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Brain connectomics consists in the modeling of human brain as networks,
mathematically represented as numerical connectivity matrices. However, this
representation may result in difficult interpretation of the data. To overcome this
limitation, graphical representation by connectograms is currently used via open-source
tools, which, however, lack user-friendly interfaces and options to explore specific sub-
networks. In this context, we developed SPIDER-NET (Software Package Ideal for
Deriving Enhanced Representations of brain NETworks), an easy-to-use, flexible, and
interactive tool for connectograms generation and sub-network exploration. This study
aims to present SPIDER-NET and to test its potential impact on pilot cases. As a working
example, structural connectivity (SC) was investigated with SPIDER-NET in a group
of 17 healthy controls (HCs) and in two subjects with stroke injury (Case 1 and Case
2, both with a focal lesion affecting part of the right frontal lobe, insular cortex and
subcortical structures). 165 parcels were determined from individual structural magnetic
resonance imaging data by using the Destrieux atlas, and defined as nodes. SC matrices
were derived with Diffusion Tensor Imaging tractography. SC matrices of HCs were
averaged to obtain a single group matrix. SC matrices were then used as input for
SPIDER-NET. First, SPIDER-NET was used to derive the connectogram of the right
hemisphere of Case 1 and Case 2. Then, a sub-network of interest (i.e., including
gray matter regions affected by the stroke lesions) was interactively selected and the
associated connectograms were derived for Case 1, Case 2 and HCs. Finally, graph-
based metrics were derived for whole-brain SC matrices of Case 1, Case 2 and HCs.
The software resulted effective in representing the expected (dis) connectivity pattern in
the hemisphere affected by the stroke lesion in Cases 1 and 2. Furthermore, SPIDER-
NET allowed to test an a priori hypothesis by interactively extracting a sub-network
of interest: Case 1 showed a sub-network connectivity pattern different from Case 2,
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reflecting the different clinical severity. Global and local graph-based metrics derived
with SPIDER-NET were different between cases with stroke injury and HCs. The tool
proved to be accessible, intuitive, and interactive in brain connectivity investigation and
provided both qualitative and quantitative evidence.

Keywords: MRI, brain networks, connectograms, brain connectivity, graph analysis, stroke

INTRODUCTION

In the last decades, the emergence of -omics disciplines led
to the development of flexible and comprehensive methods to
effortlessly analyze big data sets. Graph theory is a suitable
means for leveraging big data and for modeling complex
real-world systems, characterized by specific architecture and
topology. This mathematical approach has been effectively
applied in several scientific fields. One of the most impressive
and popular application is the so called “human connectome”
(Bullmore and Sporns, 2009), namely modeling the human
brain as a network on many different scales (Rubinov and
Sporns, 2010), aiming to connect its structure to function
and behavior. Similar to network genomics, which models
the influence of genes in a larger biomolecular system, brain
connectomics reconfigures the study of brain structure and
function by mapping the whole brain in terms of neural units
and their connections (Sporns et al., 2005). Indeed, brain regions
are strongly connected through neuroanatomical white matter
(WM) pathways, intuitively determining a complex system.
In parallel to structural connectivity (SC), synchronous and
asynchronous activity of specific brain regions results in related
complex cognitive functions, which can be investigated in terms
of functional connectivity (FC). Exploring SC and FC patterns
can provide insight of brain function both in physiological and
pathological conditions.

A network is a mathematical representation of a complex
system that is defined by a collection of nodes (vertices) and
links (edges), describing any kind of relationship between pairs
of nodes, at different scales. Networks can be easily represented
as n-by-n association matrices, where n is the number of nodes
composing the network, while each element eij represents the
link connecting the nodes i and j. The elements of the matrix
can be either binary (i.e., describing the presence/absence of
links between pairs of nodes) or weighted (i.e., describing the
strength of the links between pairs of nodes). In the framework
of the human connectome, association matrices are brain
connectivity matrices. According to the technique or imaging
modality employed to extract the connectivity data, nodes and
edges of a brain network can represent different concepts.
When constructing brain connectivity matrices from magnetic
resonance imaging (MRI) dataset, nodes usually represent gray
matter parcels, defined according to well-known atlases (Tzourio-
Mazoyer et al., 2002; Desikan et al., 2006; Smith et al., 2009;
Yeo et al., 2011). Brain atlases segment the brain into sets of
voxels (i.e., parcels), based either on anatomical or functional
criteria. Similarly, the edges of a brain network, describing a
relationship between nodes, can depict either SC or FC features.
SC refers to anatomical associations between neural elements or

brain regions, while FC represents the magnitude of temporal
correlations between the signal produced by pairs of brain
regions. SC and FC can be quantified with various indices,
depending on the imaging modality which is used to investigate
the connectivity pattern. For instance, the number of streamlines
derived with deterministic WM tractography can be used as
weights in an MRI-derived SC matrix, while correlation between
blood oxygenation level-dependent (BOLD) time series can be
used to define edges of MRI-derived FC matrices. SC and
FC generally mirror an undirected relationship between brain
regions (i.e., non-causal), resulting in a symmetric connectivity
matrix [i.e., (Nx(N-1))/2 pairwise connections between N nodes].

Although brain connectivity matrices can exhaustively
and quantitatively outline the human connectome, this
representation does not always provide an intuitive and direct
visualization of the connectivity pattern. Brain connectivity
matrices are generally too large to be visually interpreted, thus
important information might remain concealed. For this reason,
conceiving new methods for the visualization of connectivity
data is needed to aid the interpretation of brain connectivity
measures. This is important especially for explorative analyses,
with the aim of identifying characteristic patterns that may allow
to distinguish the pathological condition from the physiological
one, or to assess changes after a pharmacological treatment
or rehabilitation.

Connectograms are graphical representations that meet these
needs, bridging the gap between quantitative connectivity
analyses and intuitive visualization. Connectograms are circular
graphs in which all the nodes of a networks are represented
along the perimeter of the circle, while the edges of the network
are shown as arcs connecting pairs of nodes. This layout was
previously used in other fields (e.g., genomics) and it was
introduced for brain connectivity mapping by Irimia et al.
(2012b) about 10 years ago. Connectograms can be produced
using Circos (Krzywinski et al., 2009), which is a powerful
software package designed for visualizing data, for exploring
relationships between objects and for creating publication-quality
illustrations. It is extremely flexible, and it can be used in
several diverse fields. However, Circos has no interface, and
it has to be run by command-lines. This approach does not
create any problem to brain connectivity researchers who are
UNIX users, but it may be uncomfortable to researchers who do
not have any programming experience. A user-friendly interface
that could be used by people having knowledge and interest in
brain connectivity but not in computer science may broaden the
accessibility to connectograms.

A complete whole-brain network can be made of thousands
of links, and it is well-known that this large-scale network
is associated with high-level cognitive functions. However,
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the brain is composed of several interacting lower-scale
sub-networks, which are characterized by distinct patterns of
brain activation, identifying specific domains of behavior and
cognition (Bassett and Sporns, 2017). Therefore, extracting sub-
networks is common practice in explorative studies of brain
connectivity, both in physiological and pathological conditions
(Zalesky et al., 2010; Bassett and Sporns, 2017; Berron et al., 2020;
Isernia et al., 2021). Indeed, focusing on sub-networks can lead to
easier data interpretation driven by the addressed physiological
and/or pathological problem. Sub-network should be analyzed
both qualitatively, by a reduced connectogram, and quantitively
by local and global subgraph indexes. Nevertheless, software that
are currently available for connectivity pattern visualization (e.g.,
Circos, BrainNet Viewer, Xia et al., 2013) does not allow for
the interactive selection of some specific nodes within a whole-
brain network, as the direct upload of the sub-network of interest
is generally required. Beside outlining the brain connectome
through an association matrix and finding an intuitive way to
effectively represent it, graph-based network properties can be
calculated to depict a complete picture of the architecture of
the whole network and of each sub-network of interest. Indices
such as node degree, small-worldness, modularity, clustering,
and central hubs, can add meaningful information about the
network topology. These are valuable pieces of information in a
brain connectivity analysis as many studies revealed changes of
organizational and topological properties in a number of brain
disorders, such as Alzheimer’s Disease (Daianu et al., 2013), mild
cognitive impairment (Baggio et al., 2014), Parkinson’s Disease
(Göttlich et al., 2013), epilepsy (Ji et al., 2017), autism (Barttfeld
et al., 2012) and borderline intellectual functioning (Blasi et al.,
2020). Despite the large evidence produced in the last years, gold-
standard methodologies are not established yet, and connectivity
alterations in neurological and neurodegenerative diseases are an
open issue, so far. Therefore, further investigations on human
brain networks are warranted. Accessible tools for easily assessing
the topology and architecture of brain networks would provide
larger amount of evidence that may promote deeper knowledge
of brain disorders and of the effect of treatments (e.g., disease
modifying therapies, rehabilitation) on brain networks.

In this framework, we developed SPIDER-NET (Software
Package Ideal for Deriving Enhanced Representations of brain
NETworks), a software package that provides a very flexible
and user-friendly tool for the selection of partial connectograms,
their visualization, and their quantification. The SPIDER-
NET Graphical User Interface (GUI) intuitively allows rapid
network exploration and interactive real-time sub-network
definition. Figures for connectivity studies are automatically
generated, based on the user selections. Furthermore, the toolbox
provides additional features to apply matrix thresholding, to
easily and automatically compute topological network indices
and to interactively define visualization preferences. The aims
of this study were: (1) presenting SPIDER-NET, and (2)
testing the potential benefits of using SPIDER-NET in clinical
research case studies. Specifically, the following aspects were
tested: (2a) providing an effective representation of brain
connectivity patterns, (2b) interactively extracting sub-networks
to test a priori hypotheses and (2c) deriving whole-brain

quantitative connectivity metrics mirroring local and global
topological properties.

MATERIALS AND METHODS

SPIDER-NET Overview
SPIDER-NET was developed in Matlab but is delivered as a
standalone software (.exe in Windows, .app in macOS, .sh in
UNIX). The tool allows flexible and effective representation
of brain networks through connectograms. It enables the
exploration of network architecture and topology and, optionally,
the extraction of topological properties describing the network
architecture and nodes properties. A schematic flowchart is
shown in Figure 1.

SPIDER-NET Inputs
SPIDER-NET requires 3 input files, which are an Atlas file, a Label
file and a Connectivity Matrix file.

1) The Atlas file is an XSL/XSLX Excel worksheet that
provides information on the atlas the user adopts to define
the network nodes. The list of the Atlas parcels is reported
in a column of the worksheet. All the parcels listed in
the Atlas file are reported as nodes in the connectogram
generated by SPIDER-NET. The sorting of the parcels
in the Atlas file determines the positions of the parcels
in the connectogram obtained with SPIDER-NET (i.e.,
the first parcel is represented on the top of the circle).
A short legend has to be associated to each parcel in
the Atlas file. The legend is shown in the interface to
help interactive node selection. Reporting optional parcel
grouping (i.e., Group Parcellation) is also allowed in the
Atlas file (e.g., brain lobes, resting state networks). In
additional columns (i.e., Attribute), the Atlas file can
enclose additional optional attributes associated with each
parcel (e.g., functional attribute). Both Group Parcellation
and Attributes can be used to rapidly select entire groups
of parcels (i.e., parcels sharing Group Parcellation tag or
Attribute tag) for sub-network extraction. Several Atlas
files, for the most used structural and functional atlases,
are provided as templates together with the software.
Moreover, it is possible to customize or create new Atlas
files according to the user’s preferences and aims, by simply
composing new worksheets.

2) The Label file (ASCII text file, .txt) is a list of the parcel
names. The order of parcels in this file must strictly repeat
the order of rows and columns in the Connectivity Matrix,
which is the third input for SPIDER-NET. Therefore,
the order of the parcels in the Label file is tied to the
Connectivity Matrix generation. The design choice of
repeating the same list of parcels in both the Atlas file and
in the Label file permits great flexibility for connectogram
generation, as the same Atlas file can be used with many
different Label files (and Connectivity matrices). Indeed,
all the parcels being equal, the order of parcels can vary
across Label files (according to the associated Connectivity
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FIGURE 1 | Flowchart for SPIDER-NET usage. First, the Atlas and Label input files are browsed and loaded (blue box). Then, the Connectivity Matrix file is loaded
and the selection of the sub-network of interest is performed (red box). Optionally (dashed lines), it is possible to compute and visualize topological properties of the
selected brain network (green box). Finally, the connectogram is generated according to the selection made and to the chosen visualization settings (yellow box).

matrices), while the sorting of the parcels in the circular
representation remains the same if the same Atlas file is
used for generating the connectograms.

3) The Connectivity matrix file is an ASCII text file,
containing the matrix of association weights with row and
column order matching with the Label file. Any measure
of SC or FC derived with MRI is applicable. The input
connectivity matrix must be square (NxN) and symmetric.
Conventionally, the main diagonal must be set to zero.

Once the inputs have been uploaded (Figure 1, blue box),
the selection of either single parcels, entire group-parcels or
attributes defined in the “Atlas” file, is enabled in the SPIDER-
NET GUI (Figure 1, red box).

Parcel Selection and Connectogram
Generation
Two complementary logics are offered by SPIDER-NET in the
interactive definition of a partial network out of the global one
represented by the input Connectivity matrix (Figure 1, red box):
“Explore from current selected subset” (Option 1) and “Extract a
subgraph” (Option 2).

When the interactive definition of the addressed sub-network
is completed on the GUI, with either Option 1 or Option 2,
SPIDER-NET generates the partial connectogram (Figure 1,
yellow box). The figure of the connectogram was designed
by reengineering and extending the circular graph package

developed for Matlab (GitHub. Retrieved July 28, 2021).1 This
library allows to draw nodes along a circumference, and their
connections, whose shape is defined by the Poincaré hyperbolic
disk (Gao et al., 2020).

The connectogram figure generated by SPIDER-NET is
automatically saved in a folder created at run-time for
each execution. However, interactive changes to the resulting
connectogram are also possible within the software figure-
management GUI. Specifically, changes improving readability
of too crowded diagrams are available: (i) single nodes can
be selected to hide/show the respective labels; (ii) connections
related to specific nodes can be temporarily removed from the
connectogram. The modified figures can be saved in addition to
the original one.

Option 1—Explore From Current Selected Subset
One or more “seed” parcels are defined. Next, the set of target
parcels is defined, which can be either all the parcels of the brain,
just some other parcels or a specific group of parcels (i.e., defined
by Group Parcellation or any additional Attribute defined in the
Atlas file). It is worth noting that in the set of target parcels is
also possible to include the parcels already selected as “seed.”
Only the edges between each seed-target pair are represented
in the resulting connectogram. SPIDER-NET deals with non-
directional graphs, so “seed” and “target” are fully conventional

1https://github.com/paul-kassebaum-mathworks/circularGraph
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names. This option can be useful for the analysis of alterations
due to focal lesions or for qualitative pilot quality control of the
processing pipeline, to check for major errors in the connectivity
matrix generation. For instance, this option can be used in a
preliminary quality check of structural connectivity data verifying
the presence of connections between a chosen seed and all the
other parcels which are linked to it by existing WM tracts, basing
upon anatomical knowledge. This can be particularly valuable
given the complex image acquisition and upstream processing.

Option 2—Extract a Subgraph
This option is based on the selection of a single subset of nodes
(i.e., brain parcels). The user can select either parcels one by
one, or entire groups of parcels, defined according to Group
Parcellation or any additional Attribute reported in the Atlas file.
Therefore, after the selection, a subgraph is defined with respect
to the original Connectivity matrix, and connections between
all the possible pairs of the selected parcels are shown in the
resulting connectogram. This kind of exploration is useful when
specific cerebral circuits are addressed or deeper verification
of single well-known connections in the quality control of the
pipeline are requested.

Additional Features
Although SPIDER-NET has been designed as an easy-to-use
software GUI for simple connectogram generation, additional
optional features were developed and can be set simultaneously
to parcel selection (Figure 1, red box).

First, if the parcels are grouped according to a higher-level
classification (e.g., brain lobes) in the Atlas file, links between
pairs of parcels belonging to the same group (e.g., Group
Parcellation) can be optionally omitted from the connectogram.
Excluding within-group links from the connectogram enables a
clearer visualization of long-range connections, especially when
many connections are displayed.

Second, SPIDER-NET allows to optionally visualize color-
coded properties of the nodes, which can be either local graph-
theory based (e.g., node degree) or representing other properties
of the parcels (e.g., cortical thickness, parcel volume, classification
according to functional circuits). Edge properties (i.e., strength of
connection) may also be color-coded.

Furthermore, density-based thresholding is commonly
applied to matrices in brain connectivity studies, to either
remove spurious connections and/or to binarize a weighted
matrix. Although the user can provide SPIDER-NET with
an already thresholded connectivity matrix, the software is
designed to allow for optional density-based thresholding at
run-time. In particular, once the user has selected the desired
density, the software iteratively searches for the best threshold
to approximate the selected density, starting from zero. The
thresholded matrix is then used to draw the connectogram.

Compute and Visualize Topological
Features
Another feature optionally implemented by SPIDER-NET
(Figure 1, green box) is the computation of graph-based
topological indices for a quantitative assessment. Local, global,

and intermediate structure (i.e., community detection, core-
periphery analysis, rich-clubs) analyses are performed for a total
number of 20 computed indices, computed basing on Brain
Connectivity Toolbox (Rubinov and Sporns, 2010).2 Importantly,
the computed indices refer to both the original Connectivity
Matrix and to the currently selected subset of nodes, thus
providing targeted quantification of cerebral circuits. Besides
the connectogram, the following quantitative information is
graphically represented when graph-based topological indices are
optionally computed:

1. Connectivity weights, shown as a color-coded
connectivity matrix.

2. Local indexes (i.e., node degree, clustering coefficient, local
efficiency for both the binary and weighted case), shown in
plots. The horizontal axis reports the parcel names in the
same order as around the connectogram, while the vertical
axis scales the local index values. The local index value for
each parcel is represented with dots. The index value is
color-coded to highlight the most and the least influential
nodes. Namely, the top 10% parcels and the least 10% ones
are highlighted in red and yellow, respectively. These plots
can be effective in pinpointing network hubs or, conversely,
lesion related drops.

3. Values of the global indices, listed below the plots of local
indices.

These graph-based outputs can be interactively explored,
selecting specific elements of the connectivity matrix or dots
of local indexes to obtain additional information (i.e., weights,
corresponding higher-level classification). It is worth remarking
that results of the interactive subgraph analyses are always shown
on the screen in parallel to results of the analysis of the original
complete connectivity matrix. Once the interactive process is
fulfilled, whole graph and subgraph results are saved.

SPIDER-NET Application on Case
Studies
Participants
The dataset consists of two patients with stroke injury
characterized by a right hemisphere lesion with prevalent
subcortical expression (males, age 44 and 37 years old, referred
to as Case 1 and Case 2, respectively) and 17 healthy control
(HCs) subjects (7 males and 10 females; mean age ± SD:
52.5 ± 8.3 years). All the subjects were enrolled at IRCCS
Fondazione Don Carlo Gnocchi in Milan and signed a written
informed consent.

Magnetic Resonance Imaging Acquisition and Matrix
Construction
All the participants underwent a MRI examination performed on
a 1.5 T Siemens Magnetom Avanto scanner equipped with a 12-
channels head coil. Both patients with stroke injury were scanned
six months after hemorrhagic stroke.

The acquisition protocol included:

2https://sites.google.com/site/bctnet/
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1. a high-resolution 3D T1-weighted Magnetization Prepared
Rapid Gradient-Echo (MPRAGE) image, (repetition time
(TR)/echo time (TE) = 1,900/3.37 ms, Field of View
(FoV) = 192 × 256 mm2, resolution = 1 × 1 × 1 mm3,
176 axial slices);

2. a diffusion-weighted echo planar images (EPI) image
along 64 directions (b- value 1,500 s/mm2, TR/TE
7,800/109 ms, matrix size = 102 × 102 × 46,
resolution = 2.5 × 2.5 × 2.5 mm3) and 3 b0 images
(2 with AP, and 1 with PA encoding direction);

3. a dual-echo turbo spin echo proton density PD/T2-
weighted image (TR = 4,540 ms, TE = 28/112 ms, matrix
size = 320 × 320 × 60, resolution = 0.75 × 0.75 × 2 mm3).

After standard preprocessing, 3D T1-weighted volumes were
parcellated, at subject-level, and automatically labeled into 75
cortical parcels for each hemisphere (150 in total) according
to the Destrieux atlas (Destrieux et al., 2010) using FreeSurfer
(version 6). Seven subcortical regions per hemisphere (thalamus,
caudate, putamen, pallidum, nucleus accumbens, amygdala and
hippocampus) and the brainstem were also segmented using the
FreeSurfer automatic labeling process (Fischl et al., 2002) for a
total of 165 parcels.

Diffusion-weighted images were preprocessed using the
FMRIB’s Software Library (FSL) tools with a standard pipeline
(i.e., correction for susceptibility-induced geometric distortions,
for eddy current distortion and head movements) (Pelizzari
et al., 2019) and diffusion tensor imaging (DTI) was estimated
for each voxel using the FSL DTIFIT toolbox (Andersson
et al., 2003; Behrens et al., 2003; Andersson and Sotiropoulos,
2016). Then, DTI-derived whole brain tract was generated.
In addition, diffusion weighted data were processed also
with Constrained Spherical Deconvolution (CSD) approach.
Specifically, StarTrack3 was used both to estimate the fiber
orientation distribution function and to perform subsequent
deterministic whole brain tractography, according to high
angular resolution diffusion imaging (HARDI) processing
(Dell’Acqua et al., 2010).

Cortical and subcortical parcels, obtained from the 3D T1-
weighted images, were registered to the respective diffusion-
weighted space using the FSL flirt toolbox (Jenkinson et al.,
2002). Then, for each subject, WM tracts connecting each pair
of registered parcels were reconstructed with TrackVis software,4

basing both on DTI-derived whole brain tract and CSD-derived
whole brain tract.

In both patients, the stroke lesions were segmented by an
experienced operator on the PD/T2 volumes with Jim software.5

DTI-based and CSD-based SC matrices were derived for
patients with stroke injury and HCs, by computing the edges as
the number of the reconstructed fiber (NF) of each WM tract
connecting each pair of the 165 parcels. In order to account
for differences in brain volumes, NF was normalized by the
sum of the volumes of the pair of respective connected parcels

3www.natbrainlab.co.uk
4http://trackvis.org/
5http://www.xinapse.com/

(Blasi et al., 2020). A probabilistic group matrix was computed
to represent the HC group as a whole, retaining only the
connections shared by at least 53% of the HCs subjects (Blasi
et al., 2020). Therefore, three matrices where finally obtained for
both DTI and CSD approach: one for each patient with stroke
injury and one HC group matrix. The obtained matrices were
then normalized by the respective maximum edge value, so that
the matrix elements ranged from 0 to 1.

Running SPIDER-NET
SPIDER-NET inputs were defined as follows. The Atlas file was
constructed based on the Destrieux atlas.

The Label file, matching the connectivity matrices, reported
the Destrieux atlas parcel names. The normalized connectivity
matrices for Case 1, Case 2 and HCs (Connectivity matrix files)
were uploaded one at a time, for each separate analysis.

First, for the two patients with stroke injury, DTI-based
connectograms showing the connectivity pattern in the right
hemisphere, where the lesions of both subjects are located, were
generated to test the ability of SPIDER-NET to show altered
connectivity patterns due to a focal lesion.

Second, for each patient with stroke injury, a DTI-based
subgraph focused on expected altered circuit was extracted.
Specifically, all the parcels overlapping with the stroke lesions
were selected as seeds, while all the remaining brain parcels
were set as target for this sub-network analysis. The same
sub-network was investigated for the two stroke cases and
for the HC group to enable a comparison. The following
regions of interest were considered as seeds: right precentral
gyrus, right long insular gyrus and central insular sulcus, right
short insular gyri, right caudate nucleus, right pallidum, right
putamen, and right thalamus. This analysis was performed
to test the ability of SPIDER-NET to visually explore sub-
networks of interest. Furthermore, the same sub-network analysis
was performed for connectivity matrices derived with CSD
processing, to compare the connectivity results based on DTI and
CSD processing techniques.

Third, the main local and global graph-analysis indices
describing network topology were extracted both for the
weighted and for the binary connectivity DTI-based matrices.
The node degree was the main focus relevant to local
graph index analysis.

RESULTS

Connectogram Visualization of the
Connectivity Pattern Altered by Stroke
Lesions
The connectograms showing the DTI-based connectivity pattern
of the right hemisphere of the two patients with stroke injury
are shown in Figure 2. All the 165 parcels (cortical parcels
of Destrieux atlas and subcortical regions) are reported in the
circular representation and divided in 8 anatomical lobes (i.e.,
Group Parcellation defined in the Atlas file) per hemisphere.

Upon visual inspection, the connectivity pattern of the right
hemisphere is different in Case 1 compared to Case 2. Specifically,
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FIGURE 2 | Connectograms showing the connectivity pattern of the right hemisphere for the two stroke patients. The connectogram of Case 1 (A) is reported on
the left, while the connectogram of Case 2 (B) is represented on the right. L-left hemisphere, R-right hemisphere, Fro-frontal, Ins-insular, Tem-temporal, Par-parietal,
Occ-occipital, Sbc-subcortical, CeB-cerebellum, Bst-brainstem. Brain parcels are reported with standard labels provided for the Destrieux atlas.

Case 1 shows a less dense connectivity pattern in the right
hemisphere, especially in terms of connections among the frontal
lobe, insular cortex and subcortical structures.

Connectograms Visualization for
Sub-Network Analysis
The connectograms generated with SPIDER-NET to explore the
DTI-based connectivity between gray matter parcels intersecting
the lesions of patients with stroke injury (Figure 3A) and the rest
of the brain are shown in Figure 3B. The same connectograms
obtained with Circos software6 are reported in Supplementary
Material to allow for comparison.

Upon visual inspection, the sub-network connectivity pattern
of both patients with stroke injury looks altered compared to
HCs. In addition, it is worth noting that differences can be
qualitatively observed both in the right hemisphere (where the
stroke lesions are present) and in the contralateral one. Case
1 displays a less dense right hemisphere connectivity pattern
compared to Case 2. On the other hand, the sub-network
connectogram of Case 2 qualitatively shows less connections in
the left frontal-insular area and in the left parietal-occipital lobes
compared to Case 1.

Diffusion Tensor Imaging-Based and Constrained
Spherical Deconvolution-Based Connectivity: Visual
Comparison
The connectivity between regions overlapping the lesions of
stroke patients and the whole brain was also investigated

6http://circos.ca/

from matrices derived with CSD processing. The resulting
connectograms are shown in Figure 3B.

The sub-network connectograms of both Case 1 and Case
2 looks different when compared to the HC group one,
as for the DTI-based connectograms. At visual inspection,
the connectograms derived from DTI and CSD processing
generally preserve the same connectivity patterns. CSD-based
connectograms highlight the difference between Case 1 and
Case2 connectivity pattern.

Local and Global Topological Properties
Analysis
Node degree explorative figures produced by SPIDER-NET for
Case 1, Case 2 and HCs are shown in Figure 4. In general,
patients with stroke injury presented lower node degrees when
compared with HCs. In HCs, regions with the highest node
degrees, represented as red dots in Figure 4 (upper panel), were
mostly located in the dark-green vertical stripe, representing
subcortical regions. Conversely, in the patients with stroke injury,
both characterized by a right hemisphere lesion with prevalent
subcortical expression, the regions showing the highest local node
degree are more distributed across the cortical lobes. In addition,
caudate nucleus, pallidum, putamen, and thalamus, which were
classified by SPIDER-NET as regions with the highest node
degree in HCs (red dots), were not classified as nodes with high
node degree in both Case 1 and Case 2. In Figure 4, putamen
node degree values are highlighted for HCs, Case 1 and Case
2. Patients with stroke injury presented lower network density
(18.65 and 22.32%, respectively, for Case 1 and Case 2) with
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FIGURE 3 | The connectograms (B) derived by both DTI (left) and CSD (right) processing, of the sub-network extracted using as seeds all parcels which are
overlapped with the stroke lesion of either Case 1 or Case 2, are reported for HCs (top panel), Case 1 (middle panel) and Case 2 (bottom panel). Specifically, seeds
were defined as follows: right LoInG/CInS, right ShoInG, right Pal, right Pu, right CaN, right PrCG, right Tha (A). All the other parcels of the brain were considered as
target for the connectivity analysis. L-left hemisphere, R-right hemisphere, Fro-frontal, Ins-insular, Tem-temporal, Par-parietal, Occ-occipital, Sbc-subcortical,
CeB-cerebellum, Bst-brainstem, PrCG-precentral gyrus, LoInG/CInS-long insular gyrus and central insular sulcus, ShoInG-short insular gyri, Pal-pallidum,
Pu-putamen, CaN-caudate nucleus, Tha-thalamus.
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respect to HC (47.51%), resulting in differences of 28.9 and 25.2%.
Global topological binary and weighted indices extracted from
the whole-brain network of HC, Case 1 and Case 2 are shown
in Table 1.

Both Case 1 and Case 2 presented differences for all the
global topological indices when compared to HCs. Percentage
differences ranged from 10.5 to 96.9% for Case 1, and from
14.3 to 81.9% for Case 2. Except for clustering coefficient, Case
1 presented with greater percentage difference with HCs when
compared to Case 2.

DISCUSSION

In this study we presented SPIDER-NET, an innovative tool for
exploring and visualizing brain connectivity through full and
partial connectograms. The tests on two readily interpretable
cases with stroke injury proved that this tool is capable
of producing meaningful connectograms and of interactively
extracting and analyzing focused sub-networks.

As previously mentioned, connectograms were introduced
by Irimia et al. (2012a; 2012b) to provide intuitive and clear
visualization of neuroconnectivity relationships, alternatively to
large numerical matrices which do not allow prompt inference
or hypothesis testing about either network properties or
pathological damage. Although a variety of tools exploiting
connectograms for studying connectomics already exist
(Krzywinski et al., 2009; Whitfield-Gabrieli and Nieto-Castanon,
2012; Nieto-Castanon, 2020), so far, none of them allowed
both interactive network exploration and the selection of sub-
networks, while also providing a user-friendly interface. The
interactivity allows for a faster execution of the tool and its use
at ease, without the need of recompilation and re-uploading
of the files. The user is also guided through the selection of
different parameters providing a description for each feature and
preventing from possible incidental choices. Therefore, SPIDER-
NET could broaden the access to connectivity investigation to any
interested user in the neuroscience field (e.g., neuropsychologists,
physicians), other than computer scientists.

In the presented application examples, SPIDER-NET allowed
to highlight different connectivity patterns between two patients
with stroke injury. Interestingly, although both patients were
characterized by a right hemisphere stroke lesion with prevalent
subcortical expression, the disconnection patterns of the whole
right hemisphere looked different between them. The different
connectivity pattern of the right hemisphere was highlighted
thanks to appropriate subgraph selections, interactively allowed
by the tool. As expected, after considering the lesion patterns,
right hemisphere connectivity differences qualitatively observed
in the connectograms included connections with frontal lobe,
insular cortex, and subcortical structures. Of note, although
the connectograms presented in the figures were very dense,
we chose to maintain the original density of the networks
(19.65 and 22.32%, respectively, for Case 1 and 2) before any
selection. This was carried out to avoid the possible introduction
of thresholding biases, thus reducing the capability to capture
the main differences between the connectivity patterns of the

two patients, especially considering the low original values
of density. Although dense connectograms could result in
poor readability, SPIDER-NET solves this issue allowing both
interactive exploration of the network and stringent selection as
successively performed by analyzing a sub-network of interest.

Indeed, in addition to a first explorative visual investigation
of the right hemisphere, SPIDER-NET was used to perform a
more focused analysis on a sub-network of interest, interactively
testing an a priori hypothesis. The comparison of HCs, Case 1,
and Case 2 sub-network connectograms generated by SPIDER-
NET confirmed the a priori hypothesis and provided additional
information about the disconnectivity pattern of Case 1 and Case
2, which may be used to improve the understanding of clinical
manifestations and to drive personalized treatment. Indeed,
both patients presented facio-brachio-crural hemisyndrome,
with main brachial expression and severe functional limitation
of movements of the left upper limb, especially of the
hand. However, this limitation was more severe in Case 1
than in Case 2. This was mirrored by different residual
connectivity patterns showed by SPIDER-NET connectograms.
The following additional aspects were highlighted thanks to
the circular diagrams. First, the pattern of disconnection
involved both the right hemisphere, where the stroke lesions
were present, and the contralateral one. Second, for both
Case 1 and Case 2, the impairment of the cortical areas of
interest determined a decrease in both short-range (within
lobe) and long-range (between lobes) connections within the
hemisphere ipsilateral to the stroke lesion. Third, in both
patients with stroke injury the pattern of interhemispheric
connectivity was also compromised, probably because subcortical
nuclei, which are integration hubs of extrapyramidal systems,
were extensively affected by the lesions. Therefore, producing
connectograms on focused sub-networks with SPIDER-NET
allowed to overcome the difficulty of visualizing the large
number of edges that would be present in the whole-
brain connectograms.

At a visual inspection, DTI-based and CSD-based
sub-network connectograms presented comparable connectivity
patterns, highlighting that valuable information is provided by
both the processing techniques. Furthermore, CSD processing
pipeline yielded to reconstruct denser connectograms, as
expected. Indeed, CSD ability to better deal with the problem
of the crossing fibers when compared to DTI is well-established
(Dell’Acqua et al., 2007). This is in line with differences between
DTI and CSD that were observed in terms of interhemispheric
connections, that were particularly evident for Case 1.

In this study Case 1 and Case 2 were compared with a HC
template obtained with the same method of Blasi et al. (2020).
Although subjects included in the group allowed a good age-
match with Case 1 and 2, SC is dependent on age. Therefore,
defining an even more homogeneous HC template group is
warranted for future studies using SPIDER-NET.

The connectivity patterns of pathological cases with focal
lesions were here chosen for test purposes of a novel tool.

Nonetheless, generating SPIDER-NET connectograms could
be a good general strategy to test the robustness of the
processing pipeline, including the connectivity metrics, further
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FIGURE 4 | Local node degree computed for HCs, Case 1 and Case 2. The X-axis represent the 165 brain parcels, even if only lobe labels are reported (e.g., Fro).
The left hemisphere is represented in the left half of the graph, while the right hemisphere is represented in the right half. Vertical colored stripes represent different
lobes (e.g., the frontal lobe is represented in pink). The same lobe in left and right hemispheres is shown with the same color. Each dot in the graph represents the
local node degree of a brain parcel. The 17 parcels (10% of 165) exhibiting the highest local node degree are represented as red dots. The 17 parcels (10% of 165)
with the lowest local node degree are represented as yellow dots. All the other parcels are represented as blue dots. The SPIDER-NET interactive interface allows to
visualize information about each dot, navigating on them. The right Putamen is highlighted by an arrow.

conditioning (e.g., thresholding or binarization), and global
or local graph indices. As one of the main limitation of
connectomics, so far, is the lack of standardized procedures for
network construction and edge weighting (Campbell and Pike,
2014; Maier-Hein et al., 2017), SPIDER-NET may be applied as
a flexible and easy tool for calibrating connectomics analyses.
Specifically, it could allow to quickly identify expected patterns
of disconnection and to easily highlight major errors if present.
This quality check may offer a benchmark before addressing

less trivial connectivity alterations, as the ones induced by
diffused neurodegeneration, which might be another application
field of SPIDER-NET.

The last step of graph analysis usually involves the
computation of a set of different indices describing network
topology and architecture, and dedicated software packages
are generally employed. Beyond connectograms generation,
SPIDER-NET allows to derive quantitative connectivity metrics,
representing global and local (i.e., node level) network properties
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TABLE 1 | Global graph-based topological properties of the HC template and the two stroke cases. Reported Delta values were computed as (HC-Case)*100/HC.

Graph-based indexes HCs Case 1 HCs-Case1 Delta (%) Case 2 HCs-Case2
Delta (%)

Average degree 77.915 30.582 60.7% 36.606 53.0%

Average strength (W) 3.048 1.233 59.5% 1.396 54.2%

Clustering coefficient 0.76 0.614 19.2% 0.604 20.5%

Clustering coefficient (W) 0.019 0.017 10.5% 0.015 21.1%

Characteristic path length 1.542 2.092 –35.7% 1.927 –25.0%

Characteristic path length (W) 18.302 35.211 –92.4% 28.544 –56.0%

Global efficiency 0.735 0.549 25.3% 0.587 20.1%

Global efficiency (W) 0.068 0.039 42.6% 0.045 33.8%

Small-worldness 1.591 2.881 –81.1% 2.531 –59.1%

Modularity 0.193 0.38 –96.9% 0.351 –81.9%

Coreness statistic 0.321 0.402 –25.2% 0.367 –14.3%

(Rubinov and Sporns, 2010). For instance, characteristic path
length is a global index mirroring communication efficiency
within the network, while clustering coefficient is a global
measure of network segregation. Among the several graph-
based indices, the node degree is a basic local property of a
network node, representing the number of connections with
other nodes. Characterizing node degree distribution is an
important component to identify putative hubs, namely nodes
with high node degree, which significantly impact on the
network topology. The example of application presented in
this study highlighted the impact of graph-based metrics in
connectivity analysis. Both local and global metrics derived
from the whole-brain networks of Case 1 and Case 2 differed
from HC one, as expected (Crofts et al., 2011; Cheng et al.,
2019; Li et al., 2021). This quantitative result mirrored the
differences qualitatively observed with connectograms. Node
degree graphs produced by SPIDER-NET provided an intuitive
tool to interactively explore network local properties. A first
general visual comparison of Case 1, Case 2, and HCs node
degree distribution highlighted that the patients with stroke
injury were characterized by lower node degree across the whole
brain (Sotelo et al., 2020). Therefore, although the two stroke
lesions were limited to a portion of the right hemisphere,
an alteration of the whole connectivity pattern was induced
(Crofts et al., 2011; Cheng et al., 2019). In addition, it is
noteworthy that SPIDER-NET graph-analysis confirmed that
subcortical gray matter regions (e.g., the putamen) presented
high node degrees in HCs, while these brain areas had lower
node degrees in Case 1 and Case 2. This result reflected the
prevalent subcortical expression of the two stroke lesions. Also,
global graph metrics of segregation and integration were derived
with SPIDER-NET, emphasizing the differences between cases
with stroke injury and HCs (e.g., a drop in density of 28.9
and 25.2%, respectively, vs. HCs). Reduced connectivity in
Case 1 and Case 2 compared to HCs was also numerically
paralleled by large differences in all the parameters describing
network topology and architecture. Specifically, patients with
stroke injury were characterized by lower network integration,
segregation, and efficiency. It is remarkable a greater difference
in the characteristic path length (–92.4%, –56%) rather than in
the clustering coefficient (10.5%, 21.1%) between the HCs and
the two cases. The strong effect of the stroke lesion seems to

lead to a much more reduced integration than segregation in
the contralesional emisphere as shown in Crofts et al. (2011).
Furthermore, Case 1 presented larger differences with HCs than
Case 2, mirroring the greater clinical severity of the former.
Therefore, SPIDER-NET automatically and easily provided useful
metrics to quantitatively describe the impairment of the stroke
patients included in this study.

Currently, the major limitation of SPIDER-NET is that it
allows the analysis of one connectivity matrix at a time. The
upload of more than one matrix to extract sub-matrices based
on the user selection will be implemented in future SPIDER-
NET versions. Furthermore, pre-conditioning operations are
currently limited to density thresholding, as this is the most
widespread thresholding method in connectivity studies (Wang
et al., 2009; van Wijk et al., 2010; Beare et al., 2017). However,
at present, other customed approaches can be used prior to
the employment of SPIDER-NET by directly uploading already
processed matrices. SPIDER-NET offers a flexible sub-network
extraction method which relies on a priori hypothesis testing
by manual selection of parcels/group-parcels and attributes.
However, different approaches exist to automatically identify sub-
graphs of interest (Hopcroft and Tarjan, 1973; Zalesky et al.,
2010), especially in cases in which gross brain abnormalities may
not be present. An interesting perspective may be to include
automatic and data-driven algorithms for sub-network extraction
and comparison with hypothesis-driven selection. In future
works, investigating neurological diseases other than stroke
and assessing changes associated with treatments (e.g., drugs
or rehabilitation) is warranted to test SPIDER-NET sensitivity
in detecting brain connectivity changes. Another interesting
application might be the investigation of FC with SPIDER-NET
and the integration of structural and functional information
thanks to the flexibility in extracting sub-networks. In addition,
SPIDER-NET application to brain connectivity matrices derived
with other modalities (e.g., EEG, MEG, NIRS) could be a further
future development. Although SPIDER-NET was presented and
tested in this study for MRI datasets, its broad flexibility would
actually allow applications even in several other diverse contexts,
including all -omics disciplines. For instance, in the framework
of rehabilomics (Wagner and Sowa, 2014), which integrates
evaluation of transdisciplinary biomarkers, SPIDER-NET may
help in the definition of patient-tailored rehabilitative treatments.
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CONCLUSION

In this work, we proposed a new freely available software
package called SPIDER-NET7 and we tested it for deriving
qualitative and quantitative valuable information of brain
connectivity. First, the tool provided a facilitated, interactive,
and real-time visualization of connectograms, based on flexible
investigation of brain sub-networks. In addition, the automatic
computation of topological properties of the networks completed
the assessment with quantitative metrics. In conclusion, SPIDER-
NET proved to be an accessible and useful tool for human
brain connectome investigation in both physiological and
pathological conditions.

DATA AVAILABILITY STATEMENT

The data presented in this study are available on request from the
corresponding author. The MRI data are not publicly available
due to privacy concerns.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by IRCCS Fondazione Don Carlo Gnocchi Ethics

7 https://caditer.dongnocchi.it

Committee. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

DC, GB, and FB contributed to the conception and design
of the study. DC developed SPIDER-NET, performed
the associated analyses, and wrote the first draft of the
manuscript. AP, LP, MC, and ML performed the image
processing to derive connectivity matrices. DC, AP, and
LP drafted the first version of the manuscript. All authors
contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

This work was supported by Lombardy Region (Announcement
POR-FESR 2014–2020—Azione I.1.B.1.3), within the project
named Smart&TouchID and by the Italian Ministry of Health
(“Ricerca Corrente”).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.818385/full#supplementary-material

REFERENCES
Andersson, J. L., Skare, S., and Ashburner, J. (2003). How to Correct Susceptibility

Distortions in Spin-Echo Echo-Planar Images: application to Diffusion
Tensor Imaging. NeuroImage 20, 870–888. doi: 10.1016/S1053-8119(03)00
336-7

Andersson, J. L. R., and Sotiropoulos, S. N. (2016). An Integrated Approach
to Correction for Off-Resonance Effects and Subject Movement in Diffusion
MR Imaging. NeuroImage 125, 1063–1078. doi: 10.1016/j.neuroimage.2015.
10.019

Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew, S., Leiguarda, R., et al.
(2012). State-Dependent Changes of Connectivity Patterns and Functional
Brain Network Topology in Autism Spectrum Disorder. Neuropsychologia 50,
3653–3662. doi: 10.1016/j.neuropsychologia.2012.09.047

Baggio, H. C., Sala-Llonch, R., Segura, B., Marti, M. J., Valldeoriola, F., Compta,
Y., et al. (2014). Functional brain networks and cognitive deficits in Parkinson’s
disease. Hum. brain mapp. 35, 4620–4634. doi: 10.1002/hbm.22499

Bassett, D. S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20,
353–364.

Beare, R., Adamson, C., Bellgrove, M. A., Vilgis, V., Vance, A., Seal, M. L., et al.
(2017). Altered Structural Connectivity in ADHD: a Network Based Analysis.
Brain Imag. Behav. 11, 846–858. doi: 10.1007/s11682-016-9559-9

Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes,
R. G., Clare, S., et al. (2003). Characterization and Propagation of Uncertainty
in Diffusion-Weighted MR Imaging. Magn. Reson. Med. 50, 1077–1088. doi:
10.1002/mrm.10609

Berron, D., van Westen, D., Ossenkoppele, R., Strandberg, O., and Hansson, O.
(2020). Medial temporal lobe connectivity and its associations with cognition
in early Alzheimer’s disease. Brain 143, 1233–1248.

Blasi, V., Alice, P., Cabinio, M., Di Tella, S., Laganà, M. M., Giangiacomo, A.,
et al. (2020). Early Life Adversities and Borderline Intellectual Functioning

Negatively Impact Limbic System Connectivity in Childhood: a Connectomics-
Based Study. Front. Psychiatry 11:497116. doi: 10.3389/fpsyt.2020.497116

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Campbell, J. S. W., and Pike, G. B. (2014). Potential and Limitations of Diffusion
MRI Tractography for the Study of Language. Brain Lang. 131, 65–73. doi:
10.1016/j.bandl.2013.06.007

Cheng, B., Schlemm, E., Schulz, R., Boenstrup, M., Messé, A., Hilgetag, C., et al.
(2019). Altered Topology of Large-Scale Structural Brain Networks in Chronic.
Stroke Brain Commun. 1:fcz020. doi: 10.1093/braincomms/fcz020

Crofts, J. J., Higham, D. J., Bosnell, R., Jbabdi, S., Matthews, P. M., Behrens,
T. E. J., et al. (2011). Network Analysis Detects Changes in the Contralesional
Hemisphere Following Stroke. NeuroImage 54, 161–169. doi: 10.1016/j.
neuroimage.2010.08.032

Daianu, M., Dennis, E. L., Jahanshad, N., Nir, T. M., Toga, A. W., Jack,
C. R., et al. (2013). Alzheimer’s Disease Disrupts Rich Club Organization in
Brain Connectivity Networks.IEEE 10th International Symposium on Biomedical
Imaging. San Francisco: IEEE, 266–269.

Dell’Acqua, F., Rizzo, G., Scifo, P., Clarke, R. A., Scotti, G., and Fazio, F. (2007).
A model-based deconvolution approach to solve fiber crossing in diffusion-
weighted MR imaging. IEEE Trans. Biomed. Eng. 54, 462–472. doi: 10.1109/
TBME.2006.888830

Dell’Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., et al.
(2010). A modified damped Richardson-Lucy algorithm to reduce isotropic
background effects in spherical deconvolution. Neuroimage 49, 1446–1458.
doi: 10.1016/j.neuroimage.2009.09.033

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,
D., et al. (2006). An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Frontiers in Neuroscience | www.frontiersin.org 12 March 2022 | Volume 16 | Article 818385

https://caditer.dongnocchi.it
https://www.frontiersin.org/articles/10.3389/fnins.2022.818385/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.818385/full#supplementary-material
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuropsychologia.2012.09.047
https://doi.org/10.1002/hbm.22499
https://doi.org/10.1007/s11682-016-9559-9
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1002/mrm.10609
https://doi.org/10.3389/fpsyt.2020.497116
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.bandl.2013.06.007
https://doi.org/10.1016/j.bandl.2013.06.007
https://doi.org/10.1093/braincomms/fcz020
https://doi.org/10.1016/j.neuroimage.2010.08.032
https://doi.org/10.1016/j.neuroimage.2010.08.032
https://doi.org/10.1109/TBME.2006.888830
https://doi.org/10.1109/TBME.2006.888830
https://doi.org/10.1016/j.neuroimage.2009.09.033
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-818385 March 12, 2022 Time: 15:9 # 13

Coluzzi et al. SPIDER-NET

Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic
parcellation of human cortical gyri and sulci using standard anatomical
nomenclature. NeuroImage 53, 1–15. doi: 10.1016/j.neuroimage.2010.
06.010

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al.
(2002). Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron 33, 341–355. doi: 10.1016/s0896-
6273(02)00569-x

Gao, S., Mishne, G., and Scheinost, D. (2020). “Poincaré Embedding Reveals
Edge-Based Functional Networks of the Brain” In Medical Image Computing
and Computer Assisted Intervention – MICCAI. L. M. Anne, A. Purang, S.
Danail, M. Diana, A. Z., Maria, Z. S., Kevin, et al., New York: Springer Cham.
448–457.

Göttlich, M., Münte, T. F., Heldmann, M., Kasten, M., Hagenah, J., and Krämer,
U. M. (2013). Altered Resting State Brain Networks in Parkinson’s Disease. PLoS
One 8:e77336. doi: 10.1371/journal.pone.0077336

Hopcroft, J., and Tarjan, R. (1973). Algorithm 447: efficient Algorithms for Graph
Manipulation. Commun. ACM 16, 372–378.

Irimia, A., Chambers, M. C., Torgerson, C. M., and Van Horn, J. D. (2012b).
Circular representation of human cortical networks for subject and population-
level connectomic visualization. NeuroImage 60, 1340–1351. doi: 10.1016/j.
neuroimage.2012.01.107

Irimia, A., Chambers, M., Torgerson, C., Filippou, M., Hovda, D., Alger, J., et al.
(2012a). Patient-Tailored Connectomics Visualization for the Assessment of
White Matter Atrophy in Traumatic Brain Injury. Front. Neurol. 3:10. doi:
10.3389/fneur.2012.00010

Isernia, S., Pirastru, A., Massaro, D., Rovaris, M., Marchetti, A., and Baglio, F.
(2021). Resting-State Functional Brain Connectivity for Human Mentalizing:
biobehavioral Mechanisms of Theory of Mind in Multiple Sclerosis. Soc. Cogn.
Affect. Neurosci. nsab120. [Epub online ahead of print]. doi: 10.1093/scan/
nsab120.

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
Optimization for the Robust and Accurate Linear Registration and Motion
Correction of Brain Images. NeuroImage 17, 825–841. doi: 10.1016/s1053-
8119(02)91132-8

Ji, G. J., Yu, Y., Miao, H. H., Wang, Z. J., Tang, Y. L., and Liao, W. (2017). Decreased
Network Efficiency in Benign Epilepsy with Centrotemporal Spikes. Radiology
283, 186–194. doi: 10.1148/radiol.2016160422

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al.
(2009). Circos: an Information Aesthetic for Comparative Genomics. Genom.
Res. 19, 1639–1645. doi: 10.1101/gr.092759.109

Li, Y., Yu, Z., Wu, P., and Chen, J. (2021). The Disrupted Topological Properties
of Structural Networks Showed Recovery in Ischemic Stroke Patients: a
Longitudinal Design Study. BMC Neurosci. 22:47. doi: 10.1186/s12868-021-
00652-1

Maier-Hein, K. H., Neher, P. F., Houde, J. C., Côté, M. A., Garyfallidis, E., Zhong,
J., et al. (2017). The Challenge of Mapping the Human Connectome Based on
Diffusion Tractography. Nat. Commun. 8:1349.

Nieto-Castanon, A. (2020). Handbook of Functional Connectivity Magnetic
Resonance Imaging Methods in CONN. Stockholm: Hilbert Press.

Pelizzari, L., Laganà, M. M., Di Tella, S., Rossetto, F., Bergsland, N., Nemni, R.,
et al. (2019). Combined Assessment of Diffusion Parameters and Cerebral Blood
Flow Within Basal Ganglia in Early Parkinson’s Disease. Front. Aging Neurosci.
11:134. doi: 10.3389/fnagi.2019.00134

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. NeuroImage 52, 1059–1069. doi: 10.
1016/j.neuroimage.2009.10.003

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al.
(2009). Correspondence of the brain’s functional architecture during activation
and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045. doi: 10.1073/pnas.
0905267106

Sotelo, M. R., Kalinosky, B. T., Goodfriend, K., Hyngstrom, A. S., and Schmit,
B. D. (2020). Indirect Structural Connectivity Identifies Changes in Brain
Networks After Stroke. Brain Connect. 10, 399–410. doi: 10.1089/brain.2019.
0725

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a structural
description of the human brain. PLoS Comput. Biol. 1:e42. doi: 10.1371/journal.
pcbi.0010042

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage 15, 273–289.

van Wijk, B. C., Stam, C. J., and Daffertshofer, A. (2010). Comparing Brain
Networks of Different Size and Connectivity Density Using Graph Theory. PLoS
One 5:e13701. doi: 10.1371/journal.pone.0013701

Wagner, A. K., and Sowa, G. (2014). Rehabilomics Research: a Model for
Translational Rehabilitation and Comparative Effectiveness Rehabilitation
Research. Am. J. Phys. Med. Rehabilit. 93, 913–916. doi: 10.1097/PHM.
0000000000000114

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., et al. (2009).
Parcellation-Dependent Small-World Brain Functional Networks: a Resting-
State FMRI Study. Hum. Brain Mapp. 30, 1511–1523. doi: 10.1002/hbm.20
623

Whitfield-Gabrieli, S., and Nieto-Castanon, A. (2012). Conn: a Functional
Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain
Connect. 2, 125–141. doi: 10.1089/brain.2012.0073

Xia, M., Wang, J., and He, Y. (2013). BrainNet Viewer: a Network Visualization
Tool for Human Brain Connectomics. PLoS One 8:e68910. doi: 10.1371/journal.
pone.0068910

Yeo, B. T., Sepulcre, J. F. M., Sabuncu, M. R., Lashkari, D., Hollinshead,
M., and Buckner, R. L. (2011). The organization of the human cerebral
cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106,
1125–1165.

Zalesky, A., Fornito, A., and Bullmore, E. T. (2010). Network-based statistic:
identifying differences in brain networks. Neuroimage 53, 1197–1207. doi: 10.
1016/j.neuroimage.2010.06.041

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Coluzzi, Pirastru, Pelizzari, Cabinio, Laganà, Baselli and Baglio.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 March 2022 | Volume 16 | Article 818385

https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1371/journal.pone.0077336
https://doi.org/10.1016/j.neuroimage.2012.01.107
https://doi.org/10.1016/j.neuroimage.2012.01.107
https://doi.org/10.3389/fneur.2012.00010
https://doi.org/10.3389/fneur.2012.00010
https://doi.org/10.1093/scan/nsab120.
https://doi.org/10.1093/scan/nsab120.
https://doi.org/10.1016/s1053-8119(02)91132-8
https://doi.org/10.1016/s1053-8119(02)91132-8
https://doi.org/10.1148/radiol.2016160422
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1186/s12868-021-00652-1
https://doi.org/10.1186/s12868-021-00652-1
https://doi.org/10.3389/fnagi.2019.00134
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1089/brain.2019.0725
https://doi.org/10.1089/brain.2019.0725
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1097/PHM.0000000000000114
https://doi.org/10.1097/PHM.0000000000000114
https://doi.org/10.1002/hbm.20623
https://doi.org/10.1002/hbm.20623
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2010.06.041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Development and Testing of SPIDER-NET: An Interactive Tool for Brain Connectogram Visualization, Sub-Network Exploration and Graph Metrics Quantification
	Introduction
	Materials and Methods
	SPIDER-NET Overview
	SPIDER-NET Inputs
	Parcel Selection and Connectogram Generation
	Option 1—Explore From Current Selected Subset
	Option 2—Extract a Subgraph
	Additional Features

	Compute and Visualize Topological Features
	SPIDER-NET Application on Case Studies
	Participants
	Magnetic Resonance Imaging Acquisition and Matrix Construction
	Running SPIDER-NET


	Results
	Connectogram Visualization of the Connectivity Pattern Altered by Stroke Lesions
	Connectograms Visualization for Sub-Network Analysis
	Diffusion Tensor Imaging-Based and Constrained Spherical Deconvolution-Based Connectivity: Visual Comparison

	Local and Global Topological Properties Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


