chun and Lee, 2018).
One of the most pertinent changes that occurs in reactive
astrocytes is an increase in spontaneous calcium signaling,
which ultimately impacts gliotransmission (Takano et al., 2007;
Kuchibhotla et al., 2009; Delekate et al., 2014; Nanclares et al,,
2021). This increase in calcium levels may be due to the
upregulation of astrocytic neurotransmitter receptors, including
glutamate receptors (Teaktong et al., 2003; Yu et al, 2005).
This is particularly relevant to sleep and AD dynamics, as
a system of communication between neurons and astrocytes
has been proposed in which glutamate, which is associated
with wakefulness, binds to astrocytic neurotransmitter receptors,
triggering gliotransmission (Nanclares et al., 2021). In this model,
glutamate activates Gq G-protein-coupled receptors (GPCRs)
on the surface of astrocytes, triggering phospholipase C (PLC)
to hydrolyze the membrane lipid phosphatidylinositol 4,5-
bisphosphate (PIP;) into diacylglycerol (DAG) and inositol
triphosphate (IP3; Agulhon et al., 2008). IP3 then acts as a
second messenger, stimulating IP3 receptors and leading to the
release of calcium from the ER. This internal rise in calcium,
in turn, causes astrocytes to release gliotransmitters, including
glutamate, which can then bind to nearby neurons (Scemes, 2000;
Parri and Crunelli, 2003; Volterra and Steinhiuser, 2004; Fiacco
and McCarthy, 2006; Scemes and Giaume, 2006; Malarkey and
Parpura, 2008; De Pitta et al., 2009).

Normally, this neuron-astrocyte communication serves to
maintain glutamate homeostasis by controlling glutamate uptake
and release (Mahmoud et al., 2019); however, this balance is
thought to be disrupted in AD, leading to an accumulation
of glutamate (Nanclares et al, 2021), which may contribute
to AD formation in several ways. First, increased glutamate
has primarily been associated with wakefulness (Dash et al.,
2009; Naylor et al., 2011; Lucey and Bateman, 2014), which
may be exacerbated in pre-clinical AD (Vanderheyden et al,
2018); thus, this alteration in astrocytic gliotransmission may

be one of the drivers of AD-associated insomnia. Second,
under normal conditions, AP peptides are thought to be
deposited during periods of wakefulness and cleared during
sleep (Gerstner et al., 2012a; Roh et al., 2012; Hablitz et al,
2020). However, with decreased sleep, amyloid peptides may
not be effectively cleared and may instead aggregate, forming
the protein plaques that are the primary hallmark of AD.
Recently, the clock modulator nobiletin was shown to mitigate
astrogliosis and inflammation in an AD model (Wirianto et al.,
2022). Third, in addition to sleep/circadian factors, increased
glutamate release from astrocytes could lead to excitotoxicity,
or cell damage/death, from excessively high levels of excitatory
neurotransmission (Lewerenz and Maher, 2015). Finally, there
is evidence demonstrating that there is an increase in cPLA;
immunoreactivity in reactive glia associated with AB deposits
(Stephenson et al., 1996, 1999; Colangelo et al., 2002; Moses et al.,
2006; Schaeffer and Gattaz, 2008), and that astrocytic calcium
release activates cPLA,, which then stimulates AA release from
the membrane (Stephenson et al., 1994; Sergeeva et al., 2005;
Wang et al., 2021). This release would promote more binding of
AA by FABP7 and subsequent initiation of the pro-inflammatory
cascade described in our model.

TREATMENT STRATEGIES TARGETING
DIET AND LIPID-SIGNALING CASCADES
FOR ALZHEIMER’S DISEASE

There is significant evidence that the downstream inflammation-
determining PUFAs can be modulated through diet (Sharma
et al., 2012; Thomas et al, 2015). Diet was first suggested to
play a role in AD when a 1997 study found that elderly African-
Americans and Japanese people living in the United States
had significantly increased rates of AD compared to people
from their countries of origin (Grant, 1997). Since this initial
finding, diet has been repeatedly linked to AD prevalence, with
evidence showing that increased omega-3 fatty acid consumption
is significantly associated with a lower risk of AD (Morris, 2009).
Accordingly, a Mediterranean diet has been associated with a
lower risk of AD (Scarmeas et al., 2006), while a Western diet
has been associated with an increased risk of AD (Berrino, 2002).
The dietary balance between n-3 and n-6 PUFAs may explain
the societal differences in AD prevalence, as the Mediterranean
diet is rich in DHA from olive oil, fish, and vegetables, and the
Western diet is high in AA from corn and vegetable oils (Zivkovic
et al, 2011). Indeed, the anti-inflammatory and neuroprotective
properties of DHA have shown promising epidemiological
results, suggesting that DHA, or perhaps DHA analogs, could
serve as useful therapeutics for AD moving forward.

Dietary conditions with high fat/high sugar content, such
as the Western diet, are associated with the development
of hyperglycemia and diabetes and may be closely related
to dementia and AD (Lee et al, 2018). Along these lines,
thiazolidinedione drugs (TZDs; also called glitazones), a class
of pharmacological agents originally developed to treat insulin
resistance and diabetes (Lebovitz, 2019), have shown promise for
treating AD (Pérez and Quintanilla, 2015; Saunders et al., 2021).
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Glitazones are high affinity ligands for PPARy and are known
to reduce AP in various models (Camacho et al., 2004; Heneka
et al., 2005; Liu et al., 2013; Gad et al., 2016; Quan et al.,
2019) as well as tau pathology (Escribano et al., 2010; O’Reilly
and Lynch, 2012; Cho et al, 2013; Hamano et al, 2016;
Moosecker et al., 2019). Moreover, we have recently shown that
glitazone treatment rescues phenotypic deficits and autophagy
pathways in flies with mutations in the human ortholog of the
glucocerebrosidase gene (GBA) (Shola-Dare et al., 2021), the
strongest genetic risk factor for Parkinson’s disease (Schapira,
2015; Do et al.,, 2019; Avenali et al., 2020). Indeed, glitazone
treatment in GBA mutant flies restored normal levels of Ref(2)P,
the fly p62 homolog and marker of autophagic flux, suggesting
that the PPARy-pathway may represent a common therapeutic
target for multiple neurodegenerative diseases (Kumar et al.,
2020; Jamwal et al., 2021). Whether glitazones bind FABP7
to initiate FABP7-dependent neuroprotective signaling cascades
is a future direction of study, and may represent a drug-
target mechanism of glitazone activation of PPARy for the
treatment of AD.

In addition to PPARy, PPAR« has also been implicated in AD
pathogenesis. PPAR« is part of the greater PPAR receptor family
and has been found to play roles in lipid metabolism and anti-
inflammatory pathways (Vallée and Lecarpentier, 2016). In AD,
PPARa is involved in the regulation of beta-secretase (BACE-1),
an enzyme responsible for the cleavage and later formation of Af
plaques, and studies have shown a significant downregulation of
PPARa in AD pathology (Wojtowicz et al., 2020). Furthermore,
treatment with the PPARa agonist gemfibrozil together with
retinoic acid (GFB-RA) was recently shown to lower amyloid
plaque burden, improve memory, and reduce astrogliosis in
mice (Chandra and Pahan, 2019; Raha et al., 2021). These
effects appear to be mediated by astrocytes through lysosomal
biogenesis and autophagy pathways (Raha et al., 2021), although
alternative mechanisms of PPAR-regulated activity, such as
molecular transrepression, may also be involved (Ricote and
Glass, 2007; Pawlak et al., 2014). GFB-RA has also been shown to
stimulate two succeeding neuroprotective pathways that result in
the degradation of beta-amyloid plaques. These pathways include
(1) activation of the transcription factor EB (TFEB) and (2)
activation of the low-density lipoprotein receptor (LDLR; Raha
et al., 2021). LDLR knockout mice treated with GFB-RA were
shown to have significantly decreased levels of astrocytic Af
plaque uptake, suggesting an important role for LDLR in the
transport of AP (Raha et al,, 2021). In the 5XFAD mouse model
of AD, GFB-RA treatment was also shown to improve autophagic
flux by restoring normal levels of p62 (Raha et al, 2021), a
ubiquitin-binding scaffold protein that is degraded by autophagy
(Bjorkoy et al., 2009). Combined, these data implicate PPARs as
critical players in the regulation of AR degradation and highlight
the need for further research into the underlying mechanisms.

We have also shown that fly FABP or murine FABP7
overexpression rescues sleep deficits in a fly model of AD
(Gerstner et al, 2017a). Given that FABPs are targets of
PPAR agonists (Guan et al, 2001; Tan et al., 2002), future
studies characterizing the role of FABPs in PPAR-mediated
signaling pathways will be important for determining their

potential as drug targets for the development of treatments for
neurodegenerative diseases such as AD.

CONCLUSION

Alzheimer’s disease has become a growing global health crisis in
recent years, with the number of dementia cases expected to rise
to 152 million by 2050 (AAIC, 2021). While clinical trials have
been evaluating AD drugs since the early 1980%, they have largely
failed to establish efficacy (Schneider et al., 2014; Cummings et al.,
2018; Yiannopoulou et al., 2019; Oxford et al., 2020). Evidence
suggests that the pathological hallmarks of AD begin appearing
up to 20 years before symptoms develop (Reiman et al., 2012;
Dubois et al., 2014, 2016; Guennewig et al., 2021), raising the
idea that clinical trials may have failed due to the administration
of therapeutics too late in disease progression. Given that the
damage done to the brain in the late stages of AD is largely
irreversible, the identification of prodromal markers as well as
novel therapeutic agents is critically important.

In the search for modifiable risk factors related to AD, both
sleep disturbances and inflammation have gained recognition
(Irwin and Vitiello, 2019). While inflammation and sleep
have long been thought of as distinct processes within AD
pathogenesis, more recent studies have found an association
between poor sleep quality and increased systemic inflammation
(Irwin et al., 2016; Irwin and Opp, 2017), implying interplay
between these two factors. Here, we suggest that FABP7 may
be a key player in the linkage between neuroinflammation and
sleep disturbances in AD. Evidence suggests a bidirectional
relationship between sleep and AD in which AD decreases sleep
quality, and decreased sleep quality increases AD progression
(Gerstner et al., 2012a; Roh et al., 2012; Ju et al., 2014). This
decrease in sleep has been shown to increase Af release (Shokri-
Kojori et al., 2018) as well as the release of glutamate (Talantova
et al,, 2013), an excitatory neurotransmitter that activates the
lipid-releasing enzyme cPLA; (Kim et al, 1995; Hartz et al,
2019). In our model, this cPLA, activation leads to increased
AA release from astrocytic membranes, allowing FABP7 to
transport AA to the ER where it is converted to PGE; by COX-
2. PGE, then promotes neuroinflammation (Hein and O’Banion,
2009) by increasing the expression of NF-kB and COX-2 (Hsu
et al, 2017) and promotes wakefulness by stimulating further
glutamate release (Bezzi et al., 1998), both of which contribute to
the pathogenesis of AD (Wang et al., 2014; Woodling et al., 2016;
Madeira et al., 2018; Sadeghmousavi et al., 2020). Alternatively,
sleep seems to be neuroprotective; reducing neuroinflammation
by downregulating the expression of NF-kB (Black et al., 2015).
We suggest that this pathway can be stimulated by DHA in
an FABP7-dependent manner. Following adenosine signaling-
induced activation of iPLA; and the subsequent release of
DHA from the astrocytic membrane (Strokin et al., 2003), we
propose that FABP7 binds the released DHA and transports it
to the nucleus, where it both activates the anti-inflammatory
transcription factor PPARy and decreases the expression of
NF-kB; thus preventing the development and progression of
AD. While our hypothesis is centered around AD, we hope
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that the pathways described here will help to elucidate those
underlying other FABP7-linked conditions including cancer,
Down’s syndrome, schizophrenia, amyotrophic lateral sclerosis
(ALS), and Parkinson’s disease.

SUMMARY

Building on the signaling cascades and mechanisms seen in
cancer, we propose a novel role for FABP7 in sleep and AD
pathogenesis in which ligand availability determines FABP7’s
function, with DHA promoting neuroprotection and normal
sleep, and AA promoting disrupted sleep and AD pathogenesis.
Here, we suggest that the release of both DHA and AA
are regulated by upstream sleep-dependent mechanisms. We
propose that disrupted sleep causes the accumulation of the
wake-promoting neurotransmitter glutamate, which then leads
to the activation of cPLA; and the release of AA from astrocytic
membranes, making AA available to FABP7 for transport to
the ER. Alternatively, normal sleep, promoted by the somnogen
adenosine signals an increase in cAMP levels via adenylyl cyclase,
activating iPLA, to release DHA from astrocytic membranes
and making DHA available to bind FABP7 for transport to the
nucleus. We hypothesize that sleep disturbances perpetuate a
cycle in which AA is released and transported to the ER, leading
to the upregulation of COX-2 and the subsequent production
of pro-inflammatory cytokines, including IL-6 and TNFa. This
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