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Electroencephalography (EEG) microstate analysis is a powerful tool to study the
spatial and temporal dynamics of human brain activity, through analyzing the quasi-
stable states in EEG signals. However, current studies mainly focus on rest-state EEG
recordings, microstate analysis for the recording of EEG signals during naturalistic
tasks is limited. It remains an open question whether current topographical clustering
strategies for rest-state microstate analysis could be directly applied to task-state EEG
data under the natural and dynamic conditions and whether stable and reliable results
could still be achieved. It is necessary to answer the question and explore whether
the topographical clustering strategies would affect the performance of microstate
detection in task-state EEG microstate analysis. If it exists differences in microstate
detection performance when different topographical clustering strategies are adopted,
then we want to know how the alternations of the topographical clustering strategies
are associated with the naturalistic task. To answer these questions, we work on a
public emotion database using naturalistic and dynamic music videos as the stimulation
to evaluate the effects of different topographical clustering strategies for task-state
EEG microstate analysis. The performance results are systematically examined and
compared in terms of microstate quality, task efficacy, and computational efficiency,
and the impact of topographical clustering strategies on microstate analysis for
naturalistic task data is discussed. The results reveal that a single-trial-based bottom-
up topographical clustering strategy (bottom-up) achieves comparable results with
the task-driven-based top-down topographical clustering (top-down). It suggests that,
when task information is unknown, the single-trial-based topographical clustering could
be a good choice for microstate analysis and neural activity study on naturalistic
EEG data.

Keywords: EEG, microstate detection, naturalistic task, topographical clustering, bottom-up, top-down,
performance evaluation

Frontiers in Neuroscience | www.frontiersin.org 1 February 2022 | Volume 16 | Article 812624

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.812624
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.812624
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.812624&domain=pdf&date_stamp=2022-02-14
https://www.frontiersin.org/articles/10.3389/fnins.2022.812624/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-812624 February 10, 2022 Time: 12:16 # 2

Hu et al. Microstate Detection in Naturalistic EEG

INTRODUCTION

Electroencephalography (EEG) is an efficient and reliable
neuroimaging technique for tracking the dynamic changes of
physiological brain states. In the field of joint spatial-temporal
EEG study, EEG microstate analysis is recommended as a
powerful method for brain mechanism investigation through an
inspection of the spatial changes of EEG potential distribution
along the time (Khanna et al., 2015; Michel and Koenig,
2018). Different from traditional EEG analysis methods, EEG
microstate analysis highly relied on a topographical clustering
strategy to identify the microstates from spontaneous EEG
activity, as every data time point would be assigned to one
microstate class based on the spatial similarity to the identified
microstate templates (Murray et al., 2008; Brunet et al., 2011;
Michel and Koenig, 2018). Notably, EEG microstates characterize
the quasi-stable potential distributions of whole-brain EEG
activities, which are also termed microstate templates (Khanna
et al., 2015; Michel and Koenig, 2018). Through analyzing
the dynamic temporal variations in microstate templates,
the microstate patterns are obtained and the momentary
fluctuations of spatial-temporal EEG activities during naturalistic
task manipulation are quantitively estimated. Therefore, the
successful detection of reliable microstate templates is of great
significance in characterizing the temporal alternations in
EEG microstate activity patterns for characterizing task-related
functional brain dynamics.

Current EEG microstate analysis mainly works on rest-state
EEG recordings, based on a simple and fixed topographical
clustering strategy. For example, Xu et al. (2020) conducted
a trial-subject-based clustering analysis on rest-state sleeping
EEG data for estimating the functional association between
EEG microstates and fMRI networks. In their case, a trial-
based topographical clustering was first conducted on every
single trial of EEG data to identify subject-specific microstate
candidates. Then, in a cross-subject manner, another clustering
analysis was performed to detect EEG microstate templates
from all topographical candidates identified by the trial-based
clustering. A similar topographical clustering strategy was also
used in Brodbeck et al.’s (2012) work for sleep staging based
on the rest-state EEG data. Such a trial-subject-based clustering
strategy is frequently used in rest-state EEG microstate analysis.
On the other hand, to characterize the brain state differences
between patients with mild cognitive impairment and healthy
controls, Musaeus et al. (2019) introduced a subject-independent
clustering strategy to identify common microstate templates from
these two groups of EEG recordings. They mixed all the resting
EEG data from patients and healthy people together for one-step
microstate clustering in a cross-subject manner and obtained a
set of common EEG microstate templates.

Besides the rest-state EEG studies, researchers also try to
introduce EEG microstate analysis to task-state EEG studies for
inspecting the dynamic brain activity during task manipulation.
For example, Han et al. (2020) adopted EEG microstate analysis
into the neural mechanism of facial attractiveness judgment
and found that high attractive faces would significantly activate
microstate responses of MS3. From a dynamic perspective

into brain responses, task-state EEG microstate analysis would
provide us with an informative and novel detection of neural
processing mechanisms. Current studies show a possibility to
directly apply a similar clustering strategy (e.g., trial-subject-
based topographical clustering) from rest-state EEG study to
task-state EEG microstate analysis. For example, in Gui et al.’s
(2020) study, the microstate candidates were first extracted
across all the trials for each subject (cross-trial-level) and then
fused across all the subjects for microstate template detection
(cross-subject-level). Different from rest-state EEG studies, task
manipulation would dramatically influence the mental and
cognitive states and lead to specific changes in spontaneous
brain activities (Milz et al., 2016; Seitzman et al., 2017; D’Croz-
Baron et al., 2021). Therefore, on the basis of the existing
clustering strategies used in resting EEG microstate analysis, the
different input orders of EEG data and clustering arrangement
were also considered. For example, in Milz et al. (2016)’s work,
to explore the brain activity differences under three thinking
states (object recognition, spatial identification, verbalization),
they conducted a complex microstate detection analysis with
three steps of topographical clustering. Firstly, for each subject,
subject-specific microstate candidates were extracted by grouping
all trials of EEG data under the same thinking tasks. Secondly,
for each modality of thinking tasks, task-specific microstate
candidates were identified by conducting the cluster analysis
across all the subject-specific microstate candidates. Thirdly,
the final microstate templates were identified by clustering
task-specific microstate candidates together. When conducting
naturalistic tasks, our human brain is dynamic alternating in
response to the ever-changing stimulation. Therefore, task-state
brain activities are complex with rapid temporal variations and
great individual diversity. It is a critical problem in task-state
EEG microstate analysis that how to identify reliable microstate
templates by a suitable topographical clustering strategy for
properly describing the high EEG variability and complexity
during task manipulation. A good EEG microstate detection
with high-quality brain state representation would directly
benefit the following time-series data presentation and analysis.
Therefore, the performance of topographical clustering strategies
in microstate template detection is a critical topic in naturalistic
task-state EEG microstate analysis.

In the process of microstate detection, EEG microstates are
identified as the potential topographies at stable centroids of
topographical clustering analysis (Pascual-Marqui et al., 1995;
Skrandies, 2007). Here, the adopted topographical clustering
strategies could have several options (Khanna et al., 2014), e.g.,
data order, clustering arrangement, and whether task information
is used as guidance. However, a few current studies have
considered the impact of topographical clustering strategies
on microstate detection performance. Systematic analysis is
needed to compare the microstate detection performance of
different clustering strategies, which benefit the exploration
of an optimal, reliable, and efficient microstate detection
method for naturalistic task-state EEG microstate analysis. In
this work, we introduce a total of 5 types of topographical
clustering strategies in task-state EEG microstate detection
and compare the performance differences on the same EEG
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database collected under a naturalistic paradigm. The effect
of clustering sequences with different date grouping order
and clustering arrangement is explored, and the role of task-
prior knowledge in microstate analysis is discussed. Here,
the task data are grouped in terms of trials, subjects, or
random clusters, and the clustering sequences, e.g., first
trial then subject (trial-subject-sequence-based), first subject
then trial (subject-trial-sequence-based), only trial (single-trial-
based), and random clusters (random-grouping-based). For the
characterization of neural patterns correlated to naturalistic
simulation, we estimate the performance differences when task-
prior knowledge is adopted (top-down) or not adopted (bottom-
up) in the topographical clustering process. An ideal data-
driven bottom-up topographical clustering strategy is expected
to achieve a close result to the knowledge-guided top-down
topographical clustering strategy. To well evaluate microstate
detection results and conduct a careful comparison among
different topographical clustering strategies, we also introduce
a full performance evaluation protocol to verify the detected
microstates from three perspectives: microstate quality, task
efficacy, and computational efficiency. In all, this work mainly
focuses on the microstate detection performance in naturalistic
task-state EEG microstate analysis. And our main contributions
include: (1) we estimate and compare the topographical
clustering strategies in microstate detection from naturalistic
task-state EEG data; (2) we evaluate the prior knowledge impact
on microstate clustering; (3) we present a systematic evaluation
protocol for microstate detection performance validation. Our
work offers supportive guidelines in choosing a suitable and
reliable topographical clustering strategy in task-state EEG
microstate detection and will benefit the development of EEG
microstate analysis to characterize the neural dynamic activities
under naturalistic paradigms.

MATERIALS AND METHODS

Electroencephalography Database and
Data Preprocessing
Electroencephalography signals cover informative
electrophysiological evidence that is beneficial for effective and
reliable affective state estimation (Alarcão and Fonseca, 2019).
The public emotional database constructed by Koelstra et al.
(2012) (A Database for Emotion Analysis using Physiological
Signals, DEAP) is widely used as a benchmark for EEG-
based video-evoking emotion study. In this database, 40
1-min music videos with outstanding emotion-evoking
performance were carefully selected and utilized as emotion-
evoking materials, and 32 healthy subjects were recruited for
spontaneous, dynamic, and naturalistic emotion induction
experiments. For each trial, it consisted of a 5-s baseline with
a fixation cross displaying in the monitor center and a 60-s
video-viewing in which one video was randomly played for
emotion-evoking. Subsequently, a self-assessment of different
emotional dimensions, e.g., valence and arousal, was conducted
for subjective feedback based on the evoked emotion states
during video-viewing. Simultaneously, 32-electrode EEG

signals were recorded by the Biosemi ActiveTwo system
at a sampling rate of 512 Hz. In this paper, the emotional
EEG data from the DEAP database are used to estimate the
performance of different microstate detection methods in the
task-state EEG analysis.

As EEG data are susceptibly impeded by unrelated artifacts
(caused by ocular movement and blinking, muscular activity,
etc.), EEG processing is first conducted for noise removal to
enhance the data quality. Based on the collected raw EEG
data, a standard EEG preprocessing procedure is conducted
as below. (1) Filtering: a bandpass filter between 1 and
45 Hz is applied for useful information selection, and a notch
filter at the frequency of 50 Hz is utilized for line power
artifact removal. (2) Noisy channel exclusion: the noisy
channels are excluded and interpolated by the neighboring
three channels. After interpolation, the noisy channels are
replaced by the average amplitude of their neighboring
channels. (3) Re-reference: a common average re-reference
calculation is conducted for random noise removal. Afterward,
the EEG data are adjusted to a zero-mean distribution.
(4) Independent component analysis (ICA): the noisy
components after ICA decomposition are manually rejected,
and then clean EEG signals are reconstructed from the
artifact-clean components. (5) Segmentation: only the EEG
data recorded at the video-watching (60 s) are detected for
task-state EEG analysis.

After the data preprocessing, a total of 1280 trials (32
subjects × 40 trials) of artifact-clean task-state EEG recordings
are obtained for following EEG microstate analysis. In this study,
a Microstate EEGLAB Toolbox (Poulsen et al., 2018) is adopted
for task-state EEG microstate analysis.

Standard Electroencephalography
Microstate Analysis
Electroencephalography microstate analysis is a powerful method
for dynamic brain activity analysis (Van De Ville et al., 2010).
The main idea of EEG microstate analysis is to detect a
few quasi-stable EEG potential topographies for characterizing
the dynamic spatial-temporal changes of original EEG signals
(Khanna et al., 2015; Michel and Koenig, 2018). These identified
EEG topographies are termed EEG microstates with quasi-
stable potential distributions around 80–120 ms (Lehmann and
Skrandies, 1980). The momentary fluctuation of the whole-
brain EEG activity can be presented as the dynamic transition
among EEG microstates with millisecond temporal resolution.
Generally, a standard procedure of EEG microstate analysis
includes four stages. (1) Candidate topography extraction.
The preprocessed EEG data are utilized as the input for EEG
microstate analysis. To search for quasi-stable EEG topographies,
potential topographies with a high signal-to-noise ratio are first
extracted. Here, global field power (GFP) of each EEG sample
point is measured as a reference-independent quantification of
the whole-brain potential power, given as

GFP =

√√√√ 1
N

N∑
i = 1

(Vi (t)− V(t))2
, (1)
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where Vi(t) refers to the voltage of ith electrode at the time point
t; V(t) is the average voltage across all the electrodes over the
whole brain at the given time t, calculated as

V(t) =

√√√√ 1
N

N∑
i = 1

Vi(t). (2)

here, N is the total number of EEG electrodes. Previous
studies have fully explored that topographies at the GFP peak
(local maxima) correspond to a high signal-to-noise ratio,
which are well-reasoned and stable candidates for representing
spontaneous brain activities (Lehmann and Skrandies, 1980;
Lehmann et al., 1987; Zanesco, 2020). All the potential
topographies at local maximal points of the GFP are detected in
a data-driven manner and extracted from each EEG recording
as the candidate templates for further clustering analysis. (2)
EEG microstate detection. Based on the extracted candidate
topographies obtained in Stage 1, a series of microstates are
identified in a data-driven manner. A topographical clustering
is conducted on all the extracted candidate topographies
and the cluster centroids with the highest spatial similarity
during iterating are calculated as the microstates. In the
implementation, the polarity of candidate topographies is
ignored, as the spontaneous EEG topographies with inverted
polarity share a synchronized and similar activation pattern
of neuronal ensembles (Lehmann and Koenig, 1997; Mishra
et al., 2020). According to the studies presented in Khanna
et al. (2014), Von Wegner et al. (2018), it was found that
k-Means clustering and hierarchical clustering (such as Atomize
and Agglomerate Hierarchical Clustering and Topographic
Atomize and Agglomerate Hierarchical Clustering) yielded equal
performance in microstate detection on spontaneous EEG
activities. The reason is that these two clustering algorithms
follow a similar calculation criterion of ignoring potential
polarity and detecting cluster centroids based on topographical
configuration. Thus, in this work, to have a fair comparison
across different topographical clustering strategies, a modified
k-means clustering is consistently used for microstate detection,
which is the most commonly used clustering method in EEG
microstate analysis (Pascual-Marqui et al., 1995). (3) EEG
microstate segmentation. A spatial correlation is measured
between every EEG microstate and momentary potential
topography, and every EEG time point is then assigned to
one EEG microstate that yields the highest spatial similarity.
Therefore, the original EEG data are represented by a series
of EEG microstates that cover rich information on spatial-
temporal dynamics of brain activities under emotion induction.
(4) Microstate feature extraction. For quantifying the dynamic
characteristics of naturalistic task-state EEG data under video-
viewing emotion induction, EEG microstate features (e.g.,
duration, coverage, occurrence, and transition probability) are
extracted, and the feature distributions under different emotional
states are studied.

Among the above four stages in the standard EEG microstate
analysis pipeline, the performance of EEG microstate detection
in stage (2) is easily influenced by the adopted topographical

clustering strategy, whose results will further impact the
reliability of the final identified microstates. In current existing
task-state EEG studies, a systematical investigation of the impact
of the topographical clustering strategies in the EEG microstate
detection is still lacking. Therefore, in this work, following
the same parameter setting in candidate topography extraction,
EEG microstate segmentation, and microstate feature extraction,
we mainly examine and discuss the effect of topographical
clustering strategies in EEG microstate detection with different
data grouping order, clustering arrangement, and whether using
task information for guidance.

Electroencephalography Microstate
Detection With Different Topographical
Clustering Strategies
In the following, four task-free topographical clustering strategies
(bottom-up-based data-driven approaches, referring to Case 1,
2, 3, 4 below) and one task-guided topographical clustering
strategy (top-down-based prior-knowledge guided, referring to
Case 5 below) are presented, examined, and compared with full
details (Figure 1).

A Trial-Subject-Sequence-Based Bottom-Up
Topographical Clustering (Case 1)
In the trial-subject-sequence-based bottom-up topographical
clustering strategy (named as Case 1 below), a similar clustering
strategy commonly used in resting-state EEG microstate analysis
is adopted. The main idea of this clustering strategy is: subject-
specific candidate templates are first extracted across trials of
EEG data and then fused for subject-generalized (or subject-
independent) EEG microstates identification (Figure 1A). Here,
two steps of topographical clustering are involved. Step 1:
for each subject, a topographical clustering is conducted on
40 trials of EEG data. The first-step clustering is conducted
in a within-subject manner to characterize subject-specific
electrophysiological responses during different emotional video
watching (different mental states). For every single subject,
potential topographies are extracted from 40 trials to form a
candidate template (subject-specific candidate templates). Step
2: a topographical clustering is conducted on all the obtained
subject-specific candidate templates. The subject-generalized
microstate templates are obtained as the final microstates.

A Subject-Trial-Sequence-Based Bottom-Up
Topographical Clustering (Case 2)
In the subject-trial-sequence-based bottom-up topographical
clustering strategy (named as Case 2 below), the task-initiated
electrophysiological brain activities are considered to learn about
the neural mechanism of dynamic information processing under
specific tasks. The main idea of this clustering strategy is: the
candidate templates are detected for each task (in our case,
each video corresponds to a task) based on the collected 32
subjects’ EEG data under the same video stimulation and the
common patterns of video-initiated spontaneous brain activities
are captured (Figure 1B). Here, two steps of clustering with
data grouping order of across subjects and then across trials
are involved. Step 1: a cross-subject topographical clustering is

Frontiers in Neuroscience | www.frontiersin.org 4 February 2022 | Volume 16 | Article 812624

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-812624 February 10, 2022 Time: 12:16 # 5

Hu et al. Microstate Detection in Naturalistic EEG

Trial 1 Trial 2 … Trial 40Subject 1

Trial 1 Trial 2 … Trial 40Subject 2

Trial 1 Trial 2 … Trial 40Subject 32

… … … … …

Microstate 
templates

… … …

Step 1 Step 2

Subject 1 Subject 2 … Subject 32Trial 1

Trial 2

Trial 40

… … … … …

Microstate 
templates

… … …

Step 1 Step 2

Subject 1 Subject 2 … Subject 32

Subject 1 Subject 2 … Subject 32

Subject 1

Trial 1

Trial 2

Trial 40

… … …

Subject 32

Trial 1

Trial 2

Trial 40

… … …

… … … …

Microstate 
templates…

…
…

Step 1 Step 2

Subject 1
Trial 1 …

… … … …

Microstate 
templates

…… …
Step 2 Step 3

Subject 1
Trial 2

Subject 1
Trial 40

Subject 2
Trial 1 …

Subject 2
Trial 2

Subject 2
Trial 40

Subject 32
Trial 1 …

Subject 32
Trial 2

Subject 32
Trial 40

Set 1

Set 2

Set 40

Random groups

……

Low-level 
microstate templates

Step 3 Step 4

Low-level 
candidate templates

High-level 
candidate templates

Subject 1

Trial 1

Trial 2

Trial 40

… … …

Subject 32

Trial 1

Trial 2

Trial 40

… …

…

… … …

Step 1

…

Low-level 
candidate templates

High-level 
candidate templates

…

High-level 
microstate templates

Microstate 
templates

A Case 1

Candidate 
template 1

Candidate 
template

Candidate 
template

2

32

Candidate 
template 1

Candidate 
template 2

Candidate 
template 40

Candidate 
template 1

Candidate 
template 2

Candidate 
template 40

Candidate 
template

Candidate 
template

Candidate 
template

1

2

40

Step 1

Candidate 
template 1

Candidate 
template 2

Candidate 
template 40

……

Candidate 
template 1

Candidate 
template

Candidate 
template

2

40

Candidate 
template 1

Candidate 
template 2

Candidate 
template 40

Step 2

Original EEG

Original EEG

Original EEG

Original EEG

Original EEG

B Case 2

D Case 4

E Case 5

C Case 3

Step 1: within-subject clustering across 40 trials of EEG from every single subject;
Step 2: cross-subject clustering across all candidate templates extracted from Step 1.

Step 1: trial-based clustering across 32 subjects’EEG viewing the same video;
Step 2: cross-trial clustering across all candidate templates extracted from Step 1.

Step 1: randomly group 1280 trials of EEG data into 40 sets regardless of subject and trial;
Step 2: within-group clustering across all EEG data randomly grouped into the same group;
Step 3: cross-group clustering across all candidate templates extracted from the Step 2.

Step 1: trial-based clustering on every single trial of EEG data across 32 subjects;
Step 2: cross-trial clustering across all candidate templates extracted from Step 1.

Step 1: trial-based clustering on every single trial of EEG data across 32 subjects;
Step 2: task information guide for grouping trial-specific templates into low- and high-level emotional states;
Step 3: level-related microstate template detection within every emotional group;
Step 4: emotion-related microstate detection based on low- and high-level templates.

FIGURE 1 | A schematic overview of five topographical clustering strategies for task-state microstate detection. (A) A trial-subject-sequence-based bottom-up
topographical clustering strategy (Case 1, Section “A Trial-Subject-Sequence-Based Bottom-Up Topographical Clustering”). (B) A subject-trial-sequence-based

(Continued)
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FIGURE 1 | bottom-up topographical clustering strategy (Case 2, Section “A Subject-Trial-Sequence-Based Bottom-Up Topographical Clustering”). (C) A
single-trial-based bottom-up topographical clustering strategy (Case 3, Section “A Single-Trial-Based Bottom-Up Topographical Clustering”). (D) A
random-grouping-based bottom-up topographical clustering (Case 4, Section “A Random-Grouping-Based Bottom-Up Topographical Clustering”). (E) A
task-driven-based top-down topographical clustering (Case 5, Section “A Task-Driven-Based Top-Down Topographical Clustering”).

conducted on all the subjects’ EEG data triggered by the same
video clip. As 40 videos are randomly represented to each subject
in the experimental data collection, we first reorder all the EEG
recordings according to the video order. Then, for each video,
EEG recordings from 32 subjects are used for candidate template
detection, and video-specific microstate candidate templates
are identified. Step 2: a topographical clustering is conducted
on all the obtained candidate templates from a total of 40
videos. An optimal set of quasi-stable microstate templates is
extracted and the video-generalized (or video-independent) EEG
microstates are obtained.

A Single-Trial-Based Bottom-Up Topographical
Clustering (Case 3)
In the previous two cases (Case 1 and 2), the topographical
clustering at Step 1 is conducted on subject-specific multiple
videos (Case 1) or video-specific multiple subjects (Case 2). It
could be also possible to conduct candidate template detection
on a single trial of EEG recordings for trial-specific candidate
template extraction in the first-step clustering. Then, all the
candidate templates are further grouped in the second-step
clustering for final EEG microstate detection. Following this
clustering strategy, the detailed process of the single-trial-based
bottom-up topographical clustering strategy (named as Case 3
below) is described here (Figure 1C). Step 1: a topographical
clustering is conducted on every single trial of EEG recordings.
The first-step clustering is conducted on trial-based EEG data,
and a set of trial-specific microstate candidate templates are
identified. Step 2: a topographical clustering is conducted on
all the obtained trial-specific candidate templates obtained in
Step 1. We gather all the topographies from first-step clustering
together and submit them to another clustering analysis for final
EEG microstate template detection. Therefore, the second-step
clustering of Case 3 is conducted at a trial-independent level.

A Random-Grouping-Based Bottom-Up
Topographical Clustering (Case 4)
The previous three cases are all order-orientated clustering
strategies for EEG microstate detection, where an arrangement
of input orders is designed at subject-level (Case 1), video-
level (Case 2), and trial-level (Case 3). To verify the ordering
impacts on the microstate detection performance, a random-
grouping-based bottom-up topographical clustering strategy
(named as Case 4 below) is considered, where all the trials are
randomly grouped into different sets for two-step topographical
clusterings (Figure 1D). Step 1: all trials of EEG recordings
are randomly grouped. For the DEAP database, a total of 1280
EEG recordings (32 subjects × 40 trials) are randomly divided
into 40 groups without consideration of the information about
trials and subjects. In other words, for each group, the included
EEG recordings are from different trials and subjects. Step 2: a

topographic clustering is conducted on each group. In total, 40
sets of group-specific candidate templates are obtained. Step 3:
a topographical clustering is conducted on all the group-specific
candidate templates obtained in Step 2. A final set of microstates
are obtained across 40 random groups.

A Task-Driven-Based Top-Down Topographical
Clustering (Case 5)
Besides the above-mentioned four data-driven-based
topographical clustering strategies, we also evaluate the
topographical clustering performance under task information
guidance. As emotion is a subjective experience, the self-
assessment offers an effective way for evoking emotion estimation
and is generally accepted as the ground truth (labels) for emotion
understanding in individuals (Bradley and Lang, 1994; Alarcão
and Fonseca, 2019). For the DEAP database, the task information
guidance is the reported subjective feedbacks after video-
watching. In the task-driven-based top-down topographical
clustering strategy (named as Case 5 below), the subjective
feedbacks (emotion labels) of valence and arousal emotional
dimensions are adopted for microstate detection, and the
corresponding valence/arousal based microstates are identified,
respectively (Figure 1E). Here, four steps are involved. Step 1: a
trial-based topographical clustering is conducted. Similar to Step
1 in Case 3, the trial-specific candidate templates are detected.
Step 2: a label-guided data grouping is conducted for each
subject. The subjective labels (9-point self-assessment ratings)
are discretized into binary levels (low-level and high-level). For
each subject, a subject-specific adaptive threshold calculation
(Yin et al., 2017) is adopted to divide the self-assessment
ratings in valence and arousal dimensions into two clusters
through a k-means algorithm. The midpoint of two cluster
centroids is used as the threshold for binary grouping. Step 3: a
topographical clustering is conducted on each emotional level
for each subject. For each subject, the corresponding low-level
and high-level candidate templates are identified for valence
and arousal, respectively. In other words, two pairs of candidate
templates are obtained for each subject, which reflects the
synchronized oscillatory of whole-brain EEG activities under
different emotion states. Step 4: a topographical clustering
is conducted on the obtained low- and high-level candidate
templates. Note that valence and arousal are two independent
emotional dimensions, thus we explore the neural mechanisms
underlying these two emotional dimensions separately. In other
words, the valence-based and arousal-based microstates are,
respectively, detected based on the corresponding low- and
high-level candidate templates.

Performance Evaluation Protocol
To systematically quantify the microstate detection performance
on task-state EEG data, we explore different topographical
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clustering strategies (from Case 1 to Case 5) and evaluate the
corresponding identified microstates from three perspectives:
microstate quality, task efficacy, and computational efficiency.
Here, microstate quality mainly focuses on the topographical
characteristics of EEG microstates, including the measurements
of the electric potential distribution (spatially) and the global
fitness in EEG microstate segmentation (temporally). Task
efficacy is an evaluation of whether the identified microstates
can reflect the changes in mental states under task manipulation.
Computational efficiency measures the total cost time on
topographical clustering for EEG microstate detection.

Microstate Quality
Electroencephalography microstate topographies reflect the
global patterns of momentary potential distribution over whole-
brain scalp EEG (Lehmann et al., 1987; Michel and Koenig, 2018),
which determine the data quality and spatial-temporal property
of the final EEG microstate sequences. Here, microstate quality
is evaluated in terms of spatial correlation and global explained
variance measurements.

Spatial Correlation
The spatial similarities among EEG microstate topographies
can be quantified by a correlation-based measurement. The
global map dissimilarity (GMD) is a global measurement of
topographical differences between two potential maps, calculated
as

GMD

=

√√√√√√ 1
N

N∑
i = 1

 pi − p√
1
N

∑N
i = 1 (pi − p)2

−
qi − q√

1
N

∑N
i = 1 (qi − q)2


2

,

(3)

where pi and qi refer to the voltage of topography map p and
q at ith electrode, and p and q are the corresponding average
voltages across whole-brain electrodes of map p and q. N is
the electrode number of EEG recordings. The spatial correlation
between potential topographies is given as

R = 1−
GMD2

2
. (4)

Numerically, it is equivalent to Pearson’s correlation
coefficient between potentials of two EEG topographies (Brunet
et al., 2011). Spatial correlation is a strength-independent
evaluation of topographical similarity (Murray et al., 2008), and
it has been commonly used as a criterion for EEG microstate
segmentation by measuring the spatial similarity between
original topographies at each sampling point and EEG microstate
templates (Koenig et al., 1999; Lehmann et al., 2005). To quantify
the quality of the identified EEG microstates under different
topographical clustering strategies, the spatial correlation is
first evaluated with the detected task-state microstate templates
from a well-known public set (four microstates with canonical
potential configuration are clustered from 61 healthy subjects
under four modalities of thinking states). Then, the spatial
correlation is also examined with the detected microstate

templates under the guidance of task information (Case 5) to
check whether the identified microstates in a bottom-up manner
could share a similar neuronal activity with the emotion-evoked
brain states detected in a top-down manner (Yuan et al., 2012;
Vellante et al., 2020).

Global Explained Variance
The global explained variance (GEV) is another important
evaluation index that reflects the retained information of the
original EEG data in the identified EEG microstates. GEV
measures the overall spatial correlation between the EEG maps
at all time points and each microstate (Koenig et al., 2002; Mishra
et al., 2020), given as

GEV =
∑L

t = 1 (Corr (V (t) , Vc (t)) · GFP (t))2∑L
t = 1 GFP2 (t)

, (5)

where V (t) stands for EEG map at the given time t, and Vc (t)
denotes the microstate that is assigned to this time point. Corr (·)
represents the correlation calculation of spatial similarity between
two given topographies. GFP (t) is the global field power at time
point t. L is the total number of time points in EEG recordings.

Task Efficacy
Task efficacy is to evaluate whether the identified microstates
could well reflect the corresponding task information involved
in the task-state EEG recordings. Among the presented five
different types of EEG microstate detection methods with
different topographical clustering strategies, only the task-driven-
based top-down topographical clustering (Case 5) utilize the
task information involved in the task-state EEG recordings; the
other four cases (Case 1–4) are pure data-driven based bottom-
up approaches, without any knowledge guidance about the task.
In the other words, we could consider the top-down method
(Case 5) should perform superior in task efficacy compared to the
bottom-up methods. An evaluation of task efficacy could become
a question to measure the task representation differences between
bottom-up and top-down methods.

Based on the microstates, an EEG microstate time series
representation is formed for each trial of task-state EEG
recordings, which cover rich information about dynamic
changes of neurophysiological states during the task. Microstate
features in terms in terms of duration, coverage, occurrence,
and transition probability are characterized for task efficacy
evaluation. Take the emotion task as an example. The task
efficacy is evaluated to answer the three questions below. (1)
Whether the characterized microstate features could reflect the
emotion levels? (2) Which microstate features characterized by
the task-driven-based top-down topographical clustering method
are highly related to the emotion changes? (3) Which case
of bottom-up topographical clustering methods share similar
feature patterns in the reflection of emotion changes compared to
the top-down method’s results? Here, in terms of each microstate
feature characterized by each case of EEG microstate detection
method, the pattern differences between low- and high-level
emotion states are examined in valence and arousal dimensions,
respectively. Based on a Lilliefors test for normality distribution
estimation, we choose an independent t-test to examine the
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FIGURE 2 | A schematic display of time monitoring on the computational efficiency of microstate detection.

FIGURE 3 | The final detected microstates with different topographical clustering methods. (A) The identified microstates by Case 1, Case 2, Case 3, and Case 4.
All are bottom-up-based data-driven approaches. (B) The identified microstates by Milz et al. (2016) and Case 5. Milz et al.’s (2016) results could be considered as
standards in the existing EEG microstate studies, in which the underlying neural mechanisms have been verified with functional magnetic resonance imaging studies.
Case 5’s results could be more capable of reflecting the specific brain states under tasks, as the task information is used as a guide in the detection procedure
(top-down-based task information-guided approach). A good microstate detection performance should share a similar topography distribution property with the
standard templates and the task information-guided templates.

feature data that follow a normal distribution and adopt a
Wilcoxon Rank Sum test for the data that do not follow a normal
distribution. After correction for multiple comparisons using
false discovery rate (FDR), the p-values results of the two-side
test present a statistical quantification about whether the pattern
differences between two different emotion levels are large enough
to satisfy the requirement of statistical significance. In other
words, the microstate features that could reflect emotion changes
should be statistically significant in the two-side test.

Computational Efficiency
We also measure the computational time of each topographical
clustering strategy. This evaluation index could be used as
supportive information for future EEG microstate detection
method selection in practical and clinical applications. As shown
in Figure 2, the computation efficiency is the time cost calculation
of the entire microstate detection part, in which different
topographical clustering strategies could be used.

RESULTS

All the five EEG microstate detection methods with different
clustering strategies are evaluated on the same EEG recordings

under a naturalistic paradigm (DEAP database; 32 subjects × 40
trials = 1280 trials). The final detected microstates are
verified in terms of microstate quality, task efficacy, and
computation efficiency.

Microstates
The final detected microstates using different topographical
clustering strategies are presented in Figure 3. Note here Case 1 to
Case 4 are bottom-up-based data-driven approaches and Case 5 is
a top-down-based task information-guided approach. The results
show that the identified microstates share a similar potential
distribution with the canonical configuration in the previous
study (Pascual-Marqui et al., 1995; Lehmann and Koenig, 1997;
Milz et al., 2016; Michel and Koenig, 2018). According to the
potential distributions given in Milz et al.’s (2016) study, the
microstates are labeled as MS1 (right frontal-left posterior),
MS2 (left frontal-right posterior), MS3 (midline frontal-to-
occipital), and MS4 (frontocentral to occipital orientations). It
is also found a left-right symmetry microstate is identified in
Case 2 (the second map in row 2 of Figure 3A), which is
topographically different from the canonical EEG microstates
in the literature. Besides the visual inspection, we also conduct
the quantitative analysis for performance evaluation and present
the results below.
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Microstate Quality
The scalp potential distribution of EEG microstate templates
reflects the momentary electrophysiological state of the brain
and is coordinated with the whole-brain neuronal activities.
In the evaluation of microstate quality, we mainly focus on
the topographical stability (spatial property) of the identified
microstate templates.

Spatial Correlation
To identify the attribution of each identified EEG microstate to
the canonical templates, the spatial correlations with the standard
(public) microstate templates are measured. It is a quantitive
evaluation of microstate quality in terms of topographical
configuration. The observed task-state microstates in Milz
et al. (2016) were adopted here as a standard template for

Public microstate templates
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Public microstate templates

Public microstate templates Public microstate templates

Public microstate templates Public microstate templates
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FIGURE 4 | The spatial correlation results with the public microstate templates. The heatmap is a visual display of the calculated correlation coefficient of
topographical similarity. In a range from 0 to 1, a higher correlation coefficient is marked as red indicating a close topographical similarity between identified
microstates and the public microstate templates, whereas a low correlation coefficient is marked as blue referring to a topographical dissimilarity. Here, (A–D) refer to
the results of the identified EEG microstate templates by Case 1, 2, 3, and 4; (E) and (F) refer to the results of the identified valence-based and arousal-based EEG
microstate templates by Case 5.
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FIGURE 5 | The spatial correlation results between four bottom-up topographical clustering strategies and task-driven-based top-down clustering for (A)
valence-based and (B) arousal-based microstate templates of Case 5. The heatmap is a visual display of the calculated correlation coefficient of topographical
similarity between identified microstates and emotion-related microstate templates. In a range from 0 to 1, a higher correlation coefficient is marked as red indicating
a close topographical similarity, whereas a low correlation coefficient is marked as blue indicating a low similarity.
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TABLE 1 | The GEV results on different microstate detection methods with different topographical clustering strategies.

(A) GEV values (mean ± standard deviation)

Case 1 Case 2 Case 3 Case 4 Case 5
valence

Case 5
arousal

MS1 0.0780 ± 0.0382 0.1209 ± 0.0424 0.0758 ± 0.0375 0.0721 ± 0.0369 0.0712 ± 0.0369 0.0763 ± 0.0375

MS2 0.0839 ± 0.0318 0.0593 ± 0.0309 0.0919 ± 0.0348 0.0919 ± 0.0346 0.0984 ± 0.0362 0.0893 ± 0.0342

MS3 0.1635 ± 0.0551 0.2084 ± 0.0706 0.1752 ± 0.0587 0.1665 ± 0.0554 0.1742 ± 0.0578 0.1738 ± 0.0584

MS4 0.1780 ± 0.0562 0.1176 ± 0.0476 0.1617 ± 0.0535 0.1726 ± 0.0552 0.1608 ± 0.0541 0.1652 ± 0.0539

Total 0.6711 ± 0.0497 0.6738 ± 0.0523 0.6733 ± 0.0512 0.6725 ± 0.0508 0.6732 ± 0.0511 0.6732 ± 0.0511

(B) GEV proportions.

Proportion (100%) MS1 MS2 MS3 MS4

Task-Free Case 1 18.91% 18.93% 30.62% 31.55%

Case 2 23.47% 16.15% 33.86% 26.52%

Case 3 18.05% 20.16% 30.79% 31.00%

Case 4 17.67% 19.67% 30.59% 32.07%

Task-Guided Case 5 (valence) 17.51% 20.80% 30.91% 30.78%

Case 5 (arousal) 18.11% 19.76% 30.76% 31.37%

Cronbach’s α 0.9784 0.9782 0.9840 0.9862

microstate quality evaluation. This set of microstate templates
was identified from 61 subjects’ EEG data during three thinking
tasks and is available online.1 For each topographical clustering
strategy, the spatial correlation results between identified EEG
microstates and standard templates are presented in a 4 × 4
correlation coefficient matrix (as shown in Figure 4). A high
correlation with the standard templates indicates an optimal
set of microstates could be obtained with maximized between-
cluster and minimized within-cluster relationships. Based on
the 4 × 4 correlation coefficient matrix, both individual
microstate performance of each microstate and overall microstate
performance across all microstates are evaluated for spatial
correlation calculation. For individual microstate performance
evaluation, the ratio of each diagonal value to the corresponding
sum of correlation coefficients located in the same row/column
is calculated for template comparison. For overall microstate
performance evaluation, the ratio of the sum of the diagonal
values to the total of correlation coefficients is calculated for
case comparison. Larger ratio values reveal better microstate
quality with closer topographical similarity to the standards. Take
Figure 4A as an example. In the evaluation of the individual
microstate performance, the ratios of MS1, MS2, MS3, and
MS4 are calculated, respectively. For MS1, the ratio of 0.9585
to the sum of correlation coefficients located in the first row
is 45.18%, while the ratio of 0.9585 to the sum of correlation
coefficients located in the first column is 41.50%. For MS2, 40.91
and 40.20% are the ratios of 0.9862 to the sum of correlation
coefficients located in the second row and column, respectively.
For MS3, the corresponding calculated ratios are 33.09 and
33.69%. For MS4, the ratios of 0.9710 to the sum of correlation
coefficients located in the fourth row and column are 32.07 and
34.10%, respectively. In the evaluation of the overall microstate

1https://github.com/keyinst/keypy

performance, the ratio of a sum of 0.9585, 0.9862, 0.9490, and
0.9710 to the sum of all the correlation coefficients in the
4 × 4 matrix is equal to 37.06%. Similarly, the overall microstate
performance evaluations are conducted on the other cases. In
all, the corresponding overall microstate performance evaluation
results of Case1, Case2, Case3, and Case4 are 37.06, 36.21, 37.20,
and 37.42%, respectively. For Case 5, the spatial correlation ratio
of the valence-based microstates is 37.26% and that of arousal-
based microstates is 37.42%. Among the results, Case 4 and Case
5’s results show the 45 highest correlation relationships with
the standard microstate templates. The lowest spatial correlation
is Case 2 (36.21%), especially for the MS2 (R = 0.7933) and
MS4 (R = 0.8489).

The EEG microstate analysis on task-state EEG recordings
should also be able to reflect the mental state changes related
to the task. To check the involved task information in the
microstates and investigate whether the task-free clustering
results share similar neuronal activity patterns with the task-
guided one, we also calculate the spatial correlations of
the detected microstates by the bottom-top-based data-driven
approaches (Case 1, Case 2, Case 3, and Case 4) with the detected
microstates by the top-down-based task information-guided
approach (Case 5). Similarly, the ratio of the sums of diagonal
values to the total of correlation coefficients is calculated as an
overall estimation. In consideration of the spatial correlation
calculation with valence-based microstates (Figure 5A), a high
correlation is observed in Case 1, Case 3, and Case 4 with a
mean ratio of 40.68, 41.31, and 41.65%. For the spatial correlation
calculation with arousal-based templates (Figure 5B), we find
that the microstates of Case 3 (41.26%) and Case 4 (41.57%)
achieve a high microstate quality in potential configuration.
On the other hand, Case 2 fails to achieve ideal results
in microstate quality measurement. Compared to the other
cases, the corresponding within-cluster and between-cluster
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TABLE 2 | The task efficacy results in valence dimension (*p < 0.05, **p < 0.01, FDR).

(A) Coverage

MS1 MS2 MS3 MS4

Case 1

Low valence 0.1875 ± 0.0631 0.1877 ± 0.0491 0.3056 ± 0.0665 0.3192 ± 0.0750

High valence 0.1907 ± 0.0583 0.1910 ± 0.0483 0.3069 ± 0.0660 0.3115 ± 0.0715

Statistics –1.2999 –1.4162 –0.6379 1.8083

Case 2

Low valence 0.2319 ± 0.0519 0.1596 ± 0.0535 0.3366 ± 0.0731 0.2719 ± 0.0802

High valence 0.2377 ± 0.0519 0.1635 ± 0.0554 0.3408 ± 0.0740 0.2580 ± 0.0772

Statistics –2.0423 –1.3105 –1.1146 3.3921*

Case 3

Low valence 0.1777 ± 0.0595 0.1997 ± 0.0520 0.3066 ± 0.0634 0.3160 ± 0.0777

High valence 0.1835 ± 0.0598 0.2037 ± 0.0519 0.3093 ± 0.0689 0.3036 ± 0.0739

Statistics –2.0339 –1.1233 –0.4174 2.8621*

Case 4

Low valence 0.1742 ± 0.0598 0.1949 ± 0.0508 0.3045 ± 0.0624 0.3264 ± 0.0762

High valence 0.1794 ± 0.0600 0.1985 ± 0.0504 0.3075 ± 0.0674 0.3146 ± 0.0725

Statistics –1.8258 –0.9618 –0.5821 2.6645*

Case 5

Low valence 0.1724 ± 0.0600 0.2062 ± 0.0525 0.3076 ± 0.0626 0.3137 ± 0.0778

High valence 0.1778 ± 0.0601 0.2100 ± 0.0518 0.3107 ± 0.0685 0.3015 ± 0.0745

Statistics –1.9796 –1.0269 –0.5620 2.8555*

(B) Duration

MS1 MS2 MS3 MS4

Case 1

Low valence 64.6320 ± 7.6889 64.4197 ± 5.9984 79.5613 ± 11.2111 80.6605 ± 11.9049

High valence 65.1246 ± 6.9375 64.6901 ± 5.8365 79.7905 ± 11.2312 79.6766 ± 11.0350

Statistics –1.8721 –1.0825 –0.6482 1.2493

Case 2

Low valence 69.1943 ± 6.6213 61.6431 ± 6.2360 82.9398 ± 12.5854 74.3199 ± 11.2099

High valence 70.3438 ± 7.2465 62.2864 ± 6.5304 84.2994 ± 13.3318 73.0133 ± 10.8779

Statistics –2.5624* –1.8436 –1.9423 2.4473*

Case 3

Low valence 63.4815 ± 7.0181 65.5455 ± 6.5484 79.2349 ± 10.4002 80.0604 ± 12.3229

High valence 64.5303 ± 7.3439 66.3463 ± 6.5271 80.4348 ± 11.7304 78.7423 ± 11.2168

Statistics –2.7661** –2.6061** –1.3383 1.8643

Case 4

Low valence 63.1787 ± 7.0845 64.9402 ± 6.4114 78.9501 ± 10.4466 81.3303 ± 12.3963

High valence 64.1381 ± 7.3568 65.7845 ± 6.2856 80.1698 ± 11.6227 80.1675 ± 10.9907

Statistics –2.6225* –2.7478* –1.4367 1.2166

Case 5

Low valence 62.9790 ± 7.0504 66.1826 ± 6.5955 79.2912 ± 10.3204 79.7048 ± 12.4028

High valence 64.0441 ± 7.4066 67.0386 ± 6.5729 80.4988 ± 11.6674 78.5148 ± 11.3720

Statistics –2.7475* –2.5192 –1.3623 1.6941

(C) Occurrence

MS1 MS2 MS3 MS4

Case 1

Low valence 2.8398 ± 0.6814 2.8780 ± 0.5913 3.8085 ± 0.4384 3.9187 ± 0.4391

High valence 2.8759 ± 0.6383 2.9184 ± 0.5809 3.8135 ± 0.4479 3.8722 ± 0.4307

Statistics –0.9220 –1.5460 –0.5326 2.0763*

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 12 February 2022 | Volume 16 | Article 812624

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-812624 February 10, 2022 Time: 12:16 # 13

Hu et al. Microstate Detection in Naturalistic EEG

TABLE 2 | (Continued)

(C) Occurrence

MS1 MS2 MS3 MS4

Case 2

Low valence 3.3208 ± 0.5343 2.5390 ± 0.6505 4.0256 ± 0.4335 3.5964 ± 0.5686

High valence 3.3509 ± 0.5106 2.5707 ± 0.6591 4.0125 ± 0.4194 3.4742 ± 0.5528

Statistics –1.0644 –1.0842 0.6471 3.8958**

Case 3

Low valence 2.7421 ± 0.6663 3.0066 ± 0.6069 3.8393 ± 0.4385 3.9049 ± 0.4522

High valence 2.7876 ± 0.6568 3.0312 ± 0.5852 3.8116 ± 0.4448 3.8140 ± 0.4646

Statistics –1.4067 –0.5572 1.5072 3.4524*

Case 4

Low valence 2.6979 ± 0.6702 2.9624 ± 0.6015 3.8282 ± 0.4325 3.9760 ± 0.4285

High valence 2.7388 ± 0.6620 2.9812 ± 0.5804 3.8034 ± 0.4378 3.8872 ± 0.4499

Statistics –1.0972 –0.2368 1.3515 3.5872**

Case 5

Low valence 2.6791 ± 0.6782 3.0755 ± 0.5952 3.8504 ± 0.4372 3.8936 ± 0.4485

High valence 2.7180 ± 0.6655 3.0957 ± 0.5736 3.8270 ± 0.4465 3.7983 ± 0.4662

Statistics –1.0349 –0.3405 1.3069 3.5917**

distances are relatively poor (valence-based: 40.05%; arousal-
based: 40.67%).

Overall, the evaluation results in terms of microstate quality
show the detected microstates using Case 3 and Case 4
outperform the other topographical strategies, where a high
spatial correlation relationship with the existing standard
templates is observed and a similar topography configuration
with the task-based templates is also found.

Global Explained Variance
The performance of fitting the identified microstate templates
back into EEG data will significantly influence the results
of EEG microstate segmentation. GEV measures how much
percentage of original EEG data can be represented by the
given set of EEG microstate templates. It is commonly used to
reflect the topographical quality in EEG microstate segmentation.
Table 1A shows the calculated GEV values based on the
detected microstates using five different microstate detection
methods with different topographical clustering strategies. The
results show the calculated GEV values are mainly located
in the range from 0.6 to 0.7, and the Cronbach’s α values
across 5 topographical clustering strategies are larger than 0.9
(0.9817 0.0040). No significant difference is observed in the
calculated GEV values when different topographical clustering
strategies are adopted. Besides, when we calculate the GEV
proportions of each microstate across all EEG microstate time
series (Table 1B), we find that in most cases MS3 and MS4 occupy
the highest GEV proportions (the total proportion is about 60%).
For MS1 and MS2, the corresponding GEV proportions over the
EEG microstate time series are relatively low, where each of them
is around 20%. However, a different pattern is observed in Case
2, where MS1’s GEV is larger than MS4’s. The GEV calculation
results show MS1 plays a more dominant role in representing
EEG into EEG microstate time series compared to MS4. In the

GEV proportion calculation, a larger proportion is observed on
MS4, instead of MS1. The inconsistent results between the GEV
values and GEV proportions suggest that the microstate quality
of the detected microstates in Case 2 is not good enough.

Task Efficacy
Through the statistical analysis between low and high
emotional groups, we evaluate the task efficacy of each of
the microstate features detected in each of the presented
microstate detection methods. It is a reflection of dynamic
changes in microstate patterns during tasks. As valence and
arousal are two independent emotion dimensions, the task
efficacy is separately examined on these two dimensions.

Inspecting the microstate activity differences in the valence
dimension, as shown in Table 2, the task-driven-based top-
down topographical clustering (Case 5) shows that MS1 coverage
(p = 0.0477), MS1 duration (p = 0.0060), and MS2 duration
(p = 0.0118) of the high valence group are higher than that
of the low valence group. But MS4 coverage (p = 0.0043)
and occurrence (p = 0.0003) of the high valence group are
significantly lower than the low valence group. We also explore
the feature patterns in the trial-subject-sequence-based (Case
1), the subject-trial-sequence-based (Case 2), the single-trial-
based subject-trial-sequence-based (Case 3), and the random-
grouping-based (Case 4) bottom-up topographical clustering
methods. For Case 1, we only observe one consistent microstate
pattern that a larger MS4 occurrence (p = 0.0379) is found in
the high valence group. For Case 2, MS1 coverage (p = 0.0411)
and duration (p = 0.0104) of the high valence group are larger
but the MS4 coverage (p = 0.0007), duration (p = 0.0144), and
occurrence (p = 0.0001) are lower than the low valence group.
For Case 3, a more similar pattern to Case 5 in valence-related
microstate activities is observed. There is higher MS1 coverage
(p = 0.0420), MS1 duration (p = 0.0057), and MS2 duration
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TABLE 3 | The task efficacy results in arousal dimension (*p < 0.05, **p < 0.01, FDR).

(A) Coverage

MS1 MS2 MS3 MS4

Case 1

Low arousal 0.1895 ± 0.0619 0.1894 ± 0.0498 0.3023 ± 0.0678 0.3188 ± 0.0757

High arousal 0.1886 ± 0.0598 0.1892 ± 0.0477 0.3100 ± 0.0645 0.3122 ± 0.0710

Statistics 0.2563 0.6788 –2.4391* 1.2217

Case 2

Low arousal 0.2329 ± 0.0511 0.1604 ± 0.0548 0.3342 ± 0.0755 0.2725 ± 0.0799

High arousal 0.2366 ± 0.0527 0.1625 ± 0.0540 0.3430 ± 0.0713 0.2580 ± 0.0775

Statistics –1.9196 –0.7224 –2.1283 3.6303**

Case 3

Low arousal 0.1795 ± 0.0599 0.1996 ± 0.0534 0.3047 ± 0.0677 0.3162 ± 0.0778

High arousal 0.1815 ± 0.0595 0.2036 ± 0.0505 0.3111 ± 0.0645 0.3038 ± 0.0739

Statistics –0.5757 –1.1763 –2.2006 2.9272*

Case 4

Low arousal 0.1755 ± 0.0602 0.1948 ± 0.0522 0.3034 ± 0.0663 0.3263 ± 0.0765

High arousal 0.1779 ± 0.0596 0.1985 ± 0.0491 0.3085 ± 0.0634 0.3151 ± 0.0724

Statistics –0.6806 –1.1705 –1.8744 2.5562

Case 5

Low arousal 0.1800 ± 0.0595 0.1955 ± 0.0530 0.3044 ± 0.0679 0.3200 ± 0.0775

High arousal 0.1821 ± 0.0593 0.1996 ± 0.0502 0.3107 ± 0.0647 0.3075 ± 0.0734

Statistics –0.5993 –1.2188 –2.1479 2.9262*

(B) Duration

MS1 MS2 MS3 MS4

Case 1

Low arousal 64.9348 ± 7.6470 64.5584 ± 6.0885 79.1522 ± 11.3010 80.8930 ± 12.2272

High arousal 64.8078 ± 7.0182 64.5435 ± 5.7522 80.1879 ± 11.1180 79.4800 ± 10.6881

Statistics 0.0864 0.0449 –1.8807 1.6788

Case 2

Low arousal 69.4012 ± 6.9642 61.8284 ± 6.3813 82.9017 ± 12.9593 74.5860 ± 11.3363

High arousal 70.0995 ± 6.9293 62.0808 ± 6.3934 84.2906 ± 12.9450 72.7944 ± 10.7242

Statistics –1.9539 –0.2640 –2.3099 3.5508**

Case 3

Low arousal 63.8640 ± 7.2666 65.7942 ± 6.6146 79.2145 ± 11.2765 80.2174 ± 12.2810

High arousal 64.1155 ± 7.1255 66.0725 ± 6.4830 80.4139 ± 10.8525 78.6318 ± 11.2845

Statistics –0.5428 –0.8298 –2.6936* 2.3969

Case 4

Low arousal 63.4961 ± 7.2292 65.1642 ± 6.3683 79.1083 ± 11.1606 81.5000 ± 12.2706

High arousal 63.7908 ± 7.2354 65.5337 ± 6.3558 79.9714 ± 10.9218 80.0392 ± 11.1626

Statistics –0.5978 –1.2586 –1.9035 1.9494

Case 5

Low arousal 63.9495 ± 7.2931 65.4048 ± 6.4612 79.1960 ± 11.3402 80.8319 ± 12.3519

High arousal 64.1662 ± 7.1453 65.6350 ± 6.4818 80.3416 ± 10.9173 79.0640 ± 11.1837

Statistics –0.4958 –0.6904 –2.5481* 2.6841*

(C) Occurrence

MS1 MS2 MS3 MS4

Case 1

Low arousal 2.8582 ± 0.6666 2.8966 ± 0.6001 3.7841 ± 0.4553 3.9015 ± 0.4221

High arousal 2.8564 ± 0.6556 2.8986 ± 0.5729 3.8375 ± 0.4289 3.8909 ± 0.4487

Statistics 0.0512 0.7167 –2.3208* 0.3278

(Continued)
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TABLE 3 | (Continued)

(C) Occurrence

MS1 MS2 MS3 MS4

Case 2

Low arousal 3.3252 ± 0.5136 2.5408 ± 0.6652 3.9959 ± 0.4447 3.5924 ± 0.5548

High arousal 3.3454 ± 0.5323 2.5678 ± 0.6442 4.0423 ± 0.4068 3.4823 ± 0.5683

Statistics –0.8359 –0.7925 –1.5642 3.5065**

Case 3

Low arousal 2.7519 ± 0.6667 2.9912 ± 0.6174 3.8115 ± 0.4493 3.9004 ± 0.4495

High arousal 2.7763 ± 0.6573 3.0456 ± 0.5740 3.8401 ± 0.4337 3.8216 ± 0.4679

Statistics –0.6593 –1.3315 –1.1814 3.0548*

Case 4

Low arousal 2.7026 ± 0.6734 2.9488 ± 0.6155 3.8024 ± 0.4426 3.9663 ± 0.4346

High arousal 2.7328 ± 0.6593 2.9939 ± 0.5657 3.8297 ± 0.4274 3.8998 ± 0.4453

Statistics –0.8093 –1.1076 –1.1751 2.7681*

Case 5

Low arousal 2.7568 ± 0.6613 2.9480 ± 0.6206 3.8090 ± 0.4513 3.9190 ± 0.4416

High arousal 2.7847 ± 0.6527 3.0044 ± 0.5754 3.8383 ± 0.4365 3.8492 ± 0.4606

Statistics –0.7605 –1.4606 –1.3268 2.8475*

Task-Guided

Task-Free

Order-based

Case 1 

Case 3

Case 2

Task Efficacy Random-based Case 4

Case 5

low vs. high valence: MS4↓

low vs. high arousal: MS3↑

low vs. high valence: MS1↑ MS4↓

low vs. high arousal: MS3↓  MS4↓

low vs. high valence: MS1↑  MS2↑  MS4↓

low vs. high arousal: MS3↑  MS4↓

low vs. high valence: MS1↑  MS2↑  MS4↓

low vs. high arousal: MS4↓

low vs. high valence: MS1↑  MS2↑  MS4↓

low vs. high arousal: MS3↑  MS4↓

(Bottom-Up)

(Top-Down)

FIGURE 6 | A summary of task efficacy results.

TABLE 4 | The computational efficiency results of different microstate detection methods with different topographical clustering strategies.

First-step clustering Second-step clustering Total

Task-free Case 1 224,896 s 32 s 224,928 s

Case 2 191,200 s 33 s 191,233 s

Case 3 604,160 s 3,412 s 607,572 s

Case 4 211,560 s 32 s 211,592 s

Task-Guided Case 5 (valence) 604,160 s 682 s (low valence) 605,476 s

634 s (high valence)

Case 5 (arousal) 604,160 s 679 s (low arousal) 605,531 s

692 s (high arousal)

c, the number of clusters; I, the number of iteration. Here, c ranges from 2 to 8, and I is set to 1000.
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TABLE 5 | An overview of the performance comparison among different
bottom-up clustering strategies.

Microstate quality Task efficacy Computational efficiency

Case 1 Average Average Average

Case 2 Poor Poor Excellent

Case 3 Excellent Excellent Poor

Case 4 Excellent Good Good

(p = 0.0092), but lower MS4 coverage (p = 0.0042) and
occurrence (p = 0.0005), in the high valence group comparing
to the low-level group. Similarly, based on the microstate
templates identified in Case 4, the statistical differences in
microstate activities between low- and high-level valence states
show that high valence group corresponds to larger MS1 duration
(p = 0.0092) and MS2 duration (p = 0.0092) but lower MS4
coverage (p = 0.0092) and occurrence (p = 0.0092).

For the arousal dimension, as shown in Table 3, the task-
driven-based top-down topographical clustering (Case 5) shows
that MS3 coverage (p = 0.0317) and duration (p = 0.0108)
of the high arousal group are higher than the low arousal group.
While MS4 coverage (p = 0.0034), duration (p = 0.0073), and
occurrence (p = 0.0044) are significantly lower when comparing
the high arousal group to the low-level one. Comparison studies
on the feature patterns are also conducted on the bottom-up
topographical clusterings (Case 1–4). For Case 1, we only observe
the arousal-related statistical differences on MS3, where MS3
coverage (p = 0.0147) and occurrence (p = 0.0203) are larger
in the high arousal group. No significant difference is observed
in MS4. For Case 2, the high arousal group yields to larger
MS3 coverage (p = 0.0335) and duration (p = 0.0209), but
lower MS4 coverage (p = 0.0002), duration (p = 0.0003), and
occurrence (p = 0.0004) than the low arousal group. A similar
activity pattern is found in Case 3 that the high arousal group
corresponds to higher MS3 coverage (p = 0.0003), duration
(p = 0.0003), and lower MS4 coverage (p = 0.0003), duration
(p = 0.0003), and occurrence (p = 0.0003). However, in
Case 4, the microstate activity difference between low and high
arousal groups is only presented in MS4, where MS4 coverage
(p = 0.0106) and occurrence (p = 0.0056) of the high arousal
group are higher than the low arousal group.

A summary of the task efficacy results across different types
of topographical clustering strategies is reported in Figure 6.
Compared to the statistical results of Case 5, it is found that the
microstate detection results of Case 3 perform the most similar
patterns in the reflection of emotion changes for both valence
and arousal dimensions. On the other hand, the common feature
patterns between Case 1 and Case 5 are the least.

Computational Efficiency
In microstate analysis, EEG microstate detection is a very
time-consuming part. It is also very important to check the
computational efficiency of different topographical clustering
strategies. To make sure the measured time costs are comparable
across different microstate detection methods, we use the
same predefined parameters in all the different topographical
clustering strategies and compare all the results on the same

database (total 1280 trials). In the first-step clustering, a modified
k-means algorithm with the cluster number c ranging from 2 to 8
and the iteration number I of 1000 is used. For the second-step
clustering, another modified k-means clustering is conducted
with the cluster number c ranging from 2 to 8 and the iteration
number I of 5000. The computed computational efficiency
results of different microstate detection methods with different
topographical clustering strategies are presented in Table 4. It is
found Case 3 is the most time-consuming method, taking a total
of 607,572 s (approximately 168 h). Similarly, the total cost time
in Case 5 in terms of different emotional dimensions (valence and
arousal) are also 605,476 and 605,531 s, respectively. Both Case
3 and Case 5 are based on trial-based topographical clustering
strategy, thus the computational efficiency is lower than the other
non-trial-based topographical clustering strategies. For Case 1
and Case 4, the corresponding computational efficiency results
are 224,928 and 211,592 s, respectively. Case 2 has the highest
computational efficiency, with a total cost of 191,233 s. The time
cost difference between Case 1/4 and Case2 is mostly determined
by the calculation amount in the first-step clustering. All the
reported results are calculated on the same computer (Intel R©

CoreTM i7-10700 CPU@2.90 GHz, 32 GB RAM).

DISCUSSION AND CONCLUSION

In this study, we present four data-driven bottom-up-based
and 1 prior-knowledge-guided top-down based topographical
clustering strategies for naturalistic task-state EEG microstate
detection. The performance discrepancies among different
bottom-up-based strategies and between bottom-up and top-
down manners are quantitatively examined from the perspectives
of microstate quality, task efficacy, and computational efficiency.
Therefore, the effect of different EEG data grouping order,
clustering arrangement, and the use of task-guided information
on microstate detection performance is mainly discussed. By
examining these available clustering strategies, we tend to explore
an optimal bottom-up based topographical clustering strategy
for task-state EEG analysis to obtain similar performance in
detecting neuronal activity dynamics using the top-down based
clustering strategy.

The results show that the task-driven-based top-down
topographical clustering strategy performs well in reflection of
emotion-related neural changes. The corresponding identified
microstate templates share high similarities in the topography
distribution property with the existing findings. It was found
that MS1 and MS2 are functionally associated with visual
and verbal processing, and MS3 and MS4 are related to
the functional activity of default mode and dorsal attention
networks corresponding to the high-level brain activity of goal-
directed perception processing (Milz et al., 2016; Michel and
Koenig, 2018). Case 5’s results also reflect such a comprehensive
representation difference in dynamic brain activities, where
higher MS1, MS2, and lower MS4 activities are observed in
the high valence group, while higher MS3 and lower MS4
activities are found in the high arousal group. These results are
consistent with the patterns of brain activities under different
valence and arousal states in the previous studies. For example,
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Nummenmaa et al. (2012) adopted a naturalistic video-based
paradigm for emotion induction and worked on the relationship
between the activation state of large-scale brain networks
and self-assessment of evoked emotional states. Their results
presented an intersubjective synchronization in brain activation
patterns under the emotional dimensions of valence and arousal.
A close correlation was found between a low valence state and
an increased activity of the default mode network, and between
a high arousal state and increased activity of the dorsal attention
network. Given the observations between EEG microstates and
functional brain networks, the obtained results support that the
top-down approach with prior-knowledge guidance performs
superior in the task-state EEG microstate analysis.

When we compare the bottom-up approaches without prior-
knowledge guidance to Case 5’s results (Table 5), it is found
that the single-trial-based bottom-up topographical clustering
(Case 3) achieves the most similar results with high microstate
quality and task efficacy. But the corresponding computational
process of Case 3 is quite time-consuming. Therefore, Case
3 is recommended for bottom-up microstate clustering when
the prior knowledge is not available and the computational
efficiency is not highly demanded. On the other hand, the
random-grouping-based bottom-up topographical clustering
(Case 4) also shares a comparable performance in task-state EEG
microstate analysis. For the applications with a high requirement
of computational efficiency, Case 4 is suggested for reliable
microstate detection.

For the commonly used trial-subject-sequence-based bottom-
up topographical clustering (Case 1) in rest-state EEG microstate
analysis, the corresponding performance on task-state EEG
microstate analysis fails to achieve promising results as in Case
3 and Case 4. These results show the necessity of exploring
suitable topographical clustering strategies for task-state EEG
analysis, instead of directly coping with the same approach
used in rest-state EEG analysis. It inspires us to explore more
flexible and well-designed topographical clustering strategies
in microstate detection for task-state EEG recordings, which
could better address the complexity and variability issues in
task manipulation. Also, we believe a well-performed microstate
detection method would also work well on the rest-state EEG
microstate analysis.

In this current work, we mainly focus on the effect
of topographical clustering strategies on microstate detection
performance. When comparing our results with the current task-
state EEG microstate analysis, we found that EEG microstate
analysis is powerful in characterizing dynamic neural response
patterns that effected by the naturalistic tasks. On the
other hand, Han et al. (2020) conducted a task-state EEG
microstate analysis in a picture-based event-related potential
(ERP) facial attractiveness judgment experiment and observed
a total of six EEG microstates from the task-state ERP data
that is different from our observations. There would be two
possible reasons: (1) Different experimental paradigms. In our
work, we focus on task-state EEG signals during naturalistic
tasks, using various audio-visual materials to elicit different
emotions. Different tasks would lead to a different pattern
of neural activities (Milz et al., 2016) and further lead

to different microstate results. (2) Different EEG processing
methods. Han et al.’s (2020) work was carried out on
the ERP data, where the polarity of potential topographies
was considered. Our work is based on the raw recording
of spontaneous EEG data for studying the naturalistic and
dynamic brain changes under different emotional states.
Here, the potential polarity is ignored as EEG topographies
with inverted polarity would share a synchronized activation
pattern of neuronal ensembles (Lehmann and Koenig, 1997;
Mishra et al., 2020). Additionally, Khanna et al. (2014) have
validated a high consistency between the microstate topographies
identified from different numbers of electrode arrays. Their
results observed that the microstate features extracted from
8 and 19 electrodes shared a high test-retest reliability with
that from 30 electrodes. As an extension of our current
work, the integration analysis on different combinations of
clustering strategies and electrode sets could be considered
to further examine the performance efficiency and stability of
identified task-state microstates for brain dynamics study in
naturalistic tasks.

In all, our work evaluates the effects of microstate detection
across different topographical clustering strategies on EEG
microstate analysis under a naturalistic paradigm. We present
four data-driven bottom-up topographical clustering strategies
and one task-driven-based top-down topographical clustering
strategy, compare the performance under different cluster
analytical processes, and discuss the performance impact
when prior knowledge about the task information is utilized
in the microstate detection. Besides, we present a systematic
performance evaluation protocol to quantify the identified
microstates from three different perspectives (microstate quality,
task efficacy, and computational efficiency). The results show
that task-driven-based top-down topographical clustering
outperforms the data-driven bottom-up topographical clustering
strategies. Among the data-driven bottom-up topographical
clustering strategies, a single-trial-based bottom-up approach
(Case 3) performs the best in terms of both microstate
quality and task efficacy, but the computational efficiency
is relatively low. This work presents a systematic study to
analyze these available topographical clustering strategies
and suggests a good microstate detection for task-state EEG
microstate analysis.
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