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Understanding the structure–function relationship in a neuronal network is one of the
major challenges in neuroscience research. Despite increasing researches at circuit
connectivity and neural network structure, their structure-based biological interpretability
remains unclear. Based on the attractor theory, here we develop an analytical framework
that links neural circuit structures and their functions together through fixed point
attractor in Caenorhabditis elegans. In this framework, we successfully established the
structural condition for the emergence of multiple fixed points in C. elegans connectome.
Then we construct a finite state machine to explain how functions related to bistable
phenomena at the neural activity and behavioral levels are encoded. By applying
the proposed framework to the command circuit in C. elegans, we provide a circuit
level interpretation for the forward-reverse switching behaviors. Interestingly, network
properties of the command circuit and first layer amphid interneuron circuit can also be
inferred from their functions in this framework. Our research indicates the reliability of
the fixed point attractor bridging circuit structure and functions, suggesting its potential
applicability to more complex neuronal circuits in other species.

Keywords: fixed point, attractor, C. elegans, neural network, structure-function relationship

INTRODUCTION

How neural network integrates information and encodes diverse behaviors is one of the key
questions in neuroscience (Milo et al., 2002; Chen et al., 2006; Honey et al., 2010; Hu et al.,
2016; Avena-Koenigsberger et al., 2017; Karla and Caridad, 2018; Schafer, 2018; Curto and
Morrison, 2019; Lynn and Bassett, 2019; Morone and Makse, 2019). As an organism with a small
nervous systems (Gray et al., 2005) whose neural connectivity has been completely mapped out,
Caenorhabditis elegans provides an ideal model to address this question. However, due to the lack
of knowledge in structure-function relationship, our understanding of how this relatively simple
connectome generates diverse complex behaviors is far from complete (Hendricks et al., 2013)
even three decades after the completion of the connectome (Sengupta and Samuel, 2009; Zhen
and Aravinthan, 2015; Morone and Makse, 2019). To date, there have been two main approaches
to investigate the relationship between structure and function. The first involves experimental
research paradigms, which examine the behavioral activities of monitored organisms in the
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background of neuron manipulations such as targeted neuron
optogenetics (Leifer et al., 2011) or laser ablation (Avery
and Horvitzt, 1989; Chung et al., 2006), or analyzes the
dynamic characteristics of neural activities by combining with
optogenetics (Leifer et al., 2011) or laser ablation (Avery and
Horvitzt, 1989; Chung et al., 2006). Following these research
paradigms, researchers have identified circuits involved in
different functions such as forward, backward movements in
C. elegans (Chalfie et al., 1985; Gray et al., 2005; Kawano et al.,
2011; Kato et al., 2015). The other approach is the theoretical
research paradigm (Breakspear, 2017) which regards neural
circuits as complex linear or non-linear neural networks (Liu
et al., 2011; Yan et al., 2017; Kao and Hennequin, 2019). Early
studies like White et al. (1986) used laser ablation method to
provide the exact influence and function of certain neurons,
revealing the important role of AVA and AVB. Wicks et al.
(1996) additionally showed that neurons like PVC, who do
not have obvious behavior during normal locomotion, are
also influential. Rakowski et al. (2013) further focused on the
command circuit of C. elegans and Haspel et al. (2010) the motor
neuron, providing more detailed functional results of circuit
and neurons. Furthermore, different theories such as control
theory (Yan et al., 2017; Kao and Hennequin, 2019), complex
network theory (Liu et al., 2011) and graph theory (Bullmore
and Sporns, 2009; Liu et al., 2011; Deletoile and Adeli, 2017)
are employed to study functional features such as dynamic
characteristics and controllability of the neural circuit. These
research paradigms have made respective advances in dissecting
neural circuit functions (Yan et al., 2017). However, to date,
findings in linking structure and function with distinguishing
dynamic characteristics is still limited.

As a typical kind of attractor, the fixed point attractor
of a system is an important dynamic characteristic that can
maintain its steady states. It is well known that attractors have
been applied to characterize the dynamic patterns of non-linear
systems (Inagaki et al., 2019). In the complex biological nervous
system, various aspects in various organisms, such as the posture
dynamics of C. elegans (Rolls and Webb, 2012; Kunert et al.,
2015; Nichols et al., 2017; Costa et al., 2018), the rhythmic
locomotion in Aplysia (Bruno et al., 2017), and even complicated
cortical information (Balaguer-Ballester, 2010; Finkelstein et al.,
2021), are examined using this attractor theory. Interestingly,
membrane potential in some C. elegans neurons such as AVAL/R
(left and right AVA neurons, the same below), AVBL/R, AVEL/R
and RIML/R are consistently bistable over time (Roberts et al.,
2016), which implies a potential application of fixed point
attractors to interpret these bistable phenomena. However, rarely
has this theory been used to study C. elegans connectome and
functions relationship.

In this work, we built a non-linear neural network model
in C. elegans. Based on this model, we scanned C. elegans
connectome and identified a rich repertoire of microcircuits
with fixed point attractors. Given that the fixed point attractor
of neural system represents neural circuit state, we select
microcircuits that are essential to C. elegans motor movement
and test their structure-function relationship. By constructing an
attractor-based state machine and applying the attractor model

on command circuit, we analyze the three fixed point attractors
of the circuit, which corresponds to three different activity states
within the circuit and three behavioral states. Laser ablation of
specific neurons confirmed that the fixed point attractors from
the connectome indicate circuit function and behavioral states.
In addition, the fixed point attractor model can also implicate
structure information from circuit and behavioral functions.
When circuit and behavioral states are input into the model, the
structural connectivity can be generated. In both cases, our work
indicates important application of the fixed point attractor model
in bridging neural network structure with its function.

ANALYTICAL FRAMEWORK FOR
STRUCTURE-FUNCTION RELATIONSHIP

Non-linear Neuronal Network Model
To apply the attractor theory to study C. elegans neural
network functions, we first establish a non-linear dynamic
model for C. elegans neurons. Generally speaking, a biological
nervous system is a non-linear dynamic system A major
problem in describing a non-linear dynamic system such as
C. elegans neural network using mathematically tractable linear
controllability theory is the loss of biological interpretability
(Jiang and Lai, 2019). One solution to obtain results with
biological interpretability is to describe neural activity using
non-linear neural dynamic models (Curto and Morrison,
2019). In this research, we described the dynamic of
membrane potential change in C. elegans interneurons
or motor neurons as follows (Izquierdo and Beer, 2013):

τi
dxi

dt
= −xi+

N∑
j = 1

wjiσ
(
xj−θj

)
+

N∑
l = 1

gli (xl−xi)+biIi (1)

where xi represents the membrane potential relative to the resting
potential; τi is the time constant;

∑N
j = 1 wjiσ

(
xj−θj

)
is the

input from chemical synapses; θj represents the threshold, and
wji the strength of chemical synapses between neurons i and
j; N represents the total number of neurons;

∑N
l = 1 gli (xl−xi)

is the input from gap junctions; withgli being the conduct
conductance between neuron i and neuron j; biIi is the
external stimuli; The Sigmoidal function σ (x) = 1/

(
1+e−kx

)
represents the chemical synaptic potential of the neuron, where
k regulates the transition rate of the sigmoidal function. The
non-linear sigmoidal function in equation (1) makes it a
better model to simulate the non-linear dynamics of a single
neuron than the linear model in a physically or biologically
interpretation way.

To study dynamic properties of a multi-neuron circuit, the
non-linear dynamics of neuronal networks can be described by

ẋ =
1
τ

(G− L− En × n) x+
1
τ

Wσ (x− θ)+
1
τ

Bu (2)

where n is the number of neurons within the
circuit x = [x1, x2, ..., xn]T represents the membrane
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potentials of n neurons at time t. σ (x− θ) =
[σ (x1 − θ) , σ (x2 − θ) , ..., σ (xn − θ)]T implies that the

non-linearity in Equation (2); W =


w11 w21
w12 w22

· · · wn1
· · · wn2

...
...

w1n w2n

. . .
...

· · · wnn


represents the chemical synaptic connection matrix;

G =


g11 g21
g12 g22

· · · gn1
· · · gn2

...
...

g1n g2n

. . .
...

· · · gnn

 represents gap junction connection

matrix; L = diag
(∑n

k = 1 gk1,
∑n

k = 1 gk2, ...,
∑n

k = 1 gkn
)
;

En × n is a unit matrix; u represents external stimuli; B represents
the input matrix. For simplicity, each neuron has the same time
constant τ and threshold θ .

Fixed Points of C. elegans Neural Circuit
The fixed point attractor within a neural circuit drives membrane
potentials of different neurons within the circuit to stable values
and maintains at this state for a relatively long time until
switching to other stable states. These circuit level stable states
eventually determine different behavioral states. According to
the attractor theory, a fixed point is an equilibrium state that a
system tends to reach and maintain regardless of external inputs.
The fixed point attractors of C. elegans neuronal circuit are the
solutions to the equation below

1
τ

(G− L− En × n) x+
1
τ

Wσ (x− θ) = 0 (3)

The fixed points of this system are the relative membrane
potential vector. Taking a simple one-neuron circuit as an
example, the number of fixed points increases from 1 to 3 with
the increase of connection strength w (Figure 1A). However,
due to the rapid rising phase in the sigmoidal function σ,
the intermediate fixed point is an unstable fixed point and is
almost impossible to be stably maintained. This is probably
why neurons such as AVAL/R, AVBL/R, AVEL/R and RIML/R
typically perform bistable states instead of tristable states. Our
model also suggests a typical bistable pattern for single neuron
under a two-fixed-points condition (Figure 1B). We also test a
more complex circuit that includes two neurons interlinked by
excitatory chemical synapses with the number of fixed points
ranging from 1 to 3 (Figure 1D). Given a three-fixed-points
condition, this circuit can maintain at three different states
(Figure 1C). Notably, the fixed points of circuit are mainly
determined by the connection matrices G and W. However, when
the threshold θ is large enough, σ (x−θ)|x = 0 ≈ 0, then there
must be a fixed point attractor of x = 0 which is independent
of G and W (Figures 1A,D). This fixed point explains a resting
state with neural activity closed to its resting potential.

Stable fixed points have corresponding attraction domains,
in which any point along a specific trajectory tends to reach
the particular fixed point (Figure 1E). This means that as long
as the state is in the domain when external input terminates,
the state of the system will be attracted to the corresponding

attractor (Figure 1E). This enables the system to tolerate error
and maintain at different stable states. However, in a more
complex higher dimensional system, most fixed points are likely
to be saddle points with stable and unstable manifolds (Vitolo
et al., 2010). Unlike stable fixed points, unstable fixed points have
no attraction domains, making them unlikely to be maintained.

To answer the question whether a neural circuit generates
fixed point attractors, we present a sufficiency theorem for the
emergence of multiple fixed points.

Sufficiency Theorem for Motifs With Multiple Fixed
Points
In a motif composed of n (n ≥ 1) neurons, there are
unidirectional chemical synapses and/or symmetric bidirectional
gap junctions among them. The edge weights of chemical
synapses are positive or negative, with positive values indicating
excitation and negative values indicating inhibition. In contrast,
the weights of gap junctions are always positive. If the
gradient potential in Equation (1) is used to describe the
membrane potential of each neuron in the motif, the sufficiency
condition for this motif to have multiple fixed points is that
(i) there is at least one positive feedback loop dominated by
excitatory chemical synapses, and (ii) the connection weights are
properly adjusted without changing the chemical/electrical and
excitatory/inhibitory properties of the synapses.

The Proof of this theorem is in Supplementary Information
IV. It should be noted that the model is non-linear, which
rises the computational difficulties. Some part of the proof
is a qualitative justification instead of a strict mathematical
proof. We hope that future mathematical work and non-
linear results can perfect the theorem. As We can see from
this theorem that, the positive feedback loop (Brandman and
Meyer, 2008; Munteanu et al., 2014) dominated by excitatory
chemical synapses plays a crucial role in the existing of
multiple fixed points of neuronal networks. Therefore, the
bistable or multistable regimes occur in the circuit rely on
positive feedback loops.

Attractor-Based State Machine Mediates
State Switch
Activities in many C. elegans neurons can be switched between
bistable states (Figures 2A,B). For example, AVA neuron can be
switched from low calcium state to high calcium state, which
leads to a behavioral state switching from forward movement
to backward movement. To study how these neural circuit state
and behavior state switch at the attractor level, we developed
a useful tool of finite state machine (Beer, 2000; Buonomano
and Maass, 2009; Helmstaedter, 2015) to describe this process.
Distinct from a stochastic switch model with Markov mode
(Roberts et al., 2016), we construct a state machine with multiple
fixed point attractors as states and their attraction domains as
switching conditions (Figure 3). Specifically, a neural network
with n fixed points can switch among n states according
to their corresponding attraction domains. When the system
staying at one fixed point is disturbed by external inputs or
internal noises, its state then drifts away from this fixed point
(see Supplementary Information V). After the disturbance,
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FIGURE 1 | Multiple fixed points generated from different microcircuits. (A) Bifurcation analysis of at most three fixed points of neurons with at least one chemical
synaptic self-loop. (B) Bistable activities of a neuron with self-loop. (C) Combined multistability of a complicated circuit composed of two simple motifs inhibiting
each other in (B). (D) Bifurcation analysis of a motif on the condition of strong connection and weak connection. (E) Attraction domains of three fixed points. Red
dots represent the fixed points. The lines represent the state trajectories. w means connection strength; + and –represent excitatory and inhibitory connections,
respectively. (F) Connection structure of AVAL and AVAR. (G) The neural activity of AVAL, AVAR changes with time. The blue area represents the period when AVAL,
AVAR was in high neuro activity, and the light green area represents the period when AVAL and AVAR were in low neuro activity. (H) The distribution of AVAL’s neural
activity changes. Its value was normalized. Bin size = 0.1. (I) The distribution of AVBL’s neural activity changes. Its value was normalized. Bin size = 0.1. Structural
potential for multiple fixed points.
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if the system is still within the previous attraction domain,
it then switches back to this fixed point. In contrast, once
it reaches another attraction domain, the state then switches
to the corresponding fixed point instead. This mechanism
allows the system to reach preset states and switch among
them accordingly.

Animals stay in a disturbed environment with drifting
ambient temperature and other unpredictable variables. It is
important for them not only to maintain stable neural network
and behavioral states but also quickly switch to different states to
adapt the change. If different fixed points drive different neural
network and behavior functions, the state machine composed of
multiple fixed points explains the switch among these different
states. By combining the fixed point theory and the state
machine, we can distinguish the function of neurons in terms
of both states (multiple fixed points) and conditions (attraction
domains). We find that some neurons are essential for the
existence of multiple fixed points, while others may contribute
to the formation of the corresponding attraction domains of
these fixed points. A state machine constructed in this way
relates non-linear dynamics characteristic of neuronal network
to circuit function. It not only has important implications for our
further understanding of the circuit function, but also provides
us with the potential requirement of the non-linear dynamics
for the realization of certain function, which is crucial for
structure deduction.

Structure-Function Analytical Paradigms
Since we have linked multiple fixed points characteristic to
both structure and function, we are now able to develop an
analytical framework to interpret structure-function relationship
by using fixed point theory. The analytical framework consists of
two research paradigms: From Structure to Function and From
Function to Structure, as shown below.

Paradigm I: From structure to function.

(1) Acquiring circuit connectome information from biological studies and its
adjacency matrices.

(2). Describing the bistable circuit by non-linear model of Equation (2).

(3) Calculating the fixed points of the circuit according to Equation (3).

(4). Constructing a state machine by using the fixed points calculated and their
corresponding attraction domains.

(5) Analyzing the network functions of neurons according to their contribution to
corresponding fixed points or attraction domains.

(6) Conducting bio-experiments to verify the results.

Supported by different connectome information or
neural activity data, this framework allows us to interpret
functional principle from intricate circuit structure or
deduct structure properties from characteristical neural
activities to ultimately understand how the circuit works. We
now apply this framework to neural circuits in C. elegans
and obtain their functional interpretability and structural
deduction reliability.

Paradigm II: From function to structure.

(1) Acquiring neural activities of the circuit studied, especially those with
bistability, from experimental observation

(2) Determining neuronal functions and fixed points of circuit performance
through analyzing neural activities.

(3) Constructing a state machine by using the fixed points determined and their
corresponding attraction domains.

(4) Deducing potential structural properties from the emergence of fixed points
and corresponding attraction domains.

(5) Conducting bio-experiments and searching previous studies to verify the
results.

STRUCTURE-FUNCTION
INTERPRETATION

Potential Network Motifs for Bistability
To gain insight into neural circuits function, we first conduct the
study from the view of circuit motifs. A neural network could
include a lot of distinct motifs with featured chemical/electrical
connections. By screening C. elegans connectome (279 non-
pharyngeal neurons), we find that the one-node motif in
which a neuron connects to itself through chemical synapses
appears 34 times, among which one-node motif that connect
to itself through chemical and electrical synapses appears 3
times. In addition, the two-node motifs where two neurons
connect to each other via chemical synapses alone or via both
chemical and electrical synapses appear 252 and 93 times in
the network, respectively (potential circuit motifs are shown in
Supplementary Information_Motifs). Notably, these recurrent
motifs have the potential for bistability, and are likely related to
multiple fixed points. Therefore, these motifs may help us predict
bistability related functional activities from the neuronal network
structure. Actually, neurons within the above motifs, such as AIB,
AVA, AVB, AVE, RIM, and CEP do show bistability activities.
For an example, AVAL and AVAR are connected with each other
with chemical synapses and gap junction as well. Together the
two neurons form a motif (Figure 1F) with the potential for
bistability. In a moving worm, activities of AVAL and AVAR
do show distinguishing bistability (Figures 1G–I) that is crucial
for locomotion. These results suggest the potential application
of fixed point theory to interpreting and even predict bistability
related function.

Corresponding Neuronal Activities
Encoded by Fixed Points
To further test the ability of interpreting function of the proposed
framework at the circuit level, we apply a structure-function
research paradigm to the forward–backward switching circuit
to interpret the states and functions of command interneurons.
Previous research indicated that 10 left-right symmetrical
neurons, namely AVBL/R, PVCL/R, AVAL/R, AVDL/R, and
AVEL/R neurons, form a command circuit that plays an
important role in the forward/reverse switch in C. elegans
(Rakowski et al., 2013). Rich connectivity among these neurons
have been discovered in the connectome Figure 4A. So far
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FIGURE 2 | Multiple states in C. elegans neural activity. (A) The neural activity of AVAL, AVBL, AVDL, AVEL, and PVCL. The graph at the left of the panel is the neural
activity changes with time, in which the blue area represents the period when AVBL was in high neuro activity, the light green area represents the period when AVAL
and AVEL were in high neuro activity, and the pink area represents the period when all the neurons were in low neuro activity. The other demonstrated the distribution
of the neural activity changes. AVAL, Bin size = 50; AVBL, Bin size = 40; AVDL, Bin size = 9; AVEL, Bin size = 30; PVCL, Bin size = 9. (B) The neural activity of AVAR,
AVBR, AVDR, AVER, and PVCR. The graph at the left of the panel is the neural activity changes with time, in which the blue area represents the period when AVBL
was in high neuro activity, the light green area represents the period when AVAL and AVEL were in high neuro activity, and the pink area represents the period when
all the neurons were in low neuro activity. The other graphs demonstrated the distribution of the neural activity changes. AVAR, Bin size = 50; AVBR, Bin size = 40;
AVDR, Bin size = 10; AVER, Bin size = 35; PVCR, Bin size = 8.

it has been generally difficult to obtain the actual weights of
connections. Our main goal is to interpret its working principle
rather than guessing its function. With the help of its known
function, the original adjacency matrices regarding the number
and size of synapese (Rakowski et al., 2013) (Supplementary
Tables 1, 2) of the circuit are acquired and adjusted (see Section
“Method,” Supplementary Tables 7, 8) for the computation of
fixed points using Equation (3). During the process, adjustment
strictly follow the guiding of the actual connectome of C. elegans,
with only the weights of connection adjustable. The existence of
chemical and electrical connections must remain unchanged. It
should be noted that the exact excitatory or inhibitory property
of certain synapses are still debatable. For an example Rakowski
and Karbowski (2017) suggests neuron PVC generates negative

current to neuron AVB. This contradicts to the experiment
results that the activation of PVC and trigger the activity of
AVB and other ablation experiments (Chalfie et al., 1985). Thus,
we choose to believe the chemical connection from PVC to
AVB is excitatory. Also, the inhibitory connections between
interneurons mentioned in Fenyves et al. (2020) do not contradict
to our assumptions of strong excitatory connections between
the paired neurons, such as between AVBL and AVBR, and
between AVAL and AVAR. From the weight matrices, three fixed
points in total (Normal column of Table 1 and Figure 4C)
are then acquired. The fixed point 1 corresponds to strong
activations of AVAL/R and AVEL/R, mild activation of AVDL/R
and strong inhibitions of AVBL/R and PVCL/R. The fixed point
2 corresponds to strong activation of AVBL/R, mild inhibition
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FIGURE 3 | Fixed point attractors based finite state machine.

FIGURE 4 | Command circuit of C. elegans. (A) Connectome of command circuit. (B) Implicit structure deduction of command circuit. (C) Three fixed points of the
command circuit calculated by Equation (3).

of PVCL/R and strong inhibitions of AVAL/R and AVEL/R. The
fixed point 3 corresponds to no activations in any of the five
pairs of neurons.

To verify these deductions, we record spontaneous calcium
responses in these 10 neurons. The results showed that the
calcium traces of AVAL/R, AVEL/R, and AVBL/R display typical
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two steady activity states that can be effectively maintained
and switched between (Figures 2A,B and Supplementary
Figures 5A,B). In addition, these ten neurons perform three
stable states (left panel of Figures 2A,B). In state 1, AVAL/R and
AVEL/R are activated and no activations in any other neurons,
which corresponds to the fixed point 1 (light green region in left
panels of Figures 2A,B). In state 2, AVBL/R are activated and no
activations in any other neurons, which corresponds to the fixed
point 2 (blue region in left panels of Figures 2A,B). In state 3, all
the 10 neurons are not activated, which corresponds to the fixed
point 3 (pink region in left panels of Figures 2A,B).

The activations of AVA and AVE lead to backward movements
in worms (Kato et al., 2015), suggesting the fixed point 1
triggers reversal behavior. AVB neuron is inhibited during
reversal. In contrast, the activation of AVB neuron leads to
forward movements, indicating the fixed point 2 triggers forward
behavior. AVA and AVE neurons are inhibited during forward
locomotion. The state 3 corresponds to a sleeping state which
none of these 10 neurons is activated (Cho and Sternberg, 2014;
Nichols et al., 2017), suggesting the fixed point 3 is in a sleeping
state. Notably, animals are commonly observed in state 1 and
state 2, and less frequently in state 3. They either move forward
or backward. However, worms in a molting state have high
possibility of entering a sleeping state, which is the state 3.
Indeed, most of the worms in a non-molting period only have
two states without the state 3 (Supplementary Figures 5A,B).
This can be explained by the size of attraction domain and
whether the fixed point is a stable fixed point. The larger an
attraction domain is, the more likely the state is to maintain
at its corresponding fixed point. Studies on simpler structures
(shown in Figure 1) suggest stronger chemical interconnections
lead to larger attraction domain of the fixed point where the
related neurons stay active. These suggest a simple rule that
stronger internal chemical connections result in longer maintain
for the fixed point where the corresponding neurons are active.
In this 10-neuron circuit, attraction domains of the first two fixed
points follow this rule. The more space the former two attractions
domains take, the less is left for the third. The third fixed point,
however, is more likely to be an unstable fixed point during
moving, and has no attraction domain. Under the influence of
noise, the state is unlikely to be maintained at an unstable fixed
point. This is why lasting pausing state is rarely observed when
a worm is active. But this particular unstable fixed point can
become a stable fixed point during sleeping, ensuring the related
neurons stay inactive until woken.

To further verify it at the behavioral level, we record
locomotory speed when animals are freely conducting local
search in a new environment without food. In non-mouting
worms, during the local search, their forward movements at a
relatively high speed are interrupted by reversals (Figure 5A).
The speed histogram indicates two Gaussian distributions in
the positive and negative speed areas, with center values of
+259.8 and −308.03 µm/s, respectively (Figure 5B). This
suggests that there are two major states of C. elegans movement
during local search, namely the forward movement and the
backward movement, which correspond to fixed point 2 and
1, respectively. Notably, there is a small distribution around

speed 0 (Figures 5A,B), which is a still state, corresponding
to fixed point 3. This portion is too small and difficult to
separate it from another two states. This implies that the
corresponding fixed point is an unstable fixed point. The
major two states are not evenly distributed. Forward movement
accounts for 93.36% whereas backward movement accounted
for only 6.64%, which indicates a strong forward state bias
in local search behavior (Figure 5C). This also suggests that
the sizes of distinct fixed point attraction domains could be
very different, thus occupies different percentage of behavior
states. To explore how this locomotory bias is maintained
during movement, we further examine the single forward
and backward events. The results show that the duration of
single forward events is much longer than that of backward
events, indicating that the forward state lasts much longer
(Figures 5D,E). Although backward event is much brief,
lasting only seconds, the absolute speed can be comparable
to the forward events (Figure 5F). In particular, the speed
frequencies of these two states are roughly evenly distributed,
with opposite directions (Figure 5G). All these results indicated
that there are multiple states in C. elegans locomotion, a brief
backward state, a long-lasting forward state and probably a small
portion of pause state. This pause state is further confirmed
in molting worms. Spontaneous locomotion in sleepy animals
show clearly three states, a backward movement state which
corresponds to the fixed point 1, a forward movement state
which corresponds to the fixed point 2, and a still state
which corresponds to the fixed 3 (Supplementary Figures 3A–
D).

These data verify the existence of multiple fixed points and
confirms that these fixed points constrain the command circuit
states. By switching among these multiple fixed points, the animal
displays corresponding motor states such as reversal, forward
movements and pause. All these results suggest that these fixed
points could in principle reveal the behavioral patterns encoded
by the command circuit.

Neuronal Function of Constituting States
The maintenance of stable activity patterns of neurons is
controlled by the dynamics converging toward the fixed points
retained in the neuronal network structure, so that the neurons
that affect the existence of fixed points should play a crucial
role in the transition between different behavioral states. To
identify neurons contributing to the maintenance of fixed
points within the command circuit, we conducted a series of
computations under different ablation conditions using Equation
(3), with their influence on the presence of multiple fixed
points in Table 1. The prediction shows that the ablation of
either AVAL/R or AVEL/R leads to the impairment of fixed
point 2, which is the state of backward behavior. Similarly,
the ablation of AVBL/R results in the impairment of fixed
point 1, which is the state of forward behavior. This implies
that the ablation of AVAL/R, AVBL/R, or AVEL/R might have
the greatest impact on behavior. However, the ablation of
either AVDL/R or PVCL/R does not affect the existence of
three fixed points. From our computational analysis, we can
speculate that ablation of AVAL/R or AVEL/R will impair the
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TABLE 1 | Fixed point attractors of command circuit computed under different conditions.

Different conditions
Neurons

Normal AVA ablation AVB ablation AVD ablation AVE ablation PVC ablation Gap removed Gap AVA to
PVC removed

AVBL Fixed point 1 0.9 1 none 0.9 0.9 0.9 1 0.9

AVBR 0.9 1 0.9 0.9 0.9 1 0.9

PVCL −0.3 0 −0.4 −0.4 0 0 0

PVCR −0.3 0 −0.4 −0.4 0 0.1 0

AVAL −1 0 −1.1 −1.3 −1.2 −2 −1.2

AVAR −1 0 −1 −1.2 −1.2 −2 −1.2

AVDL −0.3 −0.2 0 −0.4 −0.4 −0.2 −0.4

AVDR −0.3 −0.2 0 −0.4 −0.4 −0.2 −0.3

AVEL −0.6 −0.1 −0.6 0 −0.7 −0.1 −0.7

AVER −0.6 −0.2 −0.6 0 −0.7 −0.2 −0.7

AVBL Fixed point 2 −1.2 none 0 −1.2 None −1.1 −1.5 −1.1

AVBR −1.1 0 −1.1 −1.1 −1 −1.1

PVCL −0.9 −0.8 −0.9 0 −2 −2

PVCR −0.9 −0.8 −0.9 0 −2 −2

AVAL 1.1 1.2 1.2 3 1 1.9

AVAR 1.1 1.2 1.1 3 1 1.9

AVDL 0.3 0.3 0 0.7 0.1 0.4

AVDR 0.3 0.3 0 0.7 0.1 0.3

AVEL 0.7 0.7 0.7 1.7 0.2 1.1

AVER 0.7 0.7 0.7 1.7 0.2 1.1

AVBL Fixed point 3 0 0 0 0 0 0 0 0

AVBR 0 0 0 0 0 0 0 0

PVCL 0 0 0 0 0 0 0 0

PVCR 0 0 0 0 0 0 0 0

AVAL 0 0 0 0 0 0 0 0

AVAR 0 0 0 0 0 0 0 0

AVDL 0 0 0 0 0 0 0 0

AVDR 0 0 0 0 0 0 0 0

AVEL 0 0 0 0 0 0 0 0

AVER 0 0 0 0 0 0 0 0

backward movement, and the ablation of AVBL/R will attenuate
the forward movement. However, the ablation of AVDL/R or
PVCL/R tends to have relatively little effect on the forward–
backward movement. These ablations are also in tune with
previous ablations results in Rakowski et al. (2013) which
concerns the average time length of locomotion states rather than
the distribution.

It is also predicted through our theoretical computing that
under the removal of all gap junctions, there are still three
fixed points in the command circuit, in Table 1. This shows
that the gap junctions have little influence on the existence
of multiple fixed points. The gap junction between AVA
and PVC neurons is particularly interesting because it links
two competitive classes of neurons. We speculate that AVA
neuron provides small potential stimulation to PVC through
this gap junction when active, increasing the possibility of
a forward switch.

To verify the theoretical predictions, we conducted
laser ablation experiments to ablate these neurons pair
by pair (shown in Figure 6). The results showed that
when AVAL/R or AVEL/R were ablated, the reversal speed

is significantly decreased, suggesting that the backward
movement is impaired (Figures 6B,C,H). In contrast, when
AVBL/R were ablated, the forward speed is significantly
reduced, suggesting an impairment in forward movement
(Figures 6E,H). However, ablations of PVCL/R and AVDL/R
have mild effect on the forward–backward movement
(Figures 6D,F,H). These results suggested that neurons
AVBL/R, AVAL/R and AVEL/R are critical in generating
multiple stable fixed points, while AVDL/R and PVDL/R
are less important in this process, which supports our
theoretical predictions.

Neuronal Function of Constituting
Switching Conditions
Since PVCL/R and AVDL/R do not contribute to the existence of
multiple fixed points, we now further ponder what role they play
in the forward and backward behaviors. As we have suggested,
state transition depends on the change in the attraction domain
in which the state is located. Whatever the initial state is, it
must fall into one of the three fixed points for the effective
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FIGURE 5 | Multiple locomotory states in C. elegans movement. (A) Speed heat map of a group of worms. Each row represents a speed trace, green and red

represent forward and backward speed, respectively. (B) Probability density of speed distribution. The bimodal Gaussian function f (x) = 1
δ
√

2π
e
−

1
2

(
x−µ

δ

)2

is applied
to fit C. elegans speed distribution. Black represents fitting curve and the blue represents raw speed distribution. The parameters for two models are:
µforward = 259.8, δforward = 77.79164; µbackward = −308.03, δbackward = 62.79239. (C) The percentage of two locomotory states. Forward movement accounts for
93.36% of locomotory time and backward movement only account for 6.64%. (D) Average duration for forward and backward events. T-test, p < 0.001. (E) The
duration distribution of backward and forward events. Backward events: bin size = 0.6; forward events: bin size = 10. (F) Average speed of forward and backward
events. Nforward = 209, Nbackward = 164. (G) The speed frequency distribution of forward and backward events. Bin size = 44.

TABLE 2 | The state transition to different fixed points for activation of
specific neuron pairs.

Neurons Activation or deactivation

Initial State AVBL 1 0 0 0 0 0

AVBR 1 0 0 0 0 0

PVCL 0 1 0 0 0 0

PVCR 0 1 0 0 0 0

AVAL 0 0 1 0 0 0

AVAR 0 0 1 0 0 0

AVDL 0 0 0 1 0 0

AVDR 0 0 0 1 0 0

AVEL 0 0 0 0 1 0

AVER 0 0 0 0 1 0

Final state Fixed point 1 Fixed point 2 Fixed point 3

state transition of the command circuit. Using the adjusted
adjacency matrices, we try to observe how the command circuit
transit from a range of initial states to the final state. From
theoretical calculation results in Table 2, activation of either

AVBL/R or PVCL/R leads to fixed point 1, while activation
of AVDL/R, AVEL/R or AVDL/R leads to fixed point 2. In
other words, at fixed point 1, only AVBL/R maintain stable
activity, while at fixed point 2, AVAL/R and/or AVEL/R neurons
maintain stable activity. From the view of non-linear dynamics,
it can be inferred that although AVDL/R and PVCL/R are not
active at fixed points, their existence enlarges the attraction
domains, which will help the circuit to collect external input
and respond correctly to the environment. It is consistent with
animal experimental facts (Kato et al., 2015) that activation
of AVBL/R does not activate PVCL/R, and that activation of
AVAL/R leads to the activation of AVDL/R. Combined with
the position information of AVDL/R in the head and that of
PVCL/R in the tail, it is reasonable to deem that AVDL/R collects
information from the anterior part to trigger the backward
movement, and PVCL/R collects information from the posterior
part to trigger the forward movement (Chalfie et al., 1985).
Therefore, AVDL/R and PVCL/R may perform their functions
by expanding attraction domains and constructing the switching
conditions for the state machine.
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TABLE 3 | Deduction of structure properties.

Conditions Deduced results of command
circuit

Experimental facts Deduced results of first layer
amphid interneuron circuit

Experimental facts

Two neurons need to be strongly
connected to each other to form
fixed points

AVBL and AVBR are strongly
connected

Eight gap junctions between them, 3
chemical synapses from AVBL to
AVBR, 1 chemical synapse from AVBR
to AVBL

AIBL and AIBR are strongly
connected

AIBL has 1 chemical synapse
self-loop

AVAL and AVAR are strongly
connected

Eight gap junctions between them, 9
chemical synapses from AVAL to
AVAR, 7 chemical synapses from AVAR
to AVAL

AIYL and AIYR are strongly
connected

One gap junction between them, 2
chemical synapses from AIYR to
AIYL

AVEL and AVER are strongly
connected

One gap junction between them, 1
chemical synapses from AVER to AVEL

Neurons without bistability do not
strongly activate each other to
form fixed points

AVDL and AVDR are weakly
connected, or only strongly
connected with gap junctions

Four gap junctions between them, 3
chemical synapses from AVDL to
AVDR, 3 chemical synapses from
AVDR to AVDL

AIAL and AIAR are weakly
connected, or only strongly
connected with gap junctions

AIAR is not connected to AIAL

PVCL and PVCR are weakly
connected, or only strongly
connected with gap junctions

Twenty-seven gap junctions between
them, 3 chemical synapses from PVCL
to PVCR, 5 chemical synapses from
PVCR to PVCL, 1 chemical synapse
self-loop on PVCL

AIZL and AIZR are weakly
connected, or only strongly
connected with gap junctions

AIZL and AIZR are only connected
with gap junctions

Neurons forming fixed points with
opposite bistability tend to inhibit
each other

AVBL/R inhibit AVAL/R or AVEL/R
or both, and are inhibited by
AVAL/R or AVEL/R or both.

AVB and AVA are strongly connected,
and there are evidence showing that
they inhibit each other (Chalfie et al.,
1985; Roberts et al., 2016; Maluck
et al., 2019).

AIBL/R and AIYL/R are most likely
to interconnect with inhibitory
chemical synapses

There are chemical synapses
between AIB and AIY

Neurons forming attraction
domains may either excite neurons
forming the corresponding fixed
points or inhibit those forming the
opposite fixed points.

PVCL/R excite AVBL/R, or inhibit
AVAL/R or AVEL/R, or do both

There are inhibitory chemical synapses
from PVC to AVB and AVA (Chalfie
et al., 1985; Maluck et al., 2019)

AIAL/R excite AIYL/R, or inhibit
AIBL/R, or do both

There are rather many chemical
synapses from AIA to AIB and
proves to be inhibitory (Shinkai
et al., 2011)

AVDL/R excite AVAL/R or AVEL/R,
or inhibit AVBL/R, or do both.

There are rather many chemical
synapses from AVD to AVA

AIZL/R excite AIBL/R, or inhibit
AIYL/R, or do both

There are rather many chemical
synapses from AIZ to AIB

Neurons forming fixed points may
inhibit neurons forming attraction
domains of the opposite fixed
points

AVBL/R inhibit AVDL/R There are chemical synapses from AVB
to AVD and AVA

AIYL/R inhibit AIZL/R There are rather many chemical
synapses from AIY to AIZ and
proves to be inhibitory (Li et al.,
2014)

AVAL/R inhibit PVCL/R There are inhibitory chemical synapses
from AVA to PVC and AVA (Chalfie
et al., 1985; Maluck et al., 2019)

AIBL/R inhibit AIAL/R There is one chemical synapse
from AIB to AIA

AVEL/R inhibit PVCL/R There are inhibitory chemical synapses
from AVE to PVC and AVA (Chalfie
et al., 1985; Maluck et al., 2019)
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FIGURE 6 | Two locomotory states in C. elegans movement: forward and backward. Probability density of speed distribution for C. elegans (A) without neuro
impairment, bin size = 20; (B) with AVD impairment, bin size = 20; (C) with PVC impairment, bin size = 20; (D) with AVA impairment, bin size = 20; (E) with AVE
impairment, bin size = 20. Panel (F) with AVB impairment, bin size = 19. (G) The percentage of two locomotory states. (H) Average velocity of two locomotory
states. * means significantly different from control group.

FUNCTION-STRUCTURE DEDUCTION

Command Circuit Structure Deduction
Connectome implies circuit functional information, which
has been explored using our structural-to-functional research
paradigm. Notably, the activity pattern of a circuit may implicitly
contain its structural information (Real et al., 2017). To test this
idea, we apply the functional-to-structural research paradigm to
deduct command circuit connectivity. Using the calcium activity
data in the previous section (Figure 2 and Supplementary
Figure 5), we can obtain the functional activities of the neurons
in this circuit that are involved in both forward and backward
movement. We first divide the neurons in this circuit into two
groups, namely two pairs of neurons (AVBL/R and PVCL/R)
that promoted the forward behavior, and three pairs of neurons
(AVAL/R, AVEL/R, and AVDL/R) that promoted the backward

behavior, according to the different functions of neurons in this
circuit for the forward and backward behaviors (Kato et al.,
2015). During forward behavior, AVBL/R maintain relatively
steady plateau potentials. Similarly, during backward behavior,
AVAL/R and AVEL/R also maintain steady plateau potentials
together. According to the attractor-based state machine we
construct, the activity pattern of the circuit is the result of the
switch between its multiple fixed points. Through the analysis
of its calcium activity data, we found three steady states within
this circuit, which implies three fixed points in this circuit.
Specifically, fixed point 1 occurs to keep AVBL/R active when
the worm moves forward, fixed point 2 occurs to ensure that
AVAL/R and AVEL/R remain active when the worm moves
backward, and fixed point 3 occurs when all the neurons were
in low neuro activity. These three fixed points also occurs in
sleeping worms (see Supplementary Information VII B) but
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with different durations. The state switching of this circuit
mainly occurs between these two fixed points, according to the
principle of the fixed-point-based state machine as shown in
Figure 3. Then we analyze the neuronal function according
to their contribution to the states (multiple fixed points) and
switching conditions (attraction domains) for the state machine.
As bistable neurons curtail for the emergence of multiple fixed
points, AVAL/R, AVEL/R, and AVBL/R are involved in the state
maintenance, whereas AVDL/R and PVCL/R aids in constituting
the switching condition. With the help of our proposed theorem,
for the purpose of ensuring the existence of multiple fixed
points and corresponding attraction domains as analyzed in the
previous section, we deduct the potential connections between
these neurons as shown in Figure 4B. Some of the deduced results
are in line with the experimental facts of C. elegans connectome,
as shown in Table 3.

First Layer Amphid Interneuron Circuit
Structure Deduction
We further test this paradigm by using the first layer amphid
interneuron circuit of C. elegans. By comparing and analyzing
the observed data for the calcium activity of each neuron in the
first layer amphid interneuron circuit, we qualitatively obtain
some specific functions and some specific dynamic properties
of the neurons that make up this circuit. The analysis process
is similar to that above, and the deduced structure properties
are also shown in Table 3. We deduce the inhabitation between
AIBL/R and AIYL/R, strongly interconnected pairs of AIBL/R
and AIYL/R, weakly interconnected pairs of AIAL/R and AIZL/R,
and some other inhibition and excitation connections within the
circuit (Table 3). The deduced results are satisfactory because
most of the deduced connections can be found existed in
connectome data (Jarrell et al., 2012; Brittin et al., 2018; Cook
et al., 2019) and previous studies (Chalfie et al., 1985; Shinkai
et al., 2011; Li et al., 2014; Roberts et al., 2016; Maluck et al., 2019)
(Table 3), proving the effectiveness of our proposed framework.
In addition to these available convincing experimental facts, there
are still some deduction results on the excretory/inhibitory and
strength of the connection within these two circuits that need to
be further supported by future biological experiments.

DISCUSSION AND CONCLUSION

The development of a potentially powerful tool for the
interpretation of connectome function may require our
understanding of the relationships between neuronal network
structure, dynamics, and function (Sankaraleengam et al., 2016),
however, the establishment of these theoretical relationships
remains a challenge (Curto and Morrison, 2019). At present,
more research on the relationship between structure and
function is to analyze the dynamic characteristics of the
circuit from a large number of experimental observation data
of neural activity (Inagaki et al., 2019), and further infer or
explain its function (Sankaraleengam et al., 2016; Real et al.,
2017). This means that, in these studies, intrinsic dynamic
characteristics play a particularly critical role in bridging the

relationship between structure and function. The structure of
a neuronal network cannot decide its function alone (Honey
et al., 2010). A certain structure constrains its internal dynamics
to realize its function. Fixed point attractor can be used to
explain functions associated with bistability, which is rather
common in the nervous system of C. elegans (Kunert et al.,
2015) and other animals (Kolbjrn et al., 2013). Some structures,
even as simple as motifs, can result in multiple fixed points
in a neuronal network. If fixed points are regarded as states,
a finite states machine can be built to explain how neural
circuits switch between stable states in which they perform
their functions. Furthermore, the function of neurons in
the circuit can be subdivided according to their roles in the
state machine and their contribution to the fixed points.
Our proposed analytical framework consists mainly of two
processes. The first is that if enough structural properties
are known, the principle of circuit function switching with
respect to bistability or multistability is analyzed from the
structure-to-function research paradigm; the second is that
if sufficient functional and neuronal activity information is
known, possible structure properties can be deduced from the
function-to-structure research paradigm to provide guidance for
anatomical experiments. The framework was tested by using the
command circuit and the first layer amphid interneuron circuit
of C. elegans.

In addition to the bistability of calcium activity, similar
bistable potential was also found in electrophysiological
experiments. Since the resulting bistability reflects the multiple
fixed points that exist in the neuronal network, we have
reasons to believe that the plateau potential with bistability
in electrophysiology may also be explained by multiple fixed
points. RMD neurons of C. elegans, for example, have two stable
resting potentials, one near−70 mV and the other near−35 mV
(Mellem et al., 2008; Lockery and Goodman, 2009). These RMD
neurons consist of six neurons, namely RMDDL, RMDDR,
RMDL, RMDR, RMDVL, and RMDVR. The adjacency matrices
of RMD neurons are listed in Supplementary Tables 5, 6.
RMDL and RMDR are strongly connected with each other
through excitatory chemical synapses. This may be the reason
why the plateau potential appears in electrophysiology of RMD
neurons. Note that the electrophysiological experiments and
the calcium activity experiments are conducted under different
conditions. In moving worms, the RMD neurons oscillate
differently. However, they showed significant bistable activity
in electrophysiology. It may be due to the unique coding of
three subclasses of RMD neurons (Lockery and Goodman,
2009), or it may be due to the multiple fixed points properties
produced by the connection structure of RMD neurons. Our
interpretation is that the existence of the dominant plateau
potential in a network is the result of interaction between
neurons (Lockery and Goodman, 2009). The multiple fixed
points theory offers a possible explanation for the plateau
potential in electrophysiology. Beside fixed point attractors,
limit cycle is another kind of attractor, which may also occur in
a neuronal net described by equation (2). Limit cycles are the
attractors that may cause oscillation, which is worthy of further
study in the future.
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In recent years, control principles like the linear controllability
theory has been used to study the function and neural
activity of nematode connectome (Yan et al., 2017). However,
the control principles used are difficult to correspond to
biological implications, thus the resulting results lack biological
interpretability compared with complex non-linear biological
networks (Curto and Morrison, 2019; Jiang and Lai, 2019).
In contrast, in our proposed structure-to-function research
paradigm, we use a non-linear model to describe the neuronal
activity of C. elegans. All parameters and functions in the model
have specific biological meanings. The multiple fixed points
features used in this study also have corresponding multistability
phenomenon in animals, making the ultimate results much
more biologically interpretable than the predicted results in Yan
et al. (2017). This is what many previous studies lack (Curto
and Morrison, 2019). In addition, previous studies adopted
simplified network structure (Roberts et al., 2016) and substituted
linear model for non-linear model (Liu et al., 2011; Yan et al.,
2017) to avoid the computational complexity caused by non-
linearity, whereas because the influence of the input and time-
varying characteristics of the non-linear system is not needed
for consideration in the study of fixed points, the difficulty
of calculating the fixed points of the circuit is reduced. The
functional deduction of ablation experiments shown in Table 3
has some similar results in Roberts et al., 2016. However, although
there are significant differences between such neurons as AVB
and PVC in the same locomotion function group, Roberts et al.
(2016) cannot distinguish the function of these neurons, and
would deduce that they have the same influence according to their
method. By using a detailed structure that takes into account of
every neuron in the circuit, we are able to analyze the unique role
of each neuron and its connection.

As is shown in our proposed framework, bistable neurons can
be obtained by calculating circuit dynamics in the structure-to-
function research paradigm or by analyzing neuronal calcium
activity data in the function-to-structure research paradigm.
However, determining whether the dynamics of the circuit is
caused by intrinsic properties or external factors, as well as its
boundary or size, remains an obstacle. In a moving worm, the
intrinsic dynamics of the circuit may not be the main cause
of its neuronal activity. On the one hand, although most of
the deduced results are still valid, some results of the first
layer amphid interneuron circuit are not as satisfactory as
those of the command circuit. The main reason is that the
bistability of the command circuit is mainly caused by the
interaction between neurons within this circuit, whereas the first-
layer interneuron circuit receives complex input from sensory
neurons and other interneurons outside this circuit, in addition
to coupling with other bistable neurons. Although it is difficult
to identify the non-bistable neurons involved in the neural
activity of the first-layer interneuron circuit, bistable neurons
tend to trigger a series of neural activities once they reach
high potentials. On the other hand, because the locomotion of
C. elegans is rather complicated, and forward–backward and
turning behaviors are often coupled together (Gray et al., 2005),
the possibility of other neurons participating in the structure-
dominated functional process cannot be ruled out. Neurons

such as AIBL/R also influence the reverse behavior besides
turning (Gray et al., 2005). Other neurons such as RIML/R
also play specific roles (Gray et al., 2005). These factors may
all have an effect on our analysis results. Despite this, by
separating the small circuits involved in pairwise behavior, such
as forward and backward movements, fixed point theory helps
to understand what role certain neurons play and how they
promote certain functions. Fixed points indeed provide a critical
link between the structure and functions of bistability related
neuronal network, an essential step toward understanding the
relationship between structure and function of small model
organisms or their circuits. Therefore, in any case, once we
obtain the fixed point characteristics needed for the analysis,
we can obtain the satisfactory explanations regarding state
switching and derivation of structural attributes from neuronal
and circuit functions using our proposed framework. During
this process, we use adjusted weight matrices in fixed-points
calculation. By following the principles mentioned in Section
“Method,” we can acquire the adjusted matrices utilized in
fixed points analysis. However, the matrices are adjusted mainly
manually, which means the results are to some extent arbitrary.
We may get different matrices if we try the process again.
In this paper, the main goal of the research is to provide
a novel potential explanation for the emergence of multiple
steady fixed points, instead of finding out the actual connection
strength of the circuit. We do not use the connection weights
to predict fixed points, but use fixed points to explain the
phenomenon of multiples steady states. The adjusted matrices
proves that the command circuit indeed is capable of producing
multiple fixed points that are correspond to the locomotion
behaviors. The followed analysis proves these fixed points can
also provide satisfying function explanation. The goal of the
study is fulfilled in this way. Of course, we had hoped to
acquire the actual “strength” of connections. However, even
after decades of study on C. elegans, there still lacks convincing
conclusions on the signal transmission ability of synapses in
C. elegans. Neither synaptic number or synaptic sizes can
satisfy, although both of them are sometimes accepted as
connection weights as presupposition conditions (Cook et al.,
2019), it has never conclusively proved. We also tried to
use learning algorithms for the weights of the adjacency
matrices. But unfortunately, in moving worms, AVDL/R and
PVCL/R are mostly actionless, making it difficult to study their
connections from activities. We do hope that future studies
on the synaptic strength can solve these problems. But in this
study, the matrices have achieved their purpose of showing
the ability for command circuit of producing multiple fixed
points. Also, the exact excitatory and inhibitory properties
of the synapses in C. elegans are still mostly uncertain. The
excitatory and inhibitory properties we choose in this paper
is based on experimental phenomenon (Chalfie et al., 1985)
and previous research inference (Roberts et al., 2016). But
there are also researches that provides different excitatory
and inhibitory properties. Based on the study on the types
of synaptic neurotransmitters and receptors, Rakowski and
Karbowski (2017) and Fenyves et al. (2020) suggest a inhibitory
dominant network among interneurons in C. elegans. Although
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we choose the excitatory and inhibitory properties as we
present in this paper because some of the inhibitory synapses
presented in these work (Rakowski and Karbowski, 2017; Fenyves
et al., 2020) fail to provide reasonable explanation for known
experimental phenomenon (Chalfie et al., 1985), it is still
uncertain what the exact properties of these synapses are. We
hope future studies will provide more detailed information on
the neural network connection of C. elegans. Based on these,
our fixed-point-based analytical framework mainly focus on the
intrinsic dynamics of the circuit, which naturally provide more
satisfactory structure deduction of circuits where internal signals
dominate its activities.

Through the analysis of two research paradigms of the circuit
of worms, it is shown that, in its free moving state, in addition
to the stable fixed point corresponding to the transition between
forward and backward states, we also find a third fixed point that
is insignificant and short-lived compared with the forward and
backward fixed point states. Using a computational analysis, all
the solutions of these circuits obtained from Equation (3) contain
a zero-vector solution (as shown in Table 1) corresponding to this
fixed point that represents the long-term quiescent state of the
worm, which emerges more often during the nematode’s sleeping
state (Nichols et al., 2017). In sleeping worms, the fixed point
corresponding to inactivity can persist for a long time (Nichols
et al., 2017). Apparently, fixed points are dynamically changing
according to different conditions, such as sleeping and awaking.
Studies have shown that during sleep, certain substances are
released to influence neurons (Lewis, 2014). As we have argued
in the text, the third fixed point becomes a stable fixed point and
has larger attraction domain in sleeping, which may be caused by
the weaker information transmission efficiency of the chemical
synapses during sleep, making the worm much more likely to
remain inactive until the release of arousal stimulants terminates
this process (Nichols et al., 2017).

Neuronal networks and their intrinsic multiple fixed points
shape multistability, in which bistability is usually directly
related to the function of the biological nervous system or
its circuits (Kunert et al., 2015). Therefore, the fact that
bistability is widespread in other animal neuronal networks
besides C. elegans may imply that our analytical framework
can be applied to other animal neural systems, including
human. The main difference is that the neural networks of
mammals are dominated by action potentials, while that of
C. elegans is dominated by gradient potentials. If the fixed
points of a mammalian neuronal network can be calculated,
similar analytical process can follow our proposed framework
to gain the deeper insight into the relationship between
function and structure. On the whole, based on the fixed
point theory, our proposed analytical framework opens up a
new perspective for the study of structure-function relationship,
especially through the tools of non-linear dynamics and neural
data analysis, to reveal the attractor characteristic inherent in
neural circuits in different ways, promoting the interpretability
of neuronal function and the reliability of underlying structure
deduction. Moreover, since we focus on the multistability
phenomenon caused by the intrinsic interaction among neurons,
this framework is expected to be applied to interpret the

neural activity patterns in spontaneous activities or resting
states. Apart from fixed points, attractors such as limit cycles
are also of promising research value for understanding the
neural dynamics of C. elegans and other animals, which
warrants future studies.

METHOD

Model Parameter Setting
In order to make the model of the command circuit we study
emerge the expected non-linear dynamic characteristics of the
fixed point, we need to consider the parameter setting of the
model in computation.

For chemical synapses in Equation (2), three parameters are
involved. First, since we study neurons of similar types such
as command neurons, we assume that the time constant is the
same without affecting the results of the study. Then the time
constant τ in Equation (3) is neutralized, having no influence
on the value of fixed points mathematically. For convenience
, we set τ = 1. Second, the other two are related to the
sigmoidal function. In order to make the Equation (2) better
describe the chemical synapses potential of C. elegans, we need
to set proper threshold θ and high slope k of the sigmoidal
function. So, we have θ = 0.5 and k = 20 in our fixed
point calculation.

Adjustment of the Adjacency Matrices of
Electrical and Chemical Synapses
Original connectome data can be acquired from Wormwiring1

(Cook et al., 2019). In chemical and gap junctional neuronal
networks of the command circuit, excitatory or inhibitory
synapses and their strength are important network properties
for the study of their non-linear dynamics. The synaptic weight
simply measured by the number (or plus size) of chemical
or gap junction synapses (Cook et al., 2019) cannot better
reflect the connection strength between each neuron pair, let
alone the excitability or inhibitory properties between them.
For an example, there are much more, nearly twice more
electrical synapses between AVA and PVC than those between
AVAL and AVAR. But obviously, AVA and PVC do not show
synchronization activities at all while AVAL and AVAR are
exactly synchronous. Apparently, the electrical synaptic strength
between AVA and PVC are rather low despite the large number
of electrical synapses between them. Obviously, it is difficult to
obtain the actual chemical and gap junctional strengths of the
command circuit. Therefore, in order to make this simulated
circuit emerge the desired non-linear dynamic characteristics,
such as multiple fixed points, we use its adjacency matrix
(Cook et al., 2019) as a reference to obtain the connection
weight matrix of the command circuit (see Supplementary
Information II).

To do this, in addition to considering the number of synapses
(for the sake of generality, we ignore the size of the synapse
here), we follow the following rules. (1) The chemical connections

1https://wormwiring.org/
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within the same section are excitatory and have positive weights,
while the chemical synapses between two sections are inhibitory
and have negative weights. In order for neurons to activate or
inhibit other neurons through chemical synapses, we set the
maximum and minimum values of chemical synaptic strength
to be 1 and −1, respectively. (2) The weight of gap junction
between a pair of neurons in the same class is rather large, up
to 1 or 2 mostly, to ensure the synchronization activities of
the neuron pairs. (3) The weight of gap junctions within the
same section is more than that between different sections to
ensure opposite activities. (4) The more the number of chemical
and gap junctional synapses, the greater the connection weight
tends to be. For the electrical synapses in Equation (2), larger
electrical synaptic strength between pairs of neurons can ensure
their synchronous activities. If neurons do not synchronize
with each other, their electrical synaptic strength should be
reduced. In addition, some connections with only one or two
synapses have little impact on the circuit behavior, so we set the
weights of these connections to around 0.1 to maintain their
existence and influence.

For the command circuit, the original adjacency matrices of
chemical and electrical synapses are presented in Supplementary
Tables 1, 2, respectively. After adjustment, the adjacency
matrices of chemical and electrical synapses are presented in
Supplementary Tables 7, 8, respectively. Although adjustment
is to some extent variable, it is enough to serve the purpose
of providing a novel potential explanation for the existence of
multiple stable neural states and how they switch.

Determination of Fixed Points
Computing From Non-linear Neuronal Network
The adjusted adjacency matrices W and G obtained by using the
method above that can be utilized to compute fixed points. Put
them into Equation (3), and set the parameters τ = 1, θ = 0.5
and k = 20, the solutions to Equation (3) are then the fixed
points of the circuit calculated.

Estimation of Fixed Points From Calcium
Activity
Based on the function-to-structure research paradigm, we first
looked to see if there was any stability in the calcium activity
data. A neuron is considered stable if its calcium activity remains
relatively stable within a certain range over a considerable period.
From all the stable performances of all neurons, we acquire
pattern combination activities, some of which are always active
and some of which are always not. Therefore, these pattern
behaviors can be determined as multiple fixed points.

Approximation of Calcium Activity of
Neurons by Membrane Potential
Studies in Kato et al. (2015) have shown that the calcium activity
measured by the electrophysiological preparation are highly
consistent with the membrane voltage, which allows us to use
calcium activity to represent the activity of membrane potential.

C. elegans Dataset
The neuronal network connectome of C. elegans is collected from
the website Wormwiring2.

Experimental Verification Methods
Worm Maintenance, Calcium Imaging, and Laser
Ablation
All worms were raised at 20◦C on NGM plates seeded with OP50
Escherichia coli as previously described (Brenner, 1974).

Whole brain calcium imaging was conducted as described
in Yemini et al. (2020). Animals (strain OH16230) were
immobilized and mounted on 2% agarose pad after 45 min
treatment of 1 mM tetramisole. Whole-brain calcium activity
was imaged using an inverted spinning disk confocal with 40×
water immersion objective. NeuroPAL imaging was conducted
with 4 different laser lines (405, 488, 560, and 647 nm).
A 10-min recording of the panneuronal, nuclear GCaMP6s
activity was captured at approximately 1–2 volume per second
using a laser line of 488 nm.

Laser ablation was performed on L1–L2 animals using
MicroPoint Laser system (Andor – Oxford Instruments).
Animals after laser ablation were allowed to grow to D1 adult
for behavioral testing. Transgenic line Pnmr-1::gfp was used to
ablate AVA, AVE, AVD, and PVC neurons, and transgenic line
Pacr-15(a)::gfp was used to ablate AVB neurons.
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