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New information can be learned during sleep but the extent to which we can access this
knowledge after awakening is far less understood. Using a novel Associative Transfer
Learning paradigm, we show that, after hearing unknown Japanese words with sounds
referring to their meaning during sleep, participants could identify the images depicting
the meaning of newly acquired Japanese words after awakening (N = 22). Moreover, we
demonstrate that this cross-modal generalization is implicit, meaning that participants
remain unaware of this knowledge. Using electroencephalography, we further show
that frontal slow-wave responses to auditory stimuli during sleep predicted memory
performance after awakening. This neural signature of memory formation gradually
emerged over the course of the sleep phase, highlighting the dynamics of associative
learning during sleep. This study provides novel evidence that the formation of new
associative memories can be traced back to the dynamics of slow-wave responses to
stimuli during sleep and that their implicit transfer into wakefulness can be generalized
across sensory modalities.

Keywords: associative learning, vocabulary acquisition, implicit memory, cross-modal generalization, sleep, EEG,
slow wave, associative transfer

INTRODUCTION

It is well established that memories acquired during the day can be consolidated during sleep
(Walker et al., 2003; Rasch and Born, 2013). Whether new information can be acquired during
sleep has, however, given rise to controversial or inconsistent results until recently [e.g., Bruce et al.,
1970; see Peigneux et al. (2001) for a review]. In the past years, a series of convergent findings have
demonstrated that learning during sleep is a reality, although its extent and flexibility remain to be
clarified [Arzi et al., 2012; see Puchkova (2020) for a review]. Evidence of learning during sleep was
initially limited to fairly simple mechanisms such as sensory conditioning (Arzi et al., 2012, 2014)
and perceptual encoding (Ruch et al., 2014; Andrillon and Kouider, 2016; Andrillon et al., 2017).
Recent results reveal that verbal associations can also be acquired during sleep, demonstrating
that the learning abilities of the sleeping brain can extend to higher levels of representations
(Züst et al., 2019).
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Yet, a remaining issue concerns the flexibility of learning
during sleep. In particular, it is still unclear whether humans can
generalize to new domains on the basis of knowledge acquired
during sleep and use it in their behavior during wakefulness
(Ruch and Henke, 2020). This ability, known as transfer learning,
is a core aspect of neural plasticity and is considered a key
determinant of flexible learning in both humans and machines
(Torrey and Shavlik, 2010; Lake et al., 2017). In this study, we
aimed at testing the hypothesis that memory systems during sleep
not only support the acquisition of new information but are also
able to transfer this information across sensory domains and
influence subsequent behavior during wakefulness.

To address this issue, we relied on a novel Associative
Transfer Learning (ATL) paradigm. During sleep, participants
were presented with words in a foreign tongue (Japanese)
concomitantly with the acoustic representation of their meaning
(e.g., the Japanese equivalent of the word “dog” along with
the sound of a barking dog) while we recorded their
electroencephalograph (EEG). Upon awakening, the Japanese
words were played again while participants had to select the
corresponding image in a two-alternative forced-choice task. This
paradigm allowed us to test not only whether the mapping from
a new verbal representation and its acoustic meaning could be
acquired during sleep, but also whether this mapping could
be transferred to the pictorial representation of their meaning
during wakefulness.

To elucidate the neural mechanisms involved in ATL, we
investigated whether EEG responses during sleep predicted
memory performance after awakening. To do so, we compared
EEG responses during sleep between items that were correctly
identified during the memory test and those that led to incorrect
decisions. Züst et al. (2019) previously identified a neural
correlate of memory acquisition in the slow-wave activity in
response to stimulations. Brain entrainment at a slow-wave
frequency was also observed for sensory conditioning and
interestingly changed throughout the sleep learning process
(Canales-Johnson et al., 2020). Here, we analyzed neural
responses to sounds at the beginning and the end of the sleep
learning process. We hypothesized that slow-wave activity would
predict items that were later remembered, and that this neural
signature would increase over night, reflecting the dynamics
of sleep learning.

MATERIALS AND METHODS

Participants
Twenty-five French-native speakers (age: 24,1, min: 20, max: 34,
16 females) were recruited for this study based on an online
questionnaire ensuring they could easily fall asleep in a noisy
environment and had no prior knowledge of Japanese nor related
languages (Chinese, Korean). Sample size was chosen based on
previous studies investigating learning during sleep (Strauss et al.,
2015; Andrillon et al., 2017). Participants were interviewed by a
sleep doctor to ensure that they had no history of hearing nor
sleep disorders. Participants were monitored 3–10 days before
the experiment by actimetry (FitBit Charge HR) and filled a sleep

agenda to ensure a normal sleep schedule before the experiment.
Additionally, participants were deprived from stimulants (e.g.,
caffeine) the day of the experiment. Two participants were
excluded because of difficulties in falling asleep with auditory
stimulations and one due to technical issues, resulting in twenty-
two participants (age: 23,7, min: 20, max: 29, 15 females).
The present protocol has been approved by the local ethical
committee (Comité de Protection des Personnes, Ile-de-France
I, Paris, France) and all participants provided informed consent.

Stimuli
Totally 48 Japanese words were first selected from three
categories (animals, natural elements, body parts or bodily
actions; see Supplementary Table 1 for the full list of
words). Auditory versions of Japanese words were generated
using a licensed-free online text-to-speech software1. Sounds
corresponding to Japanese words were extracted from licensed-
free online audio banks2,3 and matched in length using the
Matlab (Mathworks Inc.) implementation of the VSOLA
(variable parameter synchronized overlap add) algorithm
(duration = 2.58 s) (Dorran et al., 2003). Auditory stimuli were
matched in intensity by normalizing their root mean square.
Stimuli were delivered to participants through speakers placed
at the head of the bed. During sleep, Japanese words were played
simultaneously with the sound corresponding to their meaning
(e.g., the Japanese equivalent of dog with the barking of a dog). To
ensure successful encoding of Japanese words, they were played
twice louder than their corresponding sound and repeated twice
with half second intervals. This resulted in 48 sound-word pairs
matched in length using the VSOLA algorithm (first word onset
after sound onset = 0.5 s, second word onset = 1.60 s ± 0.099
(mean ± STD), sound duration = 2.66 s) and in intensity by
normalizing their root mean square. A corresponding image
for each Japanese word was selected online and their display
was matched in size on the monitor. This procedure resulted
in 48 associations between a Japanese word (e.g., the Japanese
equivalent of dog), a corresponding sound (e.g., barking of a dog)
and a corresponding image (e.g., the picture of a dog). For each
participant, the 48 associations were then randomly assigned to
3 lists of 16 items (NREM, REM and control lists).

Experimental Protocol
Participants were invited to the sleep lab (Centre du Sommeil
et de la Vigilance, Hotel-Dieu, Paris) the evening prior to the
experiment. Participants were then equipped with a 64-channel
electroencephalography (EEG) gel-net (EGI system, Electrical
Geodesic Inc.) and chin electromyography (EMG). The first
part of the night was devoted to a different task orthogonal
to the purpose of the present experiment. Participants were
awakened at 3 am to start the experiment (Figure 1A). During
the familiarization phase, 48 sound-image pairs (e.g., a picture of
a dog and the barking sound “woof ”) were played four times in
a randomized order. Participants were instructed to remember

1https://ttsmp3.com/
2https://eng.universal-soundbank.com
3https://www.freesoundeffects.com/
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FIGURE 1 | Associative Transfer Learning paradigm. (A) During the first phase performed awake, participants were familiarized with the 48 sound-image pairs.
Participants were then allowed to fall asleep. Whenever participants entered NREM or REM sleep, sounds from the corresponding list were played simultaneously
with their corresponding Japanese translations. Upon awakening, participants performed a memory test. Japanese words were played with two images belonging to
the same list (i.e., NREM, REM, or control list). Participants first chose which image correctly depicts the Japanese word (left or right), and then provided their
confidence on a three-level scale (null, low, high). (B) For each participant, the 48 Japanese words (e.g., the Japanese equivalent for “dog”) were randomly assigned
into 3 lists, resulting in a NREM, a REM and a control list of 16 items each. (C) Sleep scoring (hypnogram) of the experiment for one participant.

the sound-image associations. During the sleep learning phase,
participants were then allowed to fall asleep with the volume set
around 50 dB and adjusted according to participant’s preference
following previous experiments (Strauss et al., 2015; Andrillon
et al., 2017). While participants were scored as awake or in
transition to sleep (i.e., still in NREM1), sounds alone (e.g.,
“woof ”) were continuously played separated by an interstimulus
interval of 4–6 s uniformly distributed random jitter. Whenever
participants entered NREM or REM sleep, Japanese translations
were added on top of their corresponding sounds (e.g., the
Japanese word for dog with the barking sound “woof ”). Stimuli
from different lists were played during NREM and REM sleep
(Figures 1B,C and Supplementary Table 2 for stimulation
statistics across participants). Participants woke up at 7 am and
started the test phase whenever they were ready. During the test
phase, participants performed a two-Alternative Forced Choice
(2AFC) task. Each item was paired with another item from the
same list (i.e., either from the NREM, REM or control list).
Japanese translations were played twice to ensure successful
encoding and facilitate recognition. Two images were displayed
among which only one depicted the Japanese word. Participants
first decided which image represented the Japanese word, and
second assessed their confidence in their response (null if it was
a blind guess, low, high). The side (left or right) of the correct
image was counterbalanced within lists. The order of apparition
of items across all lists was randomly shuffled. Subjects could
correct their decision before giving their confidence response
to reduce mistakes resulting from wrong button presses during
the first decision.

Electroencephalograph Recordings
Electroencephalograph signals were amplified (NetAmp
300), referenced online to Cz and sampled at 500 Hz.
Electrooculograms (EOG) and chin electromyograms (EMG)

were recorded with electrodes placed around the eyes and on the
chin respectively. For offline analysis, defective channels were
first identified and interpolated using neighboring electrodes.
EEG and EOG signals were re-referenced to mastoids and
bandpass filtered between 0.1 and 30 Hz (two-pass Butterworth
filter, 5th order). EMG signals were obtained with a local
derivation and band-passed between 80 and 160 Hz (two-pass
Butterworth filter, 5th order). EEG recordings were synchronized
with audio stimuli using a signal recorded by the amplifier at the
onset and offset of each stimulus.

Sleep Scoring
Stimulus presentation during sleep was adapted online by a
trained scorer (M.K.) following established guidelines (Iber et al.,
2007). Sleep stages were scored offline on 20-s long windows
by trained scorers (M.K. and D.L.) blind to experimental
conditions (see Figure 1C for an hypnogram of one participant,
Supplementary Table 3 for sleep statistics across participants).
Micro-arousals were carefully noted.

Electroencephalograph Analysis
Electroencephalograph recordings were resampled at 100 Hz
for data analysis. EEG responses from −0.5 to 4.5 s around
stimulus onset of each trial were selected. Brain potentials
were baseline corrected [(−0.2, 0)s]. The mean and standard
deviations (SD) of the maximal differences across trials for
each electrode was computed. Trials with at least one electrode
deviating for more than 3 SD above the mean were rejected
to avoid artifactual contamination [5.0%, CI = (4.1, 6.1)]. This
resulted in conserving 1,689 trials [CI = (1,619, 1,758)]. Among
these trials, only trials that were scored both online and offline
were kept for further analysis, resulting in 625 trials in NREM
sleep [CI = (540, 711)] per participant (Supplementary Table 2
for the online scoring efficiency). Brain potentials for channels
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over a frontal cluster of electrodes (Fz, F1, F2, F3, F4, FPz,
FP1, FP2, FP3, FP4) were averaged across trials of the same
conditions following on a previous study (Züst et al., 2019). To
analyze the time-course of brain responses, we relied on non-
parametric cluster permutation statistics to control for multiple
comparisons. Clusters were defined as consecutive time-points
for which parametric tests reached a specific threshold (α = 0.05).
For each cluster, the sum of t-values was compared to the
maximum cluster statistics obtained after random permutation
of the conditions considered (N = 1,000 permutations). We
computed a Monte-Carlo P-value (referred as Pcluster) and the
sum of t-values of clusters with Pcluster < 0.05 were reported.

RESULTS

Learning During NREM Sleep
We first investigated whether participants learned the meaning
of words presented during sleep. We first observed that
memory performance depended on arousal level [repeated-
measure ANOVA, F(2,21) = 4.66, p = 0.021]. This effect came
from a higher memory performance for words from the NREM
list compared to words that were not presented during sleep,
i.e., the control list (post hoc Tukey-test, NREM vs. control:
p = 0.011; REM vs. control, p = 0.201; NREM vs. REM,
p = 0.407). Memory was above chance level for words from
the NREM list [59%, CI = (52, 66)], Cohen’s d = 0.58, two-
tailed Student’s t-test against chance level [50%, t(21) = 2.7,
p = 0.013, corrected for false discovery rate (Benjamini and
Yekutieli, 2001; Figure 2A)]. Comparatively, memory was not
different from the chance level for words from the REM list
[53%, CI = (48, 58), d = 0.28, two-tailed Student’s t-test against
chance level, t(21) = 1.32, p = 0.201]. Memory for words from
the list that was not presented during sleep, i.e., the control list,
also did not differ from the chance level, showing that learning
could not be attributed to prior knowledge of the meaning
of Japanese words [45%, CI = (38, 53), d = −0.27, two-tailed
Student’s t-test against chance level, t(21) = −1.31, p = 0.204;
Figure 2A].

We then checked whether sleep learning could be attributed
to items being more easily acquired over others. We thus
fitted memory performance at the single item level (generalized
linear mixed model with binomial distribution (correct vs.
incorrect), participants as random variable and list as a
covariate). Memory performance depended on lists [analysis
of variance: F(2,1053) = 6.31, p = 0.002]. We thus focused
on the NREM list and found no influence of item identity
on our results [analysis of variance: F(47,304) = 0.93].
These analyses show that memory performance could not
be attributed to the learning of the same specific items
across participants.

We further checked that memory for the NREM list was not
due to items that were inadvertently played during awakenings
or micro-arousals [3.4 items per subject, CI = (2.0, 4.8), see
Supplementary Table 2]. We observed that the effect of memory
for the NREM list was significant even after removing these items
[58%, CI = (50, 68), d = 0.45, one-tailed Student’s t-test against

chance level, t(20) = 2.04, p = 0.028]. These results confirm that
the meaning of Japanese words was acquired during NREM sleep.

Implicit Memory
We then investigated whether the nature of the memory formed
during NREM sleep was implicit or explicit. If learning during
NREM sleep was implicit, we expected that confidence scores
would be similar for words from the NREM list vs. words from
the control list, and for correct vs. incorrect memory choices.
Consistent with this hypothesis, we found no difference in
confidence scores between the NREM list and the control list
[−0.03, CI = (−0.11, 0.05), d = −0.01, paired two-tailed Student’s
t-test for the difference between the NREM and control list,
t(21) = −0.78, p = 0.444]. Confidence scores were also similar
between items of the NREM list that were correctly identified
(correct) and items that were incorrect (error) [0.00, CI = (−0.12,
0.12), d = 0.01, paired two-tailed Student’s t-test for the difference
between correct and error, t(21) = 0.05, p = 0.959; Figure 2B].
These results thus demonstrate that memory formation during
NREM sleep is implicit.

We also found no difference in confidence scores between
words from the REM and control list [−0.01, CI = (−0.08, 0.07),
d = −0.03, paired two-tailed Student’s t-test for the difference
between the REM and control list, t(21) = −0.16, p = 0.877], as
well as between correct and error responses for the REM list [0.08,
CI = (−0.02, 0.20), d = 0.34, paired two-tailed Student’s t-test
for the difference between correct and error trials, t(21) = 1.63,
p = 0.117] and for the control list [0.10, CI = (−0.05 0.25),
d = 0.30, paired two-tailed Student’s t-test for the difference
between correct and error trials, t(21) = 1.39, p = 0.180].
Confidence scores thus confirm the absence of evidence for
learning for both the REM and control lists.

We finally ran a control experiment during which new
participants performed the experiment entirely during
wakefulness (n = 12). Participants acquired the meaning of
Japanese words heard during wakefulness, and importantly,
higher confidence scores were found for items learned during
wakefulness as compared to the control list, as well as for
correctly identified items as compared to incorrect ones
(Supplementary Figure 1). These results show that implicit
memory formation observed during sleep qualitatively differs
from explicit memory formation obtained during wakefulness.

Neural Signatures of Sleep Learning
To understand the neural processes supporting memory
formation during sleep, we investigated whether memory
performance after awakening could be predicted by the brain
responses to stimuli played during NREM sleep. To do so, we
contrasted the brain responses to stimuli that were correctly
identified during the memory test and those associated with an
error. We hypothesized that stimulus presentation triggered the
entrainment of neural oscillation in the slow-wave (SW) range,
a well-documented phenomenon happening during NREM sleep
(Bastien and Campbell, 1992; Halász, 2016). We thus selected for
our analyses a region-of-interest composed of a frontal cluster
of electrodes where slow-waves have the strongest amplitude
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FIGURE 2 | Implicit associative transfer learning for words presented during NREM sleep. (A) Memory performance across NREM, REM and control list. Student’s
T-test against chance level (50%, dotted line) were computed for each list and corrected for multiple comparisons (*P < 0.05). (B) Confidence score on a 3-level
scale (null, low, high) for memory response of the NREM list. Statistical tests reveal no difference between trials that were successfully identified (correct) and those
associated with a mistake (error).

FIGURE 3 | Differential entrainment of frontal neural responses at a slow-wave frequency to stimulation for correctly and incorrectly identified items during NREM
sleep. (A) Neural responses were computed over a frontal cluster of electrodes depicted in the lower left panel. Time-course of the stimulus presentation was
indicated in a top panel. Time-courses of the brain responses (lower panel) were averaged across participants and smoothed for visualization purposes only, using a
500-ms wide Gaussian kernel. Mean and standard error of the mean (SEM) are represented, respectively, with solid lines and shaded areas for the correct (green)
and the error (red) trials. Statistical tests were performed on brain responses before smoothing. Green, red and black horizontal lines denote significant clusters of
neural responses differing from baseline (0, dotted line) across participants for, respectively, correct trials, error trials, or the difference between both conditions
(P < 0.05 after cluster correction). Gray bars indicate time clusters corresponding to negative half-periods of a slow wave rhythm at 0.85 Hz. (B) Neural responses
were averaged over each negative half-period of slow waves and compared between correct (green) and error (red) trials. Mean and standard error of the mean
(SEM) are represented, respectively, with bar plots and solid lines. Student’s T-test against baseline (0, dotted line) was computed for correct and error trials and
corrected for multiple comparisons. Paired Student’s T-test were computed between correct and error trials (***P < 0.001, **P < 0.01, *P < 0.05). Topography of
amplitudes were indicated in lower panels for correct, error and the difference between correct and error trials.

(Massimini et al., 2004) and where memory effects have been
reported in previous literature (Züst et al., 2019).

For both correct and error trials, we obtained an expected
modulation of brain responses after the presentation of the first
and second word [correct vs. baseline: (0.94, 1.67)s, d = −0.54,
Monte-Carlo test, alpha-level = 0.05, 1,000 permutations,
6t(21) = −353.7, Pcluster = 0.006 and (2.09, 2.89)s, d = −0.40,
6t(21) = −353.7, Pcluster = 0.009; error vs. baseline: (0.90,
1.68)s, d = −0.85, 6t(21) = −414.9, Pcluster < 0.001 and (2.14,
2.70)s, d = −0.37, 6t(21) = −192.7, Pcluster = 0.030 after cluster
correction; Figure 3A]. In addition, we observed a significant

difference between correct and error trials only after the end
of the stimulation [correct vs. error: (3.36, 3.93)s, d = −0.44,
6t(21) = −120.1, Pcluster = 0.029]. We thus investigated in more
details the amplitude of brain responses corresponding to the
human SW range (0.85 Hz) (gray bars, Figure 3A).

Post hoc tests confirmed that amplitudes differed significantly
from baseline both for correct and error trials at the 1st and
2nd SW (Student’s t-test against baseline (0), all p-values inferior
to 0.05, corrected for multiple comparisons; Figure 3B). Brain
topography of these responses confirmed that amplitudes were
maximal over frontal electrodes. Post hoc results did not reveal
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FIGURE 4 | Differential entrainment of frontal neural responses to stimulation for correctly and incorrectly identified items for the first half and the second half of
NREM trials. (A,B) Mean and standard error of the mean (SEM) are represented, respectively, with solid lines and shaded areas for the correct (green) and the error
(red) trials for the first (A) and second (B) half trials in NREM sleep. Green, red and black horizontal lines denote significant clusters of neural responses differing from
baseline (0, dotted line) for, respectively, correct trials, error trials, or the difference between both conditions (P < 0.05 after cluster correction). Gray bars indicate
time clusters spanning over the three-fourth of a slow wave rhythm at 0.85 Hz centered over its trough. (C–E) Neural responses for correct (green) and error (red)
trials for the first and second half of trials were averaged and compared for the first (C), second (D) and third (E) slow wave. Mean and standard error of the mean
(SEM) are represented, respectively, with bar plots and solid lines. Student’s T-test against baseline (0, dotted line) was computed for correct and error trials and
corrected for multiple comparisons. Paired Student’s T-test were computed between correct and error trials for and corrected for multiple comparisons. Interaction
between trial type (correct vs. error) and period of the night (first vs. second half) for each slow wave was computed with repeated measures ANOVA (***P < 0.001,
**P < 0.01, *P < 0.05).

any difference between correct and error trials for the 1st and 2nd

SW (paired two-tailed Student’s t-test for correct vs. error trials,
P > 0.05 for the 1st and 2nd SW; Figure 3B). However, for the
3rd SW, post hoc comparisons confirmed a lower amplitude for
correct trials compared to error trials [−3.22 µV, CI = (−6.3,
−0.2), d = −0.46, t(21) = −2.2, p = 0.039, corrected for multiple
comparison; Figure 3B].

Dynamics of Sleep Learning
Finally, we investigated whether we could track the learning
process during sleep. To do so, we split the sleep learning phase
in two equal parts and compared brain responses to stimuli
for correct and error trials in the 1st and 2nd half of the sleep
learning phase. For the 1st half, we found a positive cluster
covering the 1st SW [correct vs. error: (0.59, 1.48)s, d = −0.49,
6t(21) = 205.0, Pcluster = 0.025; Figure 4A]. For the 2nd half, two
late clusters emerged over the 3rd SW [correct vs. error: (3.16,
3.56)s, d = −0.46, 6t(21) = −88.9, Pcluster = 0.047, and (3.67,
4.05)s, d = −0.49, 6t(21) = −90.0, Pcluster = 0.046; Figure 4B].
As such, we investigated separately for each SW period whether
the type of trials, i.e., correct vs. error, interacted with the part of
the night, i.e., 1st vs. 2nd half.

We found such an interaction for brain amplitudes of the 1st

SW and the 2nd SW periods (repeated measures ANOVA; 1st SW:
F(1,21) = 4.52, p = 0.046, 2nd SW: F(1,21) = 4.45, p = 0.047;
Figures 4C,D). Post hoc analyses revealed that for the 1st SW,
brain differences between correct and error trials were restricted
to the 1st half, suggesting that the 1st SW reflected differences
relative to the initial encoding of stimuli [4.9 µV, CI = (1.1, 8.7),
d = 0.48, paired two-tailed Student’s t-test for correct vs. error
trials, t(21) = 2.68, p = 0.028, corrected for multiple comparison;
Figure 4C]. For the 2nd SW, the pattern of response reversed
from 1st to the 2nd half of the night, with brain potentials lower
than baseline for error trials in the 1st half and for correct
trials in the 2nd half [1st half error: −5.7 µV, CI = (−10.3,
−1.1), d = −0.51, two-tailed Student’s t-test against baseline (0),
t(21) = −2.56, p = 0.037; 2nd half correct: 5.7 µV, CI = (−8.5,
−2.8), d = −0.89, two-tailed Student’s t-test against baseline
(0), t(21) = 4.19, p = 0.002, corrected for multiple comparison;
Figure 4D].

Despite the fact that no interaction was observed at the 3rd

SW (repeated measures ANOVA; F(1,21) = 1.06, p = 0.315),
post hoc tests showed a difference in responses restricted to the
2nd half of the night [−4.2 µV, CI = (−7.7, −0.7), d = −0.48,
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paired two-tailed Student’s t-test for correct vs. error trials,
t(21) = −2.46, p = 0.046, corrected for multiple comparison;
Figure 4E]. Overall, these results show that neural responses
predicting successful memory retrieval shift from early evoked
SW activity to late evoked SW activity throughout the course of
the sleep learning phase.

DISCUSSION

Even while asleep, the brain remains able to process its sensory
environment (Andrillon and Kouider, 2020). The sleeping brain
can discriminate complex sound properties (Bastuji et al., 1995;
Kouider et al., 2014; Strauss et al., 2015; Blume et al., 2017), and
even learn perceptual information (Ruch et al., 2014; Andrillon
and Kouider, 2016; Andrillon et al., 2017) and novel sensory
associations (Arzi et al., 2012, 2014; Züst et al., 2019). Yet, the
extent to which sensory associations acquired during sleep can
be flexibly retrieved after awakening remains poorly understood
(Ruch and Henke, 2020).

Here, we demonstrate that new associations between
unknown words and sensory representations referring to their
meaning can be formed during sleep and retrieved across sensory
modalities during wakefulness. We obtained remarkably similar
effect sizes as a recent study showing the formation of new
verbal associations during sleep (59% vs. 55%, Züst et al., 2019),
replicating the finding that new vocabulary can be acquired
during sleep. However, by relying on a cross-modal identification
task (e.g., “does this word correspond to the picture of a dog or
a picture of a bell?”) rather than a categorization task (e.g., “is
the size of item bigger or smaller than a shoebox?”), our results
provide first evidence that new associations can be transferred
from sleep to wakefulness and retrieved cross-modally.

We also provide evidence that the memory formed during
sleep is retrieved implicitly, meaning that participants remained
unaware of their newly acquired knowledge. While learning
during sleep has often been deemed implicit, studies rarely
tested this assumption directly [e.g., Wood et al., 1992; Ruch
et al., 2014; Züst et al., 2019; see Andrillon and Kouider (2016)
for an exception]. Here, we asked participants to report their
confidence after each memory decision and compared second-
order responses, i.e., confidence score, as a function of first-order
responses, i.e., correct or incorrect memory responses, to probe
the implicit nature of memory formed during sleep (Dienes
and Berry, 1997; Yeung and Summerfield, 2012; Andrillon
and Kouider, 2016). We found that confidence scores did not
differ between correct and incorrect memory decisions when
the learning was performed during sleep. On the contrary,
when learning was performed during wakefulness in a control
experiment, we obtained higher confidence scores for correct vs.
incorrect decisions. This finding clearly distinguishes between
explicit learning observed during wakefulness and implicit
learning occurring during sleep.

Our results thus confirm that cross-modal associations can be
transferred implicitly (Berry et al., 1997; Blum and Yonelinas,
2001; Scott et al., 2018). Contrary to previous studies that
relied on subliminal stimuli to test for this possibility, we

demonstrate here such implicit transfer by altering participants’
conscious level rather than degrading stimulus properties during
memory formation (Kouider and Dehaene, 2007). Additionally,
our novel Associative Transfer Learning (ATL) relied on
presenting separately the two pieces of information that were
tested after awakening, i.e., the image and its corresponding
sound during wakefulness and the Japanese translation and the
same corresponding sound during sleep. By showing that new
associations can be transferred beyond the sensory format in
which they were presented, we demonstrated that associative
learning, when transferred across conscious states, can be
generalized across sensory modalities.

A remaining question concerns the exact origin of the cross-
modal generalization that we observed in this study, and whether
it results from cross-modal retrieval at awakening or cross-
modal encoding during sleep. In the former case, Japanese
words and their corresponding sound would be associated during
sleep, and images would then be retrieved after awakening
upon presentation of the Japanese word. In the latter case,
ATL would consist in the reactivation of images upon their
sound presentation and the formation of a cross-modal mapping
between the Japanese word and the image during sleep.
Presenting sounds during sleep is known indeed to trigger
the reactivation and memory consolidation of memory traces
associated with the sound, a technique called Targeted Memory
Reactivation (Rasch et al., 2007; Oudiette and Paller, 2013).
Our results suggest additionally that reactivating memory traces
may lead to the formation of new cross-modal associations
between during sleep. Further studies should elucidate the
nature of the transfer of cross-modal associations across
conscious states.

We then investigated the neural basis of memory
formation during sleep to further elucidate the mechanisms
involved in ATL. Frontal activity at a slow-wave frequency
(0.85 Hz), a hallmark of NREM sleep, was evoked by
stimulus presentation during sleep and predicted memory
performance after awakening. Our study is in line in this
respect with previous results showing that learning during
sleep is bound to slow-wave activity and thus reinforces the
view that slow waves play an active role in memory processes
during sleep (Marshall et al., 2006; Klinzing et al., 2019;
Züst et al., 2019; Canales-Johnson et al., 2020). While Züst
et al. (2019) obtained similar results during deep NREM
sleep, we provide evidence that these results also hold
true for light NREM sleep (Supplementary Figure 2 and
Supplementary Table 3). We also provide direct evidence
that the neural markers predictive of associative memory
formation evolve during sleep, allowing us to track the
learning process.

In the beginning of the sleep learning process, SW responses
were enhanced during the first wave triggered by stimulus onset
and could reflect differences in the initial encoding of sensory
information (Dang-Vu et al., 2011). At the end of the sleep
learning process, SW responses were stronger during the third
wave after stimulus offset. This late pattern of response could
reflect the entrainment of frontal responses by reverberating
processing in associative networks built over the course of
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learning (Cox et al., 2014). Could these neural signals also result
from the spontaneous changes in neural activity observed during
sleep and not only reflect the sleep learning process? Contrary to
our observations, spontaneous SW activity during NREM sleep
tends to decrease over the course of the night (Nir et al., 2011).
Thus, the dynamics of neural signatures of learning cannot solely
be explained by changes in the sleep structure.

We further investigated whether ATL depended on the distinct
neural states of sleep, notably non-Rapid Eye Movement (NREM)
and Rapid Eye Movement (REM) sleep. Studies of sensory
conditioning during sleep revealed that sound-odor associations
were transferred into wakefulness when played during NREM
sleep but not during REM sleep (Arzi et al., 2012, 2014). Using
a very different task and stimulation procedure, our results
converge into showing that ATL is observed in NREM sleep and
not REM sleep. A potential explanation for this fact could be
that dreaming activity, enriched during REM sleep as compared
to NREM sleep, might compete for attentional resources with
the processing of external information and prevent the encoding
of new information during REM sleep (Nir and Tononi, 2010;
Andrillon et al., 2016; Andrillon and Kouider, 2020). However, an
alternative explanation may be the lower number of presentations
during REM sleep as compared to NREM sleep obtained in
our study (3 times less, 13 vs. 40) (Supplementary Table 2),
preventing any direct comparison to be made about sleep
learning across sleep states based on these results. Further
experiments could focus on REM sleep to investigate whether
ATL can be observed during REM sleep.

Finally, our study did not provide an explanation as to
why certain items triggered sleep learning and their associated
neural correlates while others did not, as well as why some
participants obtained higher performance than others. Items
were selected for being easily heard and recognized, and
stimuli were furthermore carefully matched in terms of intensity
and duration. Accordingly, no single item was found to be
more easily learnt across participants, confirming that acoustic
features play a limited role in explaining observed differences.
Individual preferences for certain items may explain how
different items were more easily acquired across participants.
Additionally, general ability to speak and learn languages, as
well as traits like memory capacity and motivation, could also
explain interindividual differences in sleep learning abilities.
While these factors cannot account for our findings about cross-
modal identification of new words acquired during NREM sleep,
it might be of interest for future studies to determine the
contribution of these factors to sleep learning.

Overall, our results demonstrate that new memory
associations acquired during sleep can be transferred implicitly
and generalized across modalities into wakefulness. In line with
previous studies, we showed that slow-wave activity following
stimulus presentation during NREM sleep predicted memory
formation (Züst et al., 2019; Canales-Johnson et al., 2020).

We further demonstrate that this neural marker evolves over
the course of the learning process, providing direct evidence
that slow-wave activity tracks the formation and evolution
of associative memory traces during NREM sleep. It is also
noteworthy that explicit learning during wakefulness is still much
more efficient compared to implicit learning during sleep, since
ten times less repetition (4 against 40) were sufficient to achieve
considerably higher accuracy (88% vs. 59%) while participants
were aware which are the words for which they have successfully
acquired the meaning. It remains unclear to which extent cross-
modal generalization of new memory traces during ATL occurs
at encoding during sleep or at retrieval during wakefulness
and whether ATL can be extended to REM sleep, and further
experiments are required to settle these questions.
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