
fnins-16-824471 April 21, 2022 Time: 11:5 # 1

METHODS
published: 25 April 2022

doi: 10.3389/fnins.2022.824471

Edited by:
Angarai Ganesan Ramakrishnan,

Indian Institute of Science (IISc), India

Reviewed by:
Veeky Baths,

Birla Institute of Technology
and Science, India

Anusha A. S.,
Indian Institute of Science (IISc), India

*Correspondence:
Tao Shen

shentao@kust.edu.cn

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 29 November 2021
Accepted: 17 February 2022

Published: 25 April 2022

Citation:
Yang J, Liu L, Yu H, Ma Z and

Shen T (2022) Multi-Hierarchical
Fusion to Capture the Latent

Invariance for Calibration-Free
Brain-Computer Interfaces.

Front. Neurosci. 16:824471.
doi: 10.3389/fnins.2022.824471

Multi-Hierarchical Fusion to Capture
the Latent Invariance for
Calibration-Free Brain-Computer
Interfaces
Jun Yang, Lintao Liu, Huijuan Yu, Zhengmin Ma and Tao Shen*

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China

Brain-computer interfaces (BCI) based motor imagery (MI) has become a research
hotspot for establishing a flexible communication channel for patients with apoplexy or
degenerative pathologies. Accurate decoding of motor imagery electroencephalography
(MI-EEG) signals, while essential for effective BCI systems, is still challenging due to
the significant noise inherent in the EEG signals and the lack of informative correlation
between the signals and brain activities. The application of deep learning for EEG
feature representation has been rarely investigated, nevertheless bringing improvements
to the performance of motor imagery classification. This paper proposes a deep learning
decoding method based on multi-hierarchical representation fusion (MHRF) on MI-EEG.
It consists of a concurrent framework constructed of bidirectional LSTM (Bi-LSTM) and
convolutional neural network (CNN) to fully capture the contextual correlations of MI-
EEG and the spectral feature. Also, the stacked sparse autoencoder (SSAE) is employed
to concentrate these two domain features into a high-level representation for cross-
session and subject training guidance. The experimental analysis demonstrated the
efficacy and practicality of the proposed approach using a public dataset from BCI
competition IV and a private one collected by our MI task. The proposed approach
can serve as a robust and competitive method to improve inter-session and inter-
subject transferability, adding anticipation and prospective thoughts to the practical
implementation of a calibration-free BCI system.

Keywords: brain-computer interfaces, motor imagery, deep learning, convolutional neural network, bidirectional
long short-term memory

INTRODUCTION

Brain-computer interfaces (BCIs) (Chiarelli et al., 2018; Emami and Chau, 2018; Zhang et al.,
2019) play an essential role as a communication pathway between the human brain and the
external world in the situation where the peripheral pathway nerve is severely damaged by
diseases such as apoplexy or degenerative pathologies. Owing to progress in neuroscience and
computer science in the past decades, BCI has harvested significant developments. Thereby, it
has been regarded as a top interdisciplinary research domain in computational neuroscience and
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intelligence (Gu et al., 2020). Monitoring and decoding
information in electroencephalography (EEG) signals and
converting it into computer commands are the key tasks
of BCI systems. Among the different BCI paradigms, motor
imagery electroencephalography (MI-EEG) (Tang et al., 2016;
Li et al., 2017) has been considered the most flexible method
due to its promising potential in discerning different brain
activities. The process of motor imagery (MI) (Kappes and
Morewedge, 2016) cued by external vision could trigger the
mental simulation, which would involve the event-related
desynchronization (ERD) and event-related synchronization
(ERS) simultaneously in certain rhythms (Tariq et al., 2017)
(µ bands 8–13 Hz and β bands 17–30 hz) of EEG signals at
different areas of the cortex. Various brain activities can be used
to experimentally detect such a phenomenon (Liu et al., 2018).
Electroencephalography is a typical brain activity measuring
method with high time resolution.

Consequently, accurate interpretation of EEG signals from
the user is a key factor of an MI-based BCI system. Despite the
achievement obtained in MI-EEG-based BCI applications, some
bottlenecks still hinder its effectiveness and general applicability.
First, EEG is a non-stationary signal (Gramfort et al., 2013;
Cole and Voytek, 2018) with an exceptionally low signal-to-noise
ratio (Repovs, 2010), preventing accurate interpretation of EEG
signals. Second, due its characteristics and being different from
image data, EEG brings deep learning models’ poor performance
to capture appropriate discriminative features from different
tasks, especially in multiclass tasks (exceed 2 class). Accordingly,
most of the previous works only focused on binary classification,
which impeded the control performance of BCI systems. Third,
high inter-session and inter-subject variability (Clerc et al., 2016)
arise in physiological differences between different periods and
individuals. Inevitably, a time-consuming calibration procedure
for the BCI system was required. It also limited the popularization
of EEG-based BCI.

To address the challenges mentioned above, we propose
a novel multi-hierarchical representation fusion (MHRF)
framework. It can be used as a supplement with perceptive
insights into the relationship between the MI-EEG data and
human intention. A joint deep recurrent neural network (RNN)
is adopted to learn high-level representation from sequential
EEG signals while a CNN is used for learning its spectral image
transformation by short-time Fourier transform (STFT). The
features generated by bidirectional LSTM (Bi-LSTM) and CNN
are fused with the stacked sparse autoencoder (SSAE) to obtain
discriminative features. The main contributions of this article
can be summarized as follows:

This paper proposes a deep learning decoding method based
on MHRF on MI-EEG. It consists of a concurrent framework
constructed of bidirectional LSTM (Bi-LSTM) and CNN to fully
capture the contextual correlations of MI-EEG and the spectral
feature. Also, the SSAE is employed to concentrate these two
domain features into a high-level representation for cross-session
and subject training guidance. Experimental analysis verifies the
validity and practicability of the proposed method by using
public data sets from BCI competitions and private data sets
collected by MI tasks.

RELATED WORKS

As a specific machine learning (ML) algorithm, deep learning
can provide an end-to-end architecture and automatic feature
extraction ability. A deep learning model learns general features
by lower layers and specific features by higher layers from
relevant subjects or sessions. The learned features enable the BCI
to process raw data with competitive performance.

Huang et al. (2020) proposed a classification method of
EEG signals based on multi-scale CNN model, which used
short-time Fourier transform (STFT) to input time-frequency
characteristics of EEG data into a multi-scale CNN model
for EEG classification. Chen et al. (2021) propose an IS-
CBam-CNN, which adaptively extracts the time and frequency
distribution information of MI-EEG signals by introducing an
attention module to improve the robustness of the decoding
model. Lashgari et al. (2021) proposed an end-to-end neural
network based on the attentional mechanism and combined
with different data enhancement techniques to overcome the
problems of low classification accuracy and low data volume in
MI-EEG decoding. Li et al. proposed a multi-dimensional MI-
EEG decoding method based on time-frequency analysis and
Clough-Tocher (CT) interpolation algorithm (Li et al., 2021). Dai
et al. (2020) proposed the classification of HS-CNN for MI-EEG.
The convolutional kernels of the network have different scales,
which can solve the sensitivity of different subjects to the scale
of the convolutional kernels. Zhang et al. (2021) proposed an
EEG-inception architecture based on CNN for mi-EEG decoding,
which uses raw EEG as input and has high accuracy for time
series classification.

However, one part of these studies was focused on binary
classification tasks, while others were mainly working on binary
classification and making an exploratory study for multi-
classification; either insufficiency of the point at the fusion and
utilization of different domain features or inadequate attention
has been paid to individual differences. The fundamental
assumption under the ML methods is that training data can
cover the probability distribution of the feature space used in the
testing applications. However, the assumption is often violated
in bioelectric signal processing fields due to obvious variation
in EEG induced by differences in physiological structure and
psychological states. To compensate for such inter-session and
inter-subject variabilities, a calibration procedure is required.
The calibration inevitably leads to inconvenience for users,
especially for users with disabilities. Thus, cross-session and
subjects transfer learning has been considered an important
research direction to avoid such inconvenience.

Kwon et al. (2020) constructed a large MI-EEG database
and proposed a subject-independent framework underlying
CNN. Kant et al. (2020) proposed using CWT transforms one-
dimensional EEG signals into two-dimensional time-frequency-
amplitude representation enabling us to exploit available deep
networks through transfer learning (Kant et al., 2020). Hu
et al. (2021) proposed the Multi-Feature Fusion Method based
on Wavelength Optimal Spatial Filter and Multiscale Entropy.
The method can combine wavelength features with multiscale
entropy. Yang L. et al. (2021) employ raw multi-channel EEG
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FIGURE 1 | The experimental paradigm. The recording was divided into 4 blocks: (1) 2s with eyes open (looking at a fixation cross on the screen) after a warning
tone, (2) A visual cue of different MI task appeared on the screen for 1.5 s (3) The subjects were asked to carry out the motor imagery task until the cue of MI finished
at t = 6s. (4) A short break followed.

as inputs, to boost decoding accuracy by the channel-projection
mixed-scale convolutional neural network (CP-MixedNet) aided
by amplitude-perturbation data augmentation. Li et al. (2019)
and An et al. (2020) propose a novel two-way few shot network
that is able to efficiently learn how to learn representative features
of unseen subject categories and how to classify them with limited
MI EEG data. Yang L. et al. (2021) propose a discriminative
feature learning strategy to improve the discrimination of
features, which includes the central distance loss (CD-loss),
the central vector shift strategy, and the central vector update
process. Wei X et al. propose a multi-branch deep transfer
network, the Separate-Common-Separate Network (SCSN) based
on splitting the network’s feature extractors for individual
subjects (Wei et al., 1999).

MULTI-HIERARCHICAL
REPRESENTATION FUSION MODEL FOR
SESSION-TO-SESSION MOTOR
IMAGERY TASK

This section describes the collection process for raw EEG signals
and its preserving representation primarily. Also, the proposed
approach is described in detail. We propose the cascade SSAE
framework fusion with the temporal and spectral features in
sequence to exploit a subject-invariant representation from the
adversarial source domain training. Last, the cross-sessions and
subjects training are executed.

Data Acquisition and Its Preserving Form
Our approach is evaluated on our constructed dataset and public
dataset. We collected a dataset with the g.tec portable EEG
Acquisition System (16 electrodes 10-20 system configuration).
This experimental implementation involves six healthy subjects

(SubA- SubF) with a mean age of 25 years being asked to wear
the EEG device and sit in front of a computer screen with
guidance. Four different MI tasks were conducted with a visual
cue measure: left hand, right hand, both feet, and tongue. The
entire experimental paradigm is illustrated in Figure 1. The cue-
based BCI paradigm was composed of three sessions on different
days recorded for each subject. Each session consisted of 6 runs
separated by short breaks. One run was comprised of 48 trials
(12 for each of the four possible classes), yielding a total of 288
trials per session. Both dates were stored at a 250-Hz sample
rate. In addition to our own constructed dataset, a public BCI
competition IV dataset 2a is also employed. The dataset is a 22-
electrode EEG motor-imagery dataset, with nine subjects and two
sessions, each with 288 4-s trials of imagined movements per
subject (movements of the left hand, the right hand, the feet,
and the tongue) (An et al., 2020). The training set consists of the
288 trials of the first session, and the test set consists of the 288
trials of the second session. The detailed data are summarized
in Table 1. An additional 50-Hz notch filter was enabled to
suppress line noise. In this paper, C3, C4, and Cz (Table 1)
channels are selected. EEG measurements are infected with
external and cognitive noises that impede further analysis due to
unwanted effects. Moreover, crosstalk also degrades the MI EEG
data patterns due to interference from neighboring electrodes.
To avoid these effects, in this study the filtering technique is
employed. In the step, EEG signals are band-pass filtered with 7–
30 Hz to retain the (7–14 Hz) and (17–30 Hz) bands as these two
bands have information related to imagine movement.

Overview of the Proposed Approach
Figure 2 illustrates the steps of the proposed multi-hierarchical
discriminative deep learning (MDDL) architecture. The
proposed deep learning model is designed to improve
generalization and robust capability by capturing the invariance
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representation based on MI-EEG data from different sessions.
To obtain useful and informative EEG features, a parallel feature
learning method combining Bi-LSTM with CNN is employed
to tackle the EEG sequence and its 2D transformation by STFT.
Bi-LSTM is conductive to extracting the contextual correlation
of sequential form, while CNN is well benefited for the 2D
time-spectral data representation.

Multi-Hierarchical Representation
Architecture
It was demonstrated by considerable experiments that the four-
class task (left hand, right hand, both feet, and tongue movement)
of MI is highly related to the ERD/ERS phenomenon of the
three channels (C3, C4, and Cz) (Yang et al., 2018). To view the
dynamic dependency and capture multi-hierarchical high-level
representation, we construct a parallel bidirectional long-term
and short-term memory cyclic neural network (BLSTM) and
convolutional neural network, as shown in Figure 3.

Bidirectional Long-Term and Short-Term Memory
Cyclic Neural Network for Dynamic Contextual
Feature Learning
We first propose cascade inter-channel representation and Bi-
LSTM to capture the contextual correlation from either the
sequential point or the dynamic interdependencies of spatial
channels. Recently, an LSTM network gained popularity because
of its capability to learn the long-term dependencies of sequential
information (Salehinejad et al., 2018), which is definitely
beneficial for temporal feature processing. In addition, they can
effectively address the vanishing gradient problem in the series
data (Liang et al., 2020) via temporal shortcut paths. A standard
LSTM block consists of input, forget, and output gates and a
cell activation component. Its gates can inhibit the rest of the
network from modifying the contents of the memory cells for
long-term timesteps.

Taking the fact that LSTM can also process data in the previous
order, bi-directional LSTM was proposed to process data in
both forward and backward directions with two separate hidden
layers (Rui et al., 2017). Owing to these networks theoretically
involving all information of input sequences during computation,
and furthermore each LSTM block’s maintenance of independent
parameters despite its identical input signal. Thus, the use of a
Bi-LSTM network at each time step is conducive to sequence
processing. As shown in Figure 3, LSTM1 only preserves the

TABLE 1 | Properties of raw materials.

Datasets Public Private

D1 D2

Subjects 9 6

Sample rate 250 Hz 250 Hz

Imagery task Left hand, right hand, both
feet, tongue

Left hand, right hand, both
feet, tongue

Sessions 2 3

Trials/session 288 300

correlation of previous EEG signals, while the reversed LSTM2
can preserve the correlation of future EEG signals. Thus, the
LSTM1 and LSTM2 are used to learn the forward and backward
signals to capture correlational (current, previous, and future)
features, especially the channel-to-channel dependency. The Bi-
LSTM is applied to three electrodes signal with each 2 s long
MI-task trial. We borrow learning functions defined in Ortiz-
Echeverri et al. (2019) as follows:

Future:



−→
it = σg(

−→
Wcxt +

−→
Ui
−−→
ht−1 +

−→
bi )

−→
ft = σg(

−→
Wf xt +

−→
Uf
−−→
ht−1 +

−→
bf )

−→ot = σg(
−→
Woxt +

−→
Uo
−−→
ht−1 +

−→
bo )

−→ct =
−→
ft e−→ct−1 +

−→
it eσt(

−→
Wcxt +

−→
Uc
−−→
ht−1 +

−→
bc )

−→
ht = −→ot e σt(

−→ct )

(1)

Previous:



←−
it = σg(

←−
Wixt +

←−
Ui
←−−
ht−1 +

←−
bi )

←−
ft = σg(

←−
Wf xt +

←−
Uf
←−−
ht−1 +

←−
bf )

←−ot = σg(
←−
Woxt +

←−
Uo
←−−
ht−1 +

←−
bo )

←−ct =
←−
ft e←−ct−1 +

←−
it e σt(

←−
Wcxt +

←−
Uc
←−−
ht−1 +

←−
bc )

←−
ht =←−ot e σt(

←−ct )

(2)

Output :
yt=
−→
ht e
←−
ht

(3)

where W, U, and b refer to the weight matrices, recurrent weight
matrices, and bias of different components, respectively. it , ft ,
ot , ct , and ht denote the result of the input gate, forget gate,
cell candidate, output gate, and hidden state at time step t
in sequence. σg and σt represent sigmoid and tanh activation
functions. Moreover, e stands for the Hadamard product.

Convolutional Neural Network for 2D Time-Frequency
Image-Form Learning
Although Bi-LSTM has the advantage of exploring the contextual
(inter-sample and inter-channel) relevance in MI-EEG sequence,
it is unavailable for appropriate decoding spectral (intra-
frequency) representations, regarded as the most direct reflection
of ERS/ERD phenomenon. To exploit discriminating features
from µ and β rhythm, we mapped each MI-task EEG signal
to the 2D time-frequency power form through STFT. Further,
these format dates are fed into pre-designed CNN. STFT was
also applied to the time series for each 2 s long MI-task trial
(totally 500 signal points), with window size set to 40 and time-
lapses set to 4. Considering the importance of the µ-band and
β-band in the four-class MI task, in this paper, we adopt 7–14 Hz
frequency bands to represent the µ-band with two resolution
calculations at each frequency in STFT. Short-time Fourier
transform was employed on the time sequence for each 2-s trial
which is equal to 500 samples. Short-time Fourier transform was
performed with window size corresponding to 50 and time lapses
equal to 5. Starting from sample 1 toward sample 500, STFT is
almost computed for 90 windows over 500 samples. Then we
extracted beta frequency bands from the output spectrum. The
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FIGURE 2 | Schematic overview of the proposed multi-hierarchical discriminative deep learning (MDDL) method.
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FIGURE 3 | Parallel BLSTM and convolutional features fusion architecture. Bidirectional LSTM (Bi-LSTM) and convolutional neural network (CNN) were employed to
learn the different hierarchical representation from raw data, then reconstruct the fusion features through stacked sparse autoencoder (SSAE).
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frequency bands between 7 and 14 and 17–30 were considered to
represent mu and beta bands. The frequency bands are slightly
different than in the literature, but they resulted in a better data
representation in our experiments. Taking the consideration of
the MI effect from mu and beta, the size of the extracted image
for the mu band was reshaped to 90 × 16 where the size of the
extracted image for the beta band was 90 × 14. Accordingly, the
input image formats of three spatial electrodes (C3, Cz, and C4)
for µ and β (17–30 HZ) band are 90 × 90, the square matrix
image matching with CNN appropriately.

In a typical CNN (Ioffe and Szegedy, 2015) process, inputs
are convolved with several multidimensional kernels in the
convolutional layer and subsampled to a smaller size in the
pooling layer. Parameters of CNN are learned through the back-
propagation algorithm, optimizing the classifier. Input data, time,
frequency, and electrode location information of MI-task EEG
are mapped together into a 2D image form in this paper. The
vertical representation (spectral and spatial information) on the
input image plays a more important role than the horizontal
information in the recognition task. Thus, we introduced CNN to
reinforce the function of filtering the horizontal information. The
employed CNN is comprised of six layers: convolutional, pooling,
and fully connected layers, as depicted in Figure 3. The entire
convolutional process is stated in Table 2. The number of filters
in the first and second convolutional later are empirically set to 25
and 50, respectively. The 50 feature maps obtained through the
two convolution layers have a size of 19× 16. Each convolutional
block involves one batch normalization (BN) (Nair and Hinton,
2000) following a rectified linear unit (ReLU) activation (Yang
et al., 2020). At the convolution layer, the input image convolved
to form the k-th filter at a given layer and is defined as:

ai,j = f ((Wk ∗ x)ij + bk) (4)

where Wk and bk represent the weight and the bias item, and f (∗)
denotes the ReLU activation function.

Adversarial Architecture for Invariance
Capturing
In this section, we propose an adversarial architecture for feature
fusion to generate the multi-hierarchical representation of data.
Useful information is extracted during the processes of building
classifiers or other predictors.

Invariant High-Level Feature Construction
First, we introduce unsupervised feature learning, the SSAE
(Figure 4), to further interpret EEG signals (Gogna et al.,
2017). The SSAE is trained in an end-to-end learning manner
to determine the more appropriate model for MI–EEG signals.
Meanwhile, the output of the encoder can also be used as
integrated features for EEG decoding. The data transformation
procedure of SSAE can be defined as:{

H = σ(WenX + ben)
X
′

= σ(Wdeh+ bde)
(5)

where Wen, Wde, ben, and bde indicate the weights and biases
in the encoder and the decoder. h and X

′

denote the hidden

layer and output (reconstruction) layer vector, respectively. In
this study, the input is the combination of two hierarchical
representations. The mean squared error (MSE) is used as the
cost function, and the backpropagation is used to optimize the
weights and biases. Multi-layer representation in deep learning
can yield more general and beneficial features (Ajakan et al.,
2016). We introduce a sample architecture of SSAE with two
SAEs to capture invariance for later adversarial networks.

Domain-Adversarial Networks
Domain-adversarial networks inspired by relevant references
(Zhang et al., 2018; Kwon et al., 2020) are employed to enable
a model with splendid generalizing capability from one domain
to another. Simultaneously, we ensure the internal representation
of the network discriminative information referring to the origin
of the input (source or target) while preserving a low risk on
the source samples. A classifier is constructed for the source
domain, being pre-trained with the different source domain
data and learning to discriminate them. The goal is balancing
between source and task domain discriminator through domain-
adversarial training. Note that it is deemed that the invariance
capturing from different source domains has been achieved
when source domain recognizer confused (maximum domain
cost) accompanied with the task classifier has a satisfactory
discriminative performance (minimum classifier cost).

The proposed domain-adversarial network is illustrated in
Figure 4. The Gm learns a function: X→FD maps EEG samples
into a new D-dimensional feature from multi-hierarchical Bi-
LSTM and CNN. Then GS learns a function: FD

→RD constructs
latent representation from multi-hierarchical features. They are
defined in a matrix-vector form as follows:

F = Gm(X;Wm, bm) (6)

R = Gs(F;Ws, bs) (7)

The prediction of classifier maps a function Gy:RD
→[0,1,2,3],

which is parameterized by:

Gy(Gs(Gm(X));Wy, by) = softmax(WyGs(Gm(X))+ by) (8)

with:

softmax(α) =

 exp(ai)∑|a|
j=1 exp(aj)

|α|
i=1

(9)

Given the labeled source {xi, yi}, the used classification loss is the
negative log-probability of the correct label:

Ly(Gs(Gm(xi)), yi) = log
1

Gs(Gm(xi))yi
(10)

The neural network is trained for the i-th sample, which then
leads to the following optimization problem:

min
Wm,Wy,bm,by

[
1
n

n∑
i=1

Liy(Wm, bm)+ λθ(Ws, bs)

]
(11)
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TABLE 2 | The hyperparameter of the proposed convolutional neural network (CNN).

Layers Input Kernel Stride Output Operation Parameter number

C1 90 × 90 7 × 7 1 × 1 84 × 84 × 25 25@filters Conv2D 1250

P1 84 × 84 − 2 × 3 42 × 28 × 25 2 × 3 Max-pooling −

C2 42 × 28 × 25 5 × 5 1 × 1 38 × 24 × 50 50@filters Conv2D 1300

P2 38 × 24 × 50 − 2 × 4 19 × 6 × 50 2 × 4 Max-pooling −

F1 19 × 6 × 50 − − 5700 flatten −

F2 5700 − − 60 Dense 342060

SSAE
Latant 

representation

Encoder Decoder

SAE1 SAE2

Source domain recognizer

Bi-LSTM

CNN
Classifier

Predition

Fune-tunning

Fune-tunning

FIGURE 4 | The proposed domain-adversarial network architecture for exploiting invariance. Domain discriminant model and class identification model are both
trained based on the reconstructed features. The difference is domain discriminant model try to obtain the invariant features cross-session or cross-subject while
class identification model try to capture the discriminative information for classification.

where θ(Ws, bs) presents an optional regularizer to be
described below.

For a domain classification, Gd, learning a logistic regressor:
RD
→[0,1,. . .,n] that models the probability for a given input

from the source domain (session or subject). Thus:

Gy(Gs(Gm(X));Wd, bd) = sigm(WdGs(Gm(X))+ bd) (12)

Then, the adversarial source domain loss is defined by:

Ld(Gd(ri), di) = di log
1

Gd(ri)
+ (1− di) log

1
1− Gd(ri)

(13)

where ri and di denote the mapping representation for the i-th
EEG samples. In view of a domain adaptation for the entire
training, we added the regularizer term to the global cost as:

θ(Ws, bs)= −
1
n

n∑
i=1

Lid(Ws, bs)−
1
n′

N∑
i=n+1

Lid(Ws, bs) (14)

The optimization objective (11) is rewritten to:

E(Wm,Ws,Wy,Wd, bm, bs, by, bd)
=

1
n
∑n

i=1 L
i
y(Wm, bm)−λ(

1
n
∑n

i=1 L
i
d(Ws, bs)+ 1

n′
∑N

i=n+1 L
i
d(Ws, bs)

) (15)

The optimization problem involves a minimization with respect
to classification parameters, as well as a maximization in
accordance with the source domain discriminating ones:

(
∼
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,
∼

W
y
,
∼

b
m
,
∼

b
y
)
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Wm,Wy,bm,by
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,Wy,
∼

W
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,bm,
∼

b
s
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∼
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d
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(16)
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E(
∼

W
m

,Ws,
∼

W
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,Wd,
∼

b
m

,bs,
∼

b
y
,bd)

(17)

where ∼ represents the optimal parameters. Max-min
optimization explores the latent representation in the
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dynamic balance situation where the task classifier can work
effectively when the domain recognizer makes confusion. It
implies that the proposed framework gains invariance from
different source domains.

EXPERIMENTS

This study mainly adopted inter-session and inter-subject
validation types to compare with the cross-validation baseline.
Cross-sessions validation used one session data as a testing
set and all the rest as a training set. The inter-session
training methodology for MI-based BCI is considered more
challenging about session information transfer, playing an
extremely critical role in developing calibration-free BCI
with generalization and robustness. A similar validation
strategy was also used in the inter-subject validation, leave-
one-subject-out executions. Aiming at the analysis of the
calibration situation, we additionally introduce semi-transfer
validation strategies.

Cross-Validation of Multi-Hierarchical
Representation Fusion
First, we conducted fourfold cross-validation to evaluate
MHRF without a domain-adversarial process (only a classifier
for perdition about task label) as a baseline comparison.
The proposed model was implemented in Python. Table 3
summarizes the accuracy for all sessions and subjects. As shown
in Table 3, all subjects have a good performance in the MI task
except S6 in D2. Among the three sessions in D2, outperforming
session data amid them (bold marks) would be utilized as the
test set in cross-session transfer validation and the remainders as
the training sets.

Session-to-Session Validation
Validation of Transfer Capacity in D1
With the consideration of two sessions in D1 only, lacking
domains, and the purpose of exploring the transfer capacity, we
randomly choose half session 1 data as the testing set and the
remaining one of session 1 and session 2 data as the training
set. Only session 2 is also utilized as the training set. Those were
successively expressed as semi-transfer-test and transfer-test.
Such training strategy was applied to implementation without
and within domain-adversarial (marked as DA) for comparison.
Two sessions’ data were equally divided into four domain
parts for domain-adversarial training. Figure 5A illustrates
the semi-transfer-test results, where the MHRF underlying DA
training maintained outstanding performance compared with
DA training, both in the semi-transfer-test and transfer-test.
Moreover, we found negative transfer evidence in S5 and S8
(obviously degraded performance for the introduction of the
transfer method).

Different Methods on D2
Figure 6 depicts the accuracy boxplots of session-to-session
transfer, consisting of four accuracy boxplots achieved by
different methods through inter-session transfer training strategy

with the outperforming session data as the testing part. FBCSP
and FICA indicate the machine learning methods for a triple
channel EEG signal proposed in Zou et al. (2019). Convolutional
neural network indicates only using the convolution processing
for a 2D time-frequency target MI-EEG transformed by STFT.
As shown in Figure 6, the MHRF outperformed average accuracy
over the other machine learning algorithms. Either the FBCSP
or CNN framework provided a certain comparable performance
in discrimination among different subjects but was incapable of
obtaining enough valuable information for inter-session transfer.

Figure 7 shows the confusion matrix for the four-category
classification, where four similar methods were compared under
the inter-session transfer training strategy. Each cell depicts the
prediction accuracy (upper) and the trial numbers (lower) of
the target predicted as a certain class. The dark blue diagonal
corresponds to correctly predicted trials of the four classes. The
orange value is the overall accuracy. In sequence, the bottom
row and rightmost column represent sensitivity and precision
evaluation indicators. The confusion matrices in Figure 7 show
classification results for four tasks. The MHRF achieved an
8% higher accuracy than the second alternative, revealing its
strong competitiveness in inter-session transfer learning. Note
that relatively high sensitivity and precision in tongue and feet
MI task on FICA and FBCSP indicate the advantages obtained
by FICA and FBCSP in a single-channel analysis due to the
discriminating information of tongue and feet, mainly contained
in the Cz channel. Also, a high score of left- and right-hand MI
on CNN and MHRF (including CNN) indicates the superiority of
the CNN and MHRF in inter-channel processing (C3 and C4).

Subject-To-Subject Validation
In this experiment, we evaluated the classification accuracy on
an inter-subject validation basis. Specifically, one subject from
the dataset in MI-task is used as the test subject, and the
remaining subjects are used as training subjects. Each subject
is assumed to constitute his own domain to gain multiple
source domains. In total, one subject offered 288 samples (near
72 samples/class), and the training set in D1 consisted of
2304 samples from 8 subjects. The test set consisted of 288
samples from the test subject. The plot on the left in Figure 8
presents the testing accuracy of MHRF over training epochs.
The graphs show that MHRF has peaked at 30 epochs with its
alternatives at 50, 38, and 42, respectively, indicating the fast-
converging capacity of the proposed framework. In addition,
the low overall accuracy in inter-subject transfer learning shows
the challenges in individual variability. The plot on the right
in Figure 8 compares the computational time in inter-subject
training and testing. The computational complexity of the MHRF
is the highest among compared models due to its parallel
feature extraction structure and adversarial invariance capturing
pattern. However, training is a one-off operation. For practical
considerations, the inference time during testing is the most
crucial factor. The MHRF runs less than 1 s, similar to other
compared methods.

Two models were compared to explore the calibration process:
One was the trained inter-subject model as the initial pre-
trained model to introduce the target data (testing subject)
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FIGURE 5 | Comparison of transfer capacity among subjects in D2. The black line upper and lower indicate the maximum and minimum deviation value.

FIGURE 6 | The inter-session transfer accuracies applied to five subjects (S1-S5) with four algorithms (FICA, FBCSP, CNN, and MHRF). The brown line Brown lines
indicate the median values and the upper and lower edges of the box indicate the quartiles.
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FIGURE 7 | Confusion matrices for the four methods (FICA, FBCSP, CNN, and MHRF).

FIGURE 8 | Training and its corresponding time consumption plot for leave-one-out executions of the four algorithms on D1.

for calibration, called “pretraining.” The other comparative one
was the direct training with the target data labeled without
pretraining. Figure 9 illustrates the recognition accuracy and
calibration time. On the ground of line and bar plot, the
calibration accuracy of the model with pretraining increased
to about 80% after 100 epochs (near one-third) of target data
learning. In comparison, the model without pretraining only

reached 76% after the entire epoch completion. This suggests
that the pretraining model can serve the target data calibration
more efficiently, obtained using non-homologous data under the
same task. Moreover, in such a way, we can use partial and a
small amount of available data. The computational time for the
calibration process is linearly increased in accordance with the
amount of target data trials.

TABLE 3 | Average accuracy of multi-hierarchical representation fusion (MHRF) in cross-validation.

Subjects D1 D2

Session 1 Session 2 Session 1 Session 2 Session 3

S1 85.6 ± 7.6 82.4 ± 3.0 81.6 ± 4.5 83.6 ± 4.5 84.6 ± 4.5

S2 76.6 ± 8.1 79.6 ± 11.5 70.0 ± 7.3 80.3 ± 6.3 77.3 ± 3.2

S3 81.9 ± 5.7 86.4 ± 8.3 73.4 ± 6.1 81.5 ± 4.3 83.3 ± 10.2

S4 80.3 ± 8.9 81.2 ± 4.5 79.0 ± 7.3 80.3 ± 4.3 76.3 ± 7.2

S5 74.2 ± 7.5 80.6 ± 3.5 83.4 ± 8.1 76.5 ± 4.3 81.3 ± 10.2

S6 78.6 ± 10.2 75.6 ± 6.5 53.0 ± 7.3 43.3 ± 7.3 47.3 ± 5.2

S7 81.6 ± 8.3 77.6 ± 8.2

S8 81.6 ± 3.9 75.6 ± 9.2

S9 83.6 ± 5.5 84.6 ± 5.7

AVG. 80.3 ± 7.14 80.6 ± 6.7 73.4 ± 6.8 74.3 ± 5.2 75.0 ± 6.8

Bold values indicates best result of the subject.
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FIGURE 9 | Training accuracy and calibration time in both modes.

Visualization Analysis of Deep Feature Fusion
The radar plot (Figure 10) was used to visualize the
influences of features from different frameworks (inter-
session and inter-subject) on the final recognition accuracy,
analyzing the fusion features. The radius represents the
influential weights of features after normalization. As shown
in Figure 9, the number of valid features fusion through
SSAE reconstructing from Bi-LSTM and CNN is 13 and 24,
respectively. It reveals that MI recognition is more sensitive to
2D representation from CNN. Another interesting discovery
is the larger coverage area of inter-session on features from
B-LSTM. The opposite appears on another radar plot about
features from CNN. They indicate more dependency of
the invariance capturing on inter-session transfer learning
on features extracting from Bi-LSTM framework, while

simultaneously more reliance of inter-subject one on features
transformed from CNN.

DISCUSSION

The EEG data we employed on cross-session and subject
decoding in the experiments include 6 participants (private data)
and 9 subjects (public data) with 288 and 300 samples from each
subject, respectively (Table 1). The performance of classification
accuracies on them were reported in Table 3, that guaranteeing
the data can provide the task identification characteristics as a
basis in advance.

We have introduced a framework for transfer learning, on
both cross-sessions and subjects, that works through capturing
invariant features and achieving better performance than other
state-of-the-art methods for classification. Furthermore, the
proposed MHRF framework enables us to make a direct
and intuitive assessment on the performance in terms of
classification accuracies. MHRF is a deep learning network
which was inspired by both multi-hierarchical feature fusions.
Specifically, unlike conventional feature fusions, it creates
representation by incorporating a domain adversarial adaptive
part. As shown in Figures 5–7, MDDL maintains robust
on cross-session transfer. First, MHRF outperforms both in
the semi-transfer-test and transfer-test, shown in Figure 5.
Especially with domain-adversarial process, the MHRF may be
more distinguishable along with achieving a 3% higher average
accuracy. Furthermore, also in consideration of cross-session
data, MHRF is outperforming in accuracy (Figure 6) and further
confusion matrix (Figure 7) compared with FBCSP, FICA, and
conventional CNN all around. There was an 8% over higher
percentage than the second alternative method in accuracy.

To compare our MHRF algorithm with other methods more
rigorously in transitivity, we further analyzed its effectiveness

FIGURE 10 | The comparison of feature fusion in radar plot.
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by executing experiments on cross-subjects’ data. Figure 8
shows that the averaged convergence accuracy across all subjects
is 71.7%, 70.0%, 66.7%, and 66.6%, respectively. Meanwhile
Figure 8 shows the comparison of the computational time for
training and testing cross-subjects. MHRF takes more time in
training but performs effectively in testing. Two calibration
pattern comparisons are shown in Figure 9 and we found that
the pretraining model could serve the target data calibration
more efficiently, which guides us to utilize partial and a small
amount of available data for the construction of a highly efficient
subject-to-subject decoding system. Finally, we have explored the
correlation between multi-hierarchical features and cross-data
pattern.

CONCLUSION

This paper proposed a novel MHRF method that attempts
to learn invariant representations from non-stationary EEG
data across different subjects and sessions. Bi-LSTM and CNN
were employed to learn both temporal dynamic-correlation and
spatial-spectral information. We constructed an unsupervised
SSAE trained in an adversarial manner to transform the extracted
features into a domain-invariant subspace representation,
ensuring the generalization of recognition among sessions and
subjects. Some novel training strategies are also introduced,
such as semi-transfer-test and transfer-test. The experiments
on both public and our own constructed datasets show the
feasibility and effectiveness of the proposed MHRF model on

inter-session learning. Further, the proposed model is proved
to have advantages and robustness in inter-subject calibration
with partial and a small amount of available target data. Our
further works will include exploring the domain-discrepancy
reducing strategy.
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