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The field of artificial intelligence has significantly advanced over the past decades, inspired
by discoveries from the fields of biology and neuroscience. The idea of this work is
inspired by the process of self-organization of cortical areas in the human brain from both
afferent and lateral/internal connections. In this work, we develop a brain-inspired neural
model associating Self-Organizing Maps (SOM) and Hebbian learning in the Reentrant
SOM (ReSOM) model. The framework is applied to multimodal classification problems.
Compared to existing methods based on unsupervised learning with post-labeling, the
model enhances the state-of-the-art results. This work also demonstrates the distributed
and scalable nature of the model through both simulation results and hardware execution
on a dedicated FPGA-based platform named SCALP (Self-configurable 3D Cellular
Adaptive Platform). SCALP boards can be interconnected in a modular way to support
the structure of the neural model. Such a unified software and hardware approach
enables the processing to be scaled and allows information from several modalities
to be merged dynamically. The deployment on hardware boards provides performance
results of parallel execution on several devices, with the communication between each
board through dedicated serial links. The proposed unified architecture, composed of the
ReSOM model and the SCALP hardware platform, demonstrates a significant increase
in accuracy thanks to multimodal association, and a good trade-off between latency and
power consumption compared to a centralized GPU implementation.

Keywords: brain-inspired computing, neuromorphic architectures, self-organizing map, Hebbian learning,
multi-modal classification, post-labeled unsupervised learning, FPGA, distributed computing
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1. INTRODUCTION

1.1. Self-Organization as the Main

Brain-Inspired Computational Principle
Nowadays, power consumption is one of the most crucial
bottlenecks in the development of computing technologies. An
important source of that inefficiency is a lack of specialization
of computing systems for solving specific tasks, such as
Artificial Intelligence (AI) problems. The best example of an
effective system for solving equivalent problems is the human
brain. Unlike their electronic counterparts, biological neurons
use direct neural connections organized in a complex three
dimensional structure. The signal of interneuron axons is
transmitted in an extremely specialized manner, saving on
the amount of transmitted information and permitting a high
scalability of the system. This behavior appears completely
different from the usual Von Neumann architecture found in
a CPU. It offers universal computation capabilities but also
has technical and intellectual constraints, mainly because of
the physical separation between memory and computation
units. This observation led us to develop a new computational
paradigm combined with new electronic devices that support
specialized neural models. Both are inspired by the self-
organization property of the cortical areas of the biological brain,
and their ability to learn their structure and function in an
unsupervised manner while simultaneously acquiring data.

Self-organization can be defined as a global order emerging
from local interactions (Heylighen and Gershenson, 2003)
without a global controller or an external supervisor. In
particular, local plasticity is the fundamental computational
paradigm of cortical plasticity which enables self-organization in
the brain, that in its turn enables the emergence of consistent
representations of the world (Varela et al., 1991). In addition to
biological plausibility, locality can be a key insight from the brain
to enable online learning in embedded (and embodied) systems.
In fact, local computing implies locality in time, which satisfies
the real-time constraint of online learning, and locality in space,
which is a direct consequence of the co-localization of memory
and computation that satisfies the energy-efficiency constraint
of on-chip learning. It is therefore a major shift from standard
gradient-descend learning with back-propagation paradigm.
Furthermore, it is unsupervised by nature and contrasts with
supervised learning using labeled data, which is impractical in
most online scenarios.

Therefore, the key inspiration of this work is the functioning
of the cerebral cortex and its impressive self-organizing ability
(Cain et al., 2016). Thanks to this ability, mammals and
many higher animals create neural maps that represent their
environment. Each map stores relevant information that, when
combined, builds a model of the experienced objects and
concepts. These maps can be built by the brain without the need
for explicit data annotation or object labels. This property would
be extremely useful for training on large amounts of data, where
annotating itself becomes a difficult and expensive task. The Self-
Organizing Map (SOM) (Kohonen, 1990) is one of the main
unsupervised neural models based on such principles of cortical
self-organization in the brain. It dynamically adapts to represent

the input data according to its distribution. This article explores
the efficiency of the proposed brain-inspired computing software
and hardware framework based on SOMs with application to the
specific case of multimodal association problems.

1.2. Multimodal Association

Most processes and phenomena in the natural environment are
expressed under different physical guises, which we refer to as
different modalities. Multimodality is often considered as the first
principle for the development of embodied intelligence (Smith
and Gasser, 2005). Indeed, biological systems perceive their
environment through diverse sensory channels: vision, audition,
touch, smell, proprioception, etc. For example, we can recognize
a dog by seeing its picture, hearing its bark or rubbing its fur.
These features are different patterns of energy in our sensory
organs (eyes, ears, and skin) that are represented in specialized
regions of the brain. The fundamental concept is that there is
a redundancy in neural structures (Edelman, 1987), known as
degeneracy, which is defined as the ability of structurally different
biological elements to perform the same function or yield the
same output (Edelman and Gally, 2001). In other words, it means
that any single function in the brain can be carried out by more
than one configuration of neural signals, so that the system still
functions after the loss of one component. It also means that
sensory systems can educate each other, without an external
teacher (Smith and Gasser, 2005).

The same principle can be applied for artificial systems, since
information about the same phenomenon in the environment
can be acquired from various types of sensors: cameras,
microphones, accelerometers, etc. Due to the rich characteristics
of natural phenomena, it is rare that a single modality provides
a complete representation of the phenomenon of interest
(Lahat et al., 2015). Therefore, an important problem in the
development of modern Al systems consists in the aggregation
of data from different sources to obtain a more complete
and homogeneous understanding of the world, known as
multimodal learning. In the brain, the representations built by
different zones of the cortex might complement each other,
for example by direct signal exchange (Cappe et al, 2009).
This complementarity between sensory maps develops and
relies on the self-organization mechanism of lateral synaptic
communication. To simulate this mechanism, we use in this
article Hebb’s learning principle: “neurons that fire together, wire
together” (Hebb, 1949). It suggests reinforcing the connections
between co-activating neurons to capture the co-occurrence of
specific data representations among different modalities caused
by the same phenomenon.

Recent works have tried to study the human brain’s ability
to integrate inputs from multiple modalities (Calvert, 2001;
Kriegstein and Giraud, 2006), and it is not clear how the different
cortical areas connect and communicate with each other. To
answer this question, Edelman proposed the reentry framework
(Edelman, 1982, 1993). Reentry is a process which involves a
population of excitatory neurons that simultaneously stimulates
and is stimulated by another population (Edelman and Gally,
2013). For example, it has been shown that reentrant neuronal
circuits self-organize early during the embryonic development of
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vertebrate brains (Singer, 1990; Shatz, 1992), and can give rise
to patterns of activity with Winner-Take-All (WTA) properties
(Douglas and Martin, 2004). When combined with appropriate
mechanisms for synaptic plasticity, the mutual exchange of
signals amongst neural networks in distributed cortical areas
results in the spatio-temporal integration of patterns of neural
network activity. It allows the brain to categorize sensory inputs,
remember and manipulate mental constructs, and generate
motor commands (Edelman and Gally, 2013). Thus, reentry may
be the key to multimodal integration in the brain. Based on the
reentry paradigm, we have previously proposed the Reentrant
SOM (ReSOM) model (Khacef et al., 2020b), a self-organizing
artificial neural network based on local plasticity mechanisms
for unsupervised learning and multimodal association (Khacef,
2020). In this work, we significantly upgrade it by defining its
behavior for a scalable executing scenario and providing a first
hardware implementation.

1.3. Contributions of the Paper

This work adopts the use of direct connections between SOMs
to simulate the process of self-organization among areas of the
cerebral cortex. This mechanism is proposed to solve basic Al
problems such as clustering, classification, or anomaly detection.
A distinctive feature of our algorithm is its scaling capability and
the ability to train neural connections in the absence of direct
data annotation. The architecture was tested in the presence of
numerous data modalities, and the results of our model surpass
the accuracy of previously published models (Khacef et al., 2020b;
Rathi and Roy, 2021) by several percent, bringing us extremely
close to real-life applications.

The model was implemented in the form of scalable
constructors combining several digital devices (SCALP boards
introduced in Section 4) connected through high-speed serial
links (HSSL). Based on the results of our previous work
(Khacef et al,, 2020b), this article proposes an extension of
the existing framework that enriches it with new tests and
offers an implementation both in software for simulation and in
hardware for real-time prototyping. This contribution presents a
unified software/hardware architecture inspired by cortical self-
organization and thus makes an important step toward embodied
“brain-like” electronic systems. Such a model could be used in
the future by an automated embedded system (robot, drone,
autonomous car, space rover, etc.) to build a representation of its
surrounding environment through multimodal sensors.

1.4. Outline of the Paper

The next section presents an overview of the state of the art
related to the scientific questions addressed in this article. Section
3 describes the ReSOM model for multimodal unsupervised
learning based on local computations. Section 4 gives general
information about the SCALP board used for the hardware
solution. Section 5 describes both software simulations on a
CPU/GPU and the results of hardware deployment on FPGA-
based boards. Section 6 briefly summarizes the tests conducted
and discusses possible paths for future development.

2. STATE OF THE ART

2.1. Brain-Inspired Self-Organizing Neural
Models

As observed in the brain, the product of the self-organization
process is a representation of the stimulus that is feeding this
structural self-organization, joining together the structure and
the function. This ability to extract information from experience
and interaction both with the environment and with others
is observed especially in living systems. In our work we pay
particular attention to analogous self-organizing models with
the goal of reproducing the brain’s unique learning qualities.
Regardless of the nature of the self-organizing model being
considered, it must satisfy several properties that we seek to
achieve for embodied brain-inspired computing:

e Capability of distributed computing (for hardware
implementation and scalability purposes);
e Capability of unsupervised learning;

e Capability of multimodal data processing.

These specific behavioral needs point the way to another form
of unsupervised learning compared to the approaches proposed
in classical Machine Learning (ML). In this review, we do not
go too deeply into the details of either the Auto-Encoders (AE)
or the Semi-Supervised Learning (SSL) or Multi-Agent (MA)
systems, as they involve relatively similar but at the same time
quite distinct problems and restrictions compared to ours. We
also do not try to cover all the existing self-organizing and
unsupervised methods, considering the enormous number of
publications in this domain. So, we mention here only some of
the algorithms that have direct overlap with the unique features
of our framework.

A distinctive feature of our model is the construction of
an explicit data representation map of the objects. It is worth
mentioning that other solutions tackling this issue have been
proposed in the literature, although none of them meet all our
criteria. One of them is the Elastic Map (Gorban and Zinovyev,
2005) method that creates a nonlinear distortion of the observed
space, and another is the Generative Topographic Map (Bishop
et al., 1998) that builds a map based on statistical principles,
without an inspiration from neural systems. Separately, we note
the Neural Gas (NG) model (Fritzke, 1995), which works on
similar principles as the SOM, but allows more freedom in
the neural structure. The NG model on the other hand, lacks
the topological properties inherent in cortical regions, since
its structure depends on the distance of each prototype from
stimuli. This makes it complex to implement based only on
local interactions of neurons, therefore complex to program in
a distributed manner.

Also important in the context of self-organizing systems
are Spiking Neural Networks (SNNs) based on local synaptic
plasticity, such as Spike-Timing Dependant Plasticity (STDP)
(Bichler et al., 2012; Diehl and Cook, 2015; Hazan et al,
2018; Rathi and Roy, 2021). These models exploit the
temporal dynamics and the event-based computing of spiking
neurons. Both SOMs and SNNs show interesting properties
like distributed computing and unsupervised learning. But in
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fact, even though the learning process of the SOM (Kohonen,
1982) and SNN (Diehl and Cook, 2015) can be distributed
with local computing, the competition mechanism for the
emergence of the “winning neuron” is usually implemented using
either a centralized unit or an all-to-all connectivity between
neurons. These two approaches are not scalable in execution
time and connectivity, respectively, as further discussed in Khacef
et al. (2019). In order to overcome this limit, we proposed in
Rodriguez et al. (2018) to distribute the SOM computing based
on the Iterative Grid (IG), a cellular neuromorphic architecture
with local connectivity amongst neighbor neurons. This novel
implementation gives a much better scalability of the SOM in
terms of neurons. The IG is not used in this work, though,
because our objective is to demonstrate the scalability of ReSOM
in terms of SOMs, where every map represents a given modality.

This work is therefore based on the Kohonen’s SOM
(KSOM), which is at a good level of biological abstraction
for our application and has a number of advantages over
the previously mentioned models. Typically, its advantages
include all the previously cited desired properties, including
ease of hardware implementation. Indeed, the presence
of a predefined network structure endowed with a local
neighborhood simplifies its further implementation in
electronic circuits such as FPGA or ASIC. In parallel, it
has been shown that SOMs perform better at representing
overlapping compared to classical clustering
techniques such as partitive clustering or K-means (Budayan
et al, 2009). Recently, we showed that the SOM combined
with transfer learning reaches a competitive accuracy on
complex few-shot learning problems (Khacef et al, 2020a).
In addition, SOMs were directly inspired by work on the
cerebral cortex (Kohonen, 1990), and can hence be potentially
applied in the future for the development of biologically
compatible components.

The KSOM proposed more than thirty years ago (Kohonen,
1991) can serve as the main reference for our work, even
though different adaptations of the original SOM model have
since been proposed. We can distinguish several models offering
some interesting and unique behaviors. The Dynamic Self-
organizing Map (DSOM) (Rougier and Boniface, 2011), for
example, dynamically adapts to changes in the dataset over
time, continuously rebuilding the map structure if needed.
The Growing SOM (GSOM) (Dittenbach et al., 2000) and the
Plastic SOM (PSOM) (Lang and Warwick, 2002) can change
the network structure by adding/deleting neurons during the
learning process. So it becomes possible to dynamically adapt
the size of the network to the data structure, but at the cost of
a more expensive learning process. The C(ellular) SOM model
(CSOM) (Girau and Upegui, 2019) also offers gains in accuracy
and energy consumption, using a simplified grid to enhance its
hardware implementation. The Pruning Cellular Self-Organizing
Maps (PCSOM) model (Upegui et al., 2018) prunes some
SOM connections to gain better performance. Furthermore,
certain models such as the Semi-Supervised SOM propose to
aggregate mixed supervised and unsupervised data to achieve
better representations with the help of known labels (Braga et al.,
2020).

structures

Despite these possible extensions of the model, this work
refers to the original KSOM version. This model is sufficient to
prove the concepts addressed in this article. Moreover, we have
shown that the standard KSOM method gives a better accuracy
in classification tasks using post-labeled unsupervised learning
(Khacef et al., 2019). Nevertheless, this choice does not exclude
the possibility of using the unified framework proposed here with
other versions of self-organizing cortex-inspired maps in future
studies, depending on the problems being addressed.

2.2. Brain-Inspired Multimodal Frameworks
Multimodal interaction is another key aspect of this article.
Taking into account the fact that each SOM is associated with the
data of one modality, it can be assumed that each neural map
acts as a region of the cerebral cortex. Our model uses Hebbian
connections (Hebb, 1949) to transfer activity signals between
two of these maps. By behaving in this way, the cortex is able
to correct the weakness of one modality region using another.
The proposed framework tries to achieve the same behavior,
simulating the interaction among cortical zones of the human
brain. The relevance of such a method is confirmed by studies
in cognition that show the similarity of this training method to
the developmental learning observed in children in the first years
of life (Althaus and Mareschal, 2013). But to our knowledge, no
computational model of this cognitive scheme has been proposed
before. And moreover, no electronic version has been designed.
The only work tackling this goal is ReSOM, a model proposed
in Khacef et al. (2020b) on which this article is largely based.
Specifically, this work is an extension of the ReSOM, keeping its
general principles, but adding new features for scalability and a
hardware implementation, as explained in the following.

A considerable number of previous works have been devoted
to analyses of the interactions between self-organizing maps
for the purpose of studying their communication (Lefort et al.,
2010; Morse et al., 2010; Lallee and Dominey, 2013; Escobar-
Juédrez et al., 2016). Furthermore, most such studies have already
tested the aggregation of several modalities, but with important
differences from this work. In particular, the models were
used to solve other problems, for example the ones found in
developmental robotics (orientation of robots in space, sensory-
motor coordination, etc.), and not the clustering problem
targeted in this article. Also, the connection configurations were
quite different and included an extra region for the modalities,
resembling the so called Convergence-Divergence Zone (CDZ)
(Lallee and Dominey, 2013). A distinctive feature of the CDZ-
based method is the use of an additional map to connect all
the SOMs together to combine their activities. The present work
follows another paradigm and explores the retracing of direct
reentry links between several neural maps, making it applicable
to another type of AI problem (such as the clustering problem).
Some authors propose a solution to the clustering problem
(Jayaratne et al., 2021), but with a focus on the field of big data
computing with map-reduction (map-reduce) approach. It uses
the Apache Spark (Zaharia et al., 2016) framework and moves
away from a biological inspiration.

Several other works in the literature have proposed to combine
multimodal data without the direct use of self-organizing
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mechanisms. These include the following: Cholet et al. (2019)
proposed to use the Bidirectional Associative Memory; Parisi
et al. (2017) proposed hierarchical architecture with Growing
When Required (GWR) networks, where action-word mappings
are developed by binding co-occurring audiovisual inputs using
bidirectional inter-layer connectivity; Nakamura et al. (2011)
proposed to use a joint probability with the Latent Dirichlet
allocation model; and Vasco et al. (2020) proposed to enforce
the classification by taking the Variational Encodings as a part of
their framework. All these methods offer different points of view
on the question of the representation of information in AI They
provide neither a midterm global framework which cognition
tasks could rely on, nor an obvious short-term advantage over
the model studied here. But we will monitor their evolution as
possible competing models to our framework.

There is also a huge research area investigating multimodal
encoders based on conventional neural networks. They achieve
state-of-the-art results for solving particular machine learning
problems. It is practically impossible to analyze all of them, but
a significant number of them, at one step or another, use the
classical concatenation of multimodal vectors (Chen et al., 2020;
Xie et al., 2020; Bendre et al., 2021), without a deep examination
of unique dependencies between them. Nevertheless, there are
other models proposing smarter modality aggregation, such as
the Contrastive Multimodal Fusion method (Liu et al., 2021),
showing there is growing interest in the ML community for
nontrivial multimodal fusion. However, they are still far from
implementation in electronic circuits, especially for computation
on separate and scalable electronic devices, as is proposed in
this work.

Each method mentioned in this section may be placed in an
overall compromise between performance and energy efficiency.
It should be remembered that the energy cost of machine learning
methods comes much more from the learning phase than from
the inference phase (Brownlee et al., 2021). This aspect is often
overlooked in even the most recent neural accelerators. Taking
this issue into account from both a software and a hardware point
of view is therefore essential for the more general deployment of
Al in the future.

2.3. Neuromorphic Architectures

Neural networks implementations in the form of hardware
architectures have gained an increased interest in recent years.
The recent works around the Deep neural networks for pattern
recognition have put a spotlight on neuromorphic engineering
and some proposed architectures, like Paindavoine et al. (2015) or
Pham et al. (2012) have demonstrated the computation efficiency
of neuromorphic systems in terms of energy consumption. More
generally, neuromorphic engineering aims to emulate as many
neurons and synapses as possible with dedicated architectures
in digital circuits as Schuman et al. (2015) or analog systems
as Indiveri and Horiuchi (2011).

Leading projects in neuromorphic engineering have led
to the creation of powerful brain-inspired chips capable of
emulating multiple spiking neurons to investigate a new type of
computing architecture to aid neuroscientists’ research or pave
the way for efficient embedded AI. For example, as part of

the DARPA’s SyNAPSE project roadmap, the IBM’s TrueNorth
neuromorphic chip (Cassidy et al.,, 2013; Merolla et al., 2014)
can implement 1 million digital neurons. The ThrueNorth chip
implements a very rich neural model, capable of reproducing
many behaviors observed in biological neurons. As part of the
European Human Brain Project, the SpiNNAker (Jin et al., 2010)
project aims to model a billion biological real-time impulse
neurons using a million ARM968 cores. More recently, Intel’s
Loihi neuromorphic chip (Davies et al., 2018) implements 130K
Leaky Integrate and Fire (LIF) neurons and 130M synapses
capable of online learning and inference. Its successor Loihi2
(Orchard et al.,, 2021) reaches 1 M neurons and introduces
a more flexible microcode programmable neural engine that
allows simulation of a wide range of different neural models.
Though technologically impressive, these chips are designed
for neural network simulation, not for the self-organization
of hardware resources and are not intended to be used for
SOMs models.

Self-organizing neural networks have also received their
share of interest and several works have been published on
the subject of dedicated SOM hardware architectures. As
SOMs can be computational expensive if implemented in a
straightforward manner a lot of efforts have been invested
to propose efficient dedicated hardware SOM architectures.
Most of the existing works focus on optimizing the time
and power performances by modifying the KSOM algorithm
to new “hardware-friendly” variants, less expensive in term
of hardware resources such as logic and memory elements.
Simplification of numerical representation (fixed point instead of
float point) and/or redefinition of functions (Manhattan distance
instead of Euclidean) are common optimization techniques
aiming to optimize performance incurring in the cost of
loosing algorithm accuracy (Peina et al, 2006; Younis et al,
2009; Brassai, 2014; de Abreu de Sousa and Del-Moral-
Hernandez, 2017a,b). More original vector codings have been
proposed by Hikawa (2005) which proposes to encode the
vector components as the duty cycle of square waveforms
and to use Digital Phase-Locked Loops (DPLL) as parallel
computing elements to measure and update the distances
between vectors.

Other approaches focus on learning performance (expressed
in millons of connection updates per second—MCUPS—
per watt consumption). Lachmair et al. (2013) propose a bus-
interconnected multi-FPGA hardware SOM that allows the
implementation of large reconfigurable networks. Abady et al.
propose a layered description of the HW SOM (Abadi et al,
2016, 2018) where the computational neurons are decoupled
from the communication that is implemented with a NoC. The
same idea is exploited in Jovanovi¢ et al. (2018) and Jovanovi¢
et al. (2020) in a more hierarchical manner as the interconnected
computational cells no longer implement neurons but clusters
of neurons. Each cluster computes a local winner and the global
winner is computed through the NoC in a systolic way.

This interest is well-intended as efficient hardware
architectures for self-organizing models will enable their
application to autonomous and embedded systems, where
unsupervised on-line learning is of first importance. Nonetheless,
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there is no dedicated SOM architecture in the literature offering
the flexibility required for direct multimodal SOM functioning.

3. REENTRANT SOM, A BRAIN-INSPIRED
MODEL FOR MULTIMODAL
UNSUPERVISED LEARNING

In this section, we describe the neural model, which enables
the fusion of multiple modalities in a scalable and unsupervised
manner. The model is an extension of the previously published
ReSOM model (Khacef et al., 2020b) that only considered two
modalities. Therefore, we start this section by defining the
principles behind the KSOM, next we briefly discuss the training
of intermodal (Hebbian) connections, and finally we put all these
elements together to develop our neural framework for reentry
multimodal interaction. This framework acts as an unsupervised
method of clustering high-dimensional data that can then be used
to solve several kinds of machine learning tasks. We finish this
section with an application of the advanced ReSOM model to the
specific case of classification tasks with numerous data sources.

3.1. Kohonen’s Self-Organizing Map

The model used here (Kohonen, 1991) is a neural network
consisting of a rectangular 2D grid of neurons. Each neuron is
endowed with a weight vector with the same dimension as the
processed data. The neural network training process consists of
the following stages:

e 0. Read a vector of multidimensional data.

e 1. Identify the closest neuron to the current input in the grid by
computing and comparing L2 distance. In the following, this
neuron will be called Best Matching Unit (BMU).

e 2. Train the network by changing the weights of the BMU
and its neighbors in the direction of the data vector by the
following formula

wa(t + 1) = wy(t) + €(t) X ho(t,n,5) X (v —wy(t)) (1)

where:
_ llpn=ps|®
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FIGURE 1 | Example of self-organization of SOMs on the MNIST dataset. The
SOM neuron weights are drawn on the image (reshaped to the form of image,
to be visually clearer). On the left—only original weights, on the right—with
some clusters selected.

As a result, the grid of neurons forms a 2D representation of
a real data space. Here, each neuron represents a group (or a
class) of the previously shown objects, by being itself a typical
(more precisely—averaged) data vector. Further division of the
space of the representation neurons into known classes occurs, if
necessary, when analyzing the associated labels. So, for example,
the number 4 can be clearly represented as a closed and open
figure (both in printing and writing styles). The drawing of clear
boundaries between clusters is carried out in the next steps of the
algorithm. But, for example in the simple MNIST case, as shown
in Figure 1, the regions corresponding to the clusters attached to
each number (“0,” “1,” etc.) can already be clearly observed.

3.2. Hebbian Connections

To model the interaction between the zones of the cortex, in
this work it is proposed to use the model of pairwise connections
between SOM maps. Each pair of neurons belonging to different
SOMs is connected with a specific lateral synapse (as in Figure 2).
During simulations, the weights of the connections between two
maps are stored in a full-size matrix, with dimensions d? x d3,
where d; and d, are the widths of each map.

The Hebbian learning is conducted after that of individual
SOMs. The Hebb principle is used to train the lateral weights.
So the neural connection between two BMUs, with indices (x and
y), belonging to different neural maps is strengthened according
to the following law

-/ /
W'smu,.smu, = Wsmu,.eMu, + i X @ x @, (5)

where p is a hyperparameter and a° is the maximal activation
function coming from a SOM with index s (activation of
th BMU):

A —will

—1
a’ = maxe a (6)

Activations are counted and used for all existing vectors v, where
s is the modality index. Thus, this operation must be repeated for
all pairs of data samples representing different modalities.
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Modality 1

FIGURE 2 | Schematic Hebbian connections for one neuron of a sensory map connected to another sensory map.

Modality 2

@ - %
SOM SOM
g SOM @

FIGURE 3 | The ReSOM framework scheme with four modalities. Each double
arrow corresponds to the Hebb weights between SOMs, and all are trained
independently of each other.

3.3. ReSOM Structure and Learning

In order to scale the framework and be able to process more than
two modalities, it is proposed in this work to:

e 1.1. Create the number of SOMs required to process all
modalities (one map per modality).

e 1.2. Create the matrix of Hebbian weights for all pairwise
compositions of all available SOMs (create @ Hebbiab
connections for k maps). In Figure3, an example of
interaction between 4 modalities is depicted.

e 2. Train each SOM separately.

e 3. Using the received SOM activations, train all the @

intermodal connections independently.

Thus, after training, we get a network of matrices representing
the SOMs themselves and the connections between them, as in
Figure 3.

3.4. Application of ReSOM to Classification
Tasks

In order to make a quantitative analysis of our proposed model,
we must use a quality metric of the resulting space clustering.
To do that, we apply our framework to three subsets of data:
a training set used for unsupervised learning composed of
multimodal unlabeled data; a small annotated dataset used
to attribute labels to neurons; and a testing set used for the
validation and the evaluation of the clustering. This specific
validation process leads at the end to the evaluation of a single
metric corresponding to the accuracy of classification. That also
means that this application consists in mapping the continuous
space representation onto the discrete label space by assigning
some class labels to the representation neurons. To do this, we
use a certain amount of labeled data.

In fact, for any classification task based on unsupervised
learning where the results need to be communicated in the so-
called discrete label space, we need to find a method of attributing
the identified clusters to existing labels. Different methods may be
used to solve this problem, such as having an external expert who
manually labels the obtained representations, or an automated
process based on some labeled data. We use the latter approach,
trying to minimize the number of required labels. The labeled
data space should be large enough to represent all possible
patterns of the available data. In practice, our results showed that
only 1% of data for the MNIST dataset and 10% for the SMNIST
dataset is enough to reach the best quality of classification
(Khacef et al., 2020b). To have a uniform structure this work uses
about 10% of labels for all the data modalities (precise numbers
are given in Section 5). In the following sections, we discuss
further the processes of labeling the neurons and testing and
assessing the quality of a trained model.

Lastly, it should be noted that the problem addressed by
our framework does not correspond to a typical SSL problem,
since the existing labels are available (or provided) only after the
training. So we consider a special type of SSL problem, called in
the literature the Post-Labeled Unsupervised Learning problem
(Khacef et al., 2020a,c).
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3.4.1. Multimodal Labeling

The first step is the labeling process. In this work the objective is
to deal with numerous modalities of data. The method is based
on calculating the probability for each neuron to be assigned to
a class. This probability is calculated as the sum of the neuron
activations over all available annotated data for each separate
label (as in Equation 7 below, for a SOM with index j and a
neuron with index s). For each neuron, its activation consists
of its afferent activity added to the activations coming from the
lateral connections (Equation 8, where W are the weights of the
lateral connections).

> label=i As

PG, s, label = i) = (7)
label=any AS
) . L L
A‘é = Clla]s + Z szal . s] (8)
for 1 #j
The coeflicients cll’j and cgj are model installation’s

hyperparameters, which may have values from 0 to 1. They set
the relative importance of each modality during the labeling
process, so these parameters may define a chosen labeling mode:

o If &/ = 0 for all I and j, the mode is unimodal labeling.
Here we label only using the individual SOM activation. This
method was generally used in this work, as it is the simplest
one;

o If cgj = 0 for some / and j, the mode is mixed labeling. Here we
label the neurons using their individual activations and some
of the lateral activations;

o If c’l = 0 for all j, the mode is divergence labeling. Here
we label the neurons of one SOM using the activations of
the other modalities. For example we can label the audio
modality using the data of the visual one. Previous studies
have demonstrated that using this method we can reduce both
the required quantity of annotated data and the number of
annotated modalities without a loss in performance (Khacef
et al., 2020b). In this article we do not explore this possibility,
since optimizing the labeling is not the focus of this study;

e Other configurations may be used, but we do not discuss them
all in this work.

3.4.2. ReSOM Testing and Accuracy Evaluation

Next, we discuss the method for testing the trained model. In
the process of class prediction, we count the activations slightly
differently than we do in the neuron labeling process. Here, the
final ReSOM activation of each neuron consists of the product
of its afferent activation and all the activations coming from the
lateral SOMs, according to Equation (9).

Ao=d x]d W (9)
I#]

jmax»smax = arg maXAJs (10)

)s

Next, we find the neurons, s,;4x, with the maximum activations
among all the SOMs with index j using Equation (10). We
propose to calculate the maximum activation among all available
neurons of all available SOMs to choose the winning neuron
(which gives the final prediction).

To evaluate the model we need to predict labels for all the
test samples. The class of the selected neuron is compared with
the ground truth. The accuracy is computed as the proportion
of all the correctly predicted labels over the total number of
test samples.

4. SCALP: SELF-CONFIGURABLE 3D
CELLULAR ADAPTIVE PLATFORM

Network-on-chip is a natural evolution of the increasing
complexity of system-on-chip architectures. In order to cope
with prototyping requirements of such complex systems we have
built a 3D multi-FPGA platform called SCALP (Vannel et al,
2018). SCALP is intended to provide flexible reconfigurability
and 3D interconnectivity of its basic computation nodes. Each
node is a PCB (printed circuit board) mainly containing an FPGA
and HSSL-based connections that allow it to connect to its six
neighbors (north, south, west, east, top, bottom). Figure 4 shows
an array of 3 x 3 x 3 interconnected SCALP nodes.

Each SCALP node has a size of 10 x 10 cm and is implemented
in a 12-layer PCB. Programs are executed by a Xilinx Zynq SoC
(with a dual-core ARM Cortex-A9 processor @866 MHz and
Artix-7 programmable logic with 74,000 cells), with its associated
memory and enhanced communication capabilities permitting
connections to neighbor modules through the HSSL with data
rates up to 6.25 Gb/s.

A layered hardware/software architecture enables applications
to be deployed on SCALP in a seamless manner. The ARM
Cortex-A9 runs a Petalinux OS allowing users to write
applications in C, C++, or Python. A set of libraries and drivers
enables the use of services deployed on the FPGA. These services
may be hardware accelerators or specific interfaces. In the case
of the work presented in this article, they will permit access to
the router built on the FPGA. Figure 5 depicts the SCALP node
internal architecture in the case of a 2D SCALP array (a third
dimension is also supported). It is composed of two main layers,
routing, and computation:

e The routing layer includes the equivalent of routing + link +
physical layers in the OSI model, it guarantees link integrity
between two neighbor nodes, and can redirect packets to
neighbors in order to permit remote node communications
without using intermediate computation nodes. A set of
crossbar switches included in the FPGA supports the
packet transmission.

e The computation layer is mainly composed of the processor
running the application, its memory, and a Direct Memory
Access (DMA) channel. The processor is in charge of handling
application data in its local DDR memory and configuring
DMA transfers for sending data to the routing layer. The
interface between the router and the DMA is the same
as the one between neighbor routers, built as an AXI

Frontiers in Neuroscience | www.frontiersin.org

March 2022 | Volume 16 | Article 825879


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Muliukov et al.

Brain-Inspired Unified Scalable Architecture

FIGURE 4 | Array of 27 interconnected SCALP nodes.

FIGURE 5 | SCALP node internal architecture for a 2D array.

stream interface. This uniform standard interface ensures the
scalability of the system, in order to allow it to evolve to
eventually add heterogeneous computation nodes.

SCALP is thus an excellent candidate for implementing ReSOM
because its inherent cellular architecture permits a scalable
deployment, given the distributed computing paradigm and
the lack of hardware inter-dependency between nodes. Each
of the SOM modalities can evolve in an independent SCALP
board that adapts resources to its own computation needs. The
communication is made transparent whatever the location of the
connected maps, either local neighbor, or remote. The correlation
between SOMs can thus be performed in a distributed and
potentially asynchronous manner.

5. RESULTS

5.1. Experiments and Results

5.1.1. ReSOM Framework and Dataset Description
To test the model, a Python-based framework was implemented
using the PyTorch library (Paszke et al., 2019) to speed up
matrix calculations. Some simple datasets are used for the tests,
such as the MNIST (LeCun and Cortes, 2010) and Spoken-
MNIST (SMNIST) datasets. The SMINST dataset is a subsample
of Speech Commands (Warden, 2018) reduced to pronounced
numbers from 0 to 9. The numbers were transformed to the Mel
Frequence Cepstral Coefficients. The final version of the joint
dataset in this configuration for two modalities was presented in
a previous work (Khacef et al., 2020d).
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TABLE 1 | Characteristics of the datasets used in the study.

TABLE 2 | Accuracy comparison of different methods processing two modalities.

Dataset Vector size Unique Unique test
training objects
objects

Datasets table

MNIST (LeCun and Cortes, 2010) 28 x 28 60,000 10,000

Spoken MNIST (Warden, 2018) 39 x 13 34,801 4,107

Fashion MNIST (Xiao et al., 2017) 28 x 28 60,000 10,000

Hand signs (Mavi, 2021) 28 x 28 1,531 515

(reshaped
from 64 x 64)

The Fashion MNIST dataset (Xiao et al., 2017), representing
images of different clothes, and the hand signs dataset (Mavi,
2021), representing numbers shown by hands, were used as the
third and fourth modalities. Even if F-MNIST does not represent
the same type of information as other considered datasets, it
is one of the simplest datasets in the literature and it uses the
same format as MNIST (10 classes and 28 x 28 images). It
is assumed that each of the objects present in this dataset is
arbitrarily associated to a specific class number between 0 and 9.
More information about the dataset size can be found in Table 1.

All the datasets have been subsampled or oversampled (if
needed) to have the same number of training/test vectors
(60,000/10,000), but the data vector size is left unchanged. All the
vectors have sizes comprised between 100 and 2,000 depending
on the dataset used. We applied our labeling algorithm on a
part of 5,000 training data vectors (about 8% of data were
labeled). The ReSOM simulation code is available to the public
at Muliukov (2021).

5.1.2. Preliminary Tests of ReSOM With Two
Modalities

Due to the use of a new framework that accelerates matrix
calculations, it was decided to return to the problem of two
modalities, previously resolved with ReSOM. We check if the
model improves with a wider search for the hyperparameters,
keeping the old sizes of the SOMs (10 x 10 and 16 x 16 for MNIST
and SMNIST, respectively). This time instead of a hard grid for
such parameters as o and €, an advanced algorithm “Optuna’
(Akiba et al., 2019) was used to optimize their values. Note that
the search for hyperparameters can take a quite significant time
(depending on using machines, code’s quality, etc.), which wasn’t
evaluated in this work. Nevertheless, a few dozen runs are enough
to find adequate (albeit not the best) hyperparameters.

As can be seen in Table 2, the accuracy results of the previous
similar work (95.1%) have been achieved and even surpassed
(with 96.6%). Notice that our model has used the datasets in a
raw form, without any feature extractor, which might radically
enhance the quality of the vectors representing the data. The
addition of feature extractors as input of the neural maps
increases the algorithm’s accuracy, as we showed in Khacef et al.
(2020a,c).

Test name Accuracy (%)
Unimodal

MNIST (STDP SOM; Rathi and Roy, 2021) 93.2
TI46 (stream audio) (STDP SOM; Rathi and Roy, 2021) 96.0
MNIST (Convolutional clustering unsupervised, 3,000 objects for labeling; 98.6
Dundar et al., 2016)

MNIST (Deep Semi-supervised SOM, 10% of labels; Braga et al., 2020) 97.4
MNIST (Unsupervised STDP; Diehl and Cook, 2015) 95.0
MNIST (SOM—10 x 10, this work) 88.4
Spoken-MNIST or SMNIST (SOM—16 x 16, this work) 77.0
Two modalities

MNIST+TI46 (audio) (STDP Multimodal SOM; Rathi and Roy, 2021) 98.0
MNIST+SMNIST (ReSOM; Khacef et al., 2020b) 95.1
MNIST+SMNIST (ReSOM—this work) 96.1
MNIST+SMNIST (ReSOM + optuna—this work) 96.6

TABLE 3 | Comparison of accuracy up to 4x modalities with the ReSOM
architecture.

Test name Accuracy (%)

Conducted tests

MNIST SOM (10 x 10) 88.4
Spoken-MNIST (16 x 16) 77.0
Fashion MNIST SOM (10 x 10) 78.47
Gests SOM (16 x 16) 55.63
MNIST+SMNIST 96.6
MNIST+SMNIST+FMNIST 99.0
MNIST+SMNIST+Gests 97.2
MNIST+SMNIST+FMNIST+Gests 98.36

Bold value indicates better accuracy.

5.1.3. Tests of ReSOM Scalability to More Modalities
The following tests presented in Table3 show the model’s
scalability. We conducted tests of ReSOM with up to four
modalities by adding the Fashion MNIST database (FMNIST)
and a hand gesture database (denoted “Gests” in the following).
It can be seen that the addition of new modalities can
significantly increase the accuracy (up to the 99% in our
tests). The best performance was achieved after optimizing the
hyperparameters, details of which are available in a table in the
article’s additional materials.

A deeper analysis may be done by analyzing the confusion
matrices of each neural map (Figure 6). The use of the more
modalities means each one helps to compensate for some
of the mistakes of others. As an example let’s look at the
prediction accuracy for the number “9.” The prediction accuracy
of “MNIST + SMNIST” (Figure 6E) is relatively low (92%). But
it reaches close to 99% (Figure 6F) using the extra capacities
of FMNIST (Figure 6D), a modality which is quite good at
predicting the number “9.” At the same time, adding the
“Gests” modality (Figure 6C) was not as useful (Figure 6G—
96%), possibly because of its lower accuracy in predicting “9”
compared to the FMNIST modality.

Also we note that having greater number of modalities may
even decrease the result (Figure 6H), either because of the
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addition of incompatible information (for lack of an adequate
database) or due to the complexity of searching for the optimal
hyperparameters of the model.

5.1.4. Connection Importance and Pruning

Reducing the number of values in the matrix can be extremely
useful both for speeding up calculations and for reducing energy
consumption in future implementations of the system. So next,
we analyze the level of sparseness of the connections obtained
and its influence on the resulting accuracy. The first thing to
look at is the number of unused connections (i.e., those with zero
weight). The fraction of such connections is quite large, as can be
observed in Figure 7A, which shows the evolution of the number
of nonzero connections during the training process.

We can observe some differences in the density of connections
depending on the SOMs to be linked together. For example,
the difference in the number of connections about of 1.3 times
between the most linked pair of SMINST and Gests database
(“1-27), and the less linked pair of MNIST and FMNIST
(“0-3”). The difference in connectivity may, for example, be
determined by the complexity of the represented modalities,
which, in turn, may influence the frequency of activation of
various neurons.

Also, we can observe that the training has still not
reached a plateau—therefore, the limit of the created
connections can be much higher than the 30% shown
in Figure7A. Thus, we can suppose that many more
neurons may become connected over time. This level of
sparsity makes storing the matrix in a compressed format
not profitable and quite unjustified. But we still wish to
avoid the unnecessary memory usage, so we explore how
strongly we can increase the matrix sparsity without a decrease
in accuracy.

In fact, not all of the combinations have the same weight,
so the influence of some might be much less than others.
This leads us to the idea of cutting the weakest connections,
that is, those attached to the smallest weight values. To
search for the optimal threshold we track the influence of
the number of smallest weights on the model’s accuracy,
equating to zero a certain percentage of the weakest lateral
connections. This information is plotted in Figure7B. As
long as more than 10% of the nonzero connections are
retained, there is no significant effect on the accuracy. Thus,
about 3% of matrix cells (10% of the average 30% cells
filled among all matrices) are enough to achieve the maximal
model accuracy.

5.2. Results of the Deployment of the

Model on the Hardware Platform

5.2.1. General Description of the Experiment Scheme
To demonstrate the feasibility of the algorithm on real hardware,
a simple scheme of interaction of two SOMs was implemented
on the SCALP boards. The scheme involves two SCALPs passing
data directly via the HSSL protocol. They are responsible for
processing visual and auditory information and one of them also
for the ReSOM prediction inference. The boards are connected to
a PC in a local network via an Ethernet connection. The scheme
can be seen in Figure 8A.

In the proposed scheme, the PC plays the role of program
execution controller. It starts the different steps of the algorithm
and controls the synchronization of data transfer between the
devices. It also sends data vectors for testing and collects the final
predictions, playing both the role of sensors (such as a camera)
in a real system and the role of a monitoring system for the
counted predictions.
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FIGURE 8 | (A) Scheme of the deployment of the ReSOM model onto the SCALP electronic boards for two modalities. (B) ReSOM + SCALP processing four
modalities. Dark gray and light gray arrows represent physical connections between machines respectively SCALP high speed serial connections and an ethernet

LAN network. The PC is not showed in the second image for the sake of simplicity.

Some parts of the algorithm (such as the calculation of SOM
activations and the modification of the weights while training) are
parallelized and so executed on different boards and computed
independently of one another. These processes are controlled in
different threads of the controller program written in Python
and launched on the PC. The SOM calculations are executed on
the boards as a Python server program. The nodes expose SOM
and ReSOM computing functions as services that can be called
through Python’s RPyC library. All requests are sent over the
internal LAN network configured for standard communication
between Bionic Beaver Linux on the PC and PetaLinux on the
SCALP board.

For communication between the boards, direct connections
with the HSSL protocol are used. Its schema allows the address of
anode in the network to be set in three-dimensional coordinates
and data to be sent to a desired address. In the current SCALP
version, data are sent on a FIFO receiver of a board, where
data packets of a size of 64 words of eight bytes are sequentially
recorded. The packet sending function is a core application
service and may be called via C/C++ code (or by a Ctypes
call in Python). To send a data object of any type and size in
Python, a program wrapper was written that serializes and splits
files into the packets, and after that sequentially sends them to
a given address. The receiver board reassembles them to the
initial format.

5.2.2. Deployment Scenarios

Several deployment scenarios were tested to verify the global
system performance. The first model to be tested was the
inference model, to demonstrate the ability of a two-board system
to produce values similar to those simulated earlier, using the
already trained weights of both SOMs and lateral connections.
The schema followed is shown in Table 4.

Further, in a similar way, the model was tested with the
addition of the training of ReSOM lateral connections. The
pipeline of information exchange is the same as the one presented
earlier, except that it also contains an additional training step (see
Table 4).

TABLE 4 | Board interaction pipeline for the ReSOM inference.

PC Board 1 Board 2

Ask two boards to init - -

themselves

- Load MNIST weights, labels  Load SMNIST

and ReSOM weights

Confirm two boards init - -

weights and labels

Start of loop
Send vector 1 to SOM1 and - -
vector 2 to SOM2

- Count activations of MNIST ~ Count activations

map of SMNIST map
Confirm end of counting - -
Ask board 2 to send - -
activations to board 1
- Receive SMINST activations ~ Send SMINST
activations

Confirm data received - -

Ask board 1 to make a - -

prediction using ReSOM

model

- Count ReSOM predictions -
using two activation maps

Ask for and get the label - -

prediction

End of loop

Compute final accuracy and - -

confusion matrix

5.2.3. Verifying the Functioning of the Hardware
Framework

This test consists of verifying the model’s functioning on the
hardware platform by comparison with the results of the
previously tested PC simulation. The training of the entire
ReSOM system is assumed to have been done offline on a PC.
The weights are then fixed and the multimodal data are sent
over the network to each neural map. So we compare two
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FIGURE 9 | Confusion matrix of ReSOM on tests conducted on SCALP boards. Accuracy = 0.966, test dataset size = 300 pairs of MNIST/SMNIST objects.

inference implementations to see if they work the same way on
the same data.

Achieving the maximum model performance was not the
focus of the research in this article; the main goal of the
tests was to demonstrate whether such a model could be
implemented. Because of some non-optimal features of the
presented framework (which will be discussed later), we did not
reach the maximum possible computational speed. Therefore, we
decided to limit ourselves to a small test dataset (300 samples),
sufficient to demonstrate the model’s functionality.

The accuracy of this on-board prediction test was equal
to 96.6% and the resulting confusion matrix is presented
in Figure9. These results are exactly the same as the ones
achieved by the simulation code, both in term of accuracy
and the confusion matrix, thus confirming the validity of the
deployed model.

5.2.4. Analysis of System Execution Performance

In the previous section, we conducted tests with a fairly small
number of samples. This was due to the hardware architecture
of the FPGA and non-optimized usage of the Python language.
So the on-board execution for this first prototype does not yet
reach the computation speed expected. But the use of multiple
boards gives us the ability to perform parallel computations
over the boards, which already gives a significant gain in system
performance. The following section provides an analysis and
numerical evaluation of the possible gain when scaling the
system to more than two modalities. Another level of parallelism

TABLE 5 | Average execution times of inference steps.

Step # Algorithm step Time, s.

1 Count MNIST activations (SOM1, 10 x 10 size)  0.0795 4 0.005

2 Count SMNIST activations (SOM2, 16 x 16 size) 0.1550 + 0.005

3 Send activations from one board to another 0.016 £ 0.001
(matrix of 16 x 16 numbers)

4 Make ReSOM prediction using two activations 0.011 £ 0.001

max(#1,#2) + SCALP ReSOM on two boards 0.182 + 0.01

#3 + #4

#1 + #2 + #4 SCALP ReSOM on one board (calculated from the 0.246 + 0.01
measured times)

Bold value indicates better solution and lowest execution time.

consists in distributing the SOM map inside the FPGA circuit
thanks to the Iterative Grid algorithm. This optimization will
be considered in prospective work. As presented in Table 5, the
calculation time of the SMNIST (neural map) activation matrix
is an order of magnitude slower than its transfer time. Thus,
computing in parallel and then transferring will result in a gain in
system execution time over computing the algorithm on a single
device. Adding more devices will enable further parallelization
gains and therefore a greater increase in performance relative
to executing on a single board. To demonstrate this, consider
a model system composed of four SOMs implemented on four
boards (Figure 8B).
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TABLE 6 | Gain in execution time for scaled system.

Act. # Alg. step Time, s.

1 Count activations (approximate, same for all 0.16
boards with same SOM of 16 x 16 cells)

2 Send activations from one board to another 0.016
(hypothetical)

Data preparation for n modalities ReSOM

(#1)+(n-1)*(#2) SCALP ReSOM on n boards 0.16+(n-1)*0.016

n*(#1) SCALP ReSOM on one board n*0.1
Data preparation for four modalities ReSOM

(#1)+3*(#2) SCALP ReSOM on 4 boards 0.208
4%(#1) SCALP ReSOM on one board 0.64

Bold value indicates lowest complexity and lowest execution time.

In this case, the parallel solution takes 0.208 s compared with
0.64 s for one board (as shown in Table 6); so the system gains a
factor of 3 in the time needed to calculate and prepare the neuron
activation matrices. This speedup is proportional to the number
of boards in use. But we should note that the acceleration rate
might decrease with the system’s growth and may reach a state
where it is impossible to directly connect all the boards to the one
responsible for the ReSOM calculation.

5.3. Conclusion

5.3.1. Brain-Inspired Model

The cerebral cortex is capable of using self-organization for
learning in the environment without the presence of embedded
annotations. Individual cortical areas are responsible for
processing different signals (in other words, modalities).
Interaction between cortical zones allows the brain to
build a complete picture of the world, reflecting a complex
picture of interactions between different modalities using
local computations.

This work combines simplified biological models to propose
an architecture capable of similar behavior. ReSOM enables self-
organization of the system and aids lateral connections between
the “cortices” to exchange information, correcting weaknesses
and information leaks among the different modalities. Our
model is based on an interpretation of the interaction
between real cortical zones. This fits perfectly with the idea
of building a scalable system. Such a system was naturally
implemented on microprocessor boards, allowing independent
operation of several computational elements and improving the
system’s performance.

5.3.2. Implementation

The architecture allows the number of modalities to be scaled,
and the computational efficiency will grow non-trivially by
adjusting the number of SOMs. The model reaches an accuracy
of 99% using only 3% of all possible ReSOM connections. This
addresses a specific ML problem—the post-labeled unsupervised
learning problem. Its advantage is the ability to determine the
predicting system almost without any labels, partially solving the
problem of expensive annotation.

The proposed model is implemented in hardware on
SCALP boards. The possibility of scaling up the system to
several modalities is also demonstrated. The use of high-
speed serial connections allows information to be transferred
directly between the boards, which gives an acceleration in
system performance.

6. DISCUSSIONS

6.1. Limitations of the Current Prototype
6.1.1. Growth of the Number of Lateral Connections
The number of lateral connections, and the underlying Hebb
computations, is a very important parameter that affects the
memory consumption and execution time. To estimate the
number of lateral connections for the ReSOM model, we
can derive the following formula (11), which has a quadratic
growth rate.

n(n—1)

Cresom = C2 = 5 (11)

For example, in the case of seven boards the ReSOM architecture
will have 21 lateral connections, that is, three times more than
the number of boards. So, for a small number of modalities, this
growth is not so important, but as the number of modalities
increases, it may affect the complexity of the signal transmission
or the energy consumption.

An alternative method of multimodal aggregation is the
convergence-divergence zone (CDZ)-based SOM combining all
modalities in a single CDZ map. This method is not discussed
in detail in this article, though we mentioned it in the literature
review. To our knowledge, the ReSOM model currently offers
higher accuracy than the CDZ. But, with a linear growth rate
in the number of lateral connections, the CDZ-based SOM
is a worthy candidate for developing a more scalable system,
achieving a more impressive speed gain for a greater number
of modalities.

6.1.2. Python Overhead

To speed up the prototype production and to simplify further
integration with ready-made AI libraries, a significant part
of the frameworks code is written in Python. Unfortunately,
non-optimized Python code entails a significant computation
inefficiency and increase in execution time. This is largely due
to the need to serialize, split into packets and then assemble the
counted activations.

Such a decrease in the speed is not critical when the activation
computation time significantly exceeds the transmission time.
But in future implementations, with an increase in the calculation
speed, this process will need to be optimized. This can be achieved
either by rewriting the serialization-deserialization Python code
in a low-level language as C/C++, or by reducing the limit on
the size of forwarded packets. To solve this problem, we plan to
implement a DMA interface between directly connected boards
in a future SCALP system update.
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6.2. Possible Development Directions

6.2.1. Hardware Development

A distinctive feature of SCALP is an integrated FPGA chip, which
enables a grid of independent computing elements to be built.
This article ignores this feature of the boards, but some solutions
have previously been proposed (Girau and Upegui, 2019; Khacef,
2020). They develop the idea to use the FPGA for executing a
SOM and accelerating the algorithm for calculating its BMU. Due
to the direct exchange of information between neighboring SOM
neurons, we can reduce the algorithm’s complexity from O(n)
to O(y/n), where n is the number of SOM neurons. In future,
it is planned to correct this drawback and integrate one of the
previously proposed Iterative Grid (Rodriguez et al., 2018) or
Cellular SOM (Girau and Upegui, 2019) solutions in order to
significantly speed up the calculations.

At this stage, in order to keep up with the speeding up
of the SOM computations, the DMA implementation is much
more important and useful, therefore this modification is already
planned for the next SCALP release and will be integrated into
our architecture.

6.2.2. Next Technical Algorithm Deployment

The obvious next step consists in testing the architecture’s
operation in the presence of 4-5 boards for processing different
data modalities and comparing the performance of the ReSOM
and CDZ methods for aggregating multimodal data in terms of
accuracy, latency and power consumption. Growing the system
up to more than a dozen boards makes sense to increase
its performance, similar to the multi-thread solution proposed
by Jayaratne (2021).

A further increase in the number of data modalities will be
slowed down due to the difficulty of finding such a large number
of information channels of a different nature. A possible way
to solve this problem is to allow some of the boards to work
with data of the same type, creating independent SOMs with
data of the same nature. The development of such architectures
will require both adaptation of the algorithm to work with
several data aggregation nodes and new technical solutions for
the implementation of the structure. This innovation could
significantly boost the model’s performance, so this extension is
also planned for future implementations.

6.2.3. Online Learning, Acting, and Spiking Neural
Networks

The ability to process signals and act in real time is an
important feature of living systems that we have not discussed
in this work. In future work, we will address aspects of
our architecture that will allow it to develop into a full-
fledged online acting agent. Some previously cited works (Lefort
et al., 2010; Morse et al, 2010; Lallee and Dominey, 2013;
Escobar-Juarez et al., 2016) show a significant potential for the
development of self-organizing maps as a method for robots to
navigate the surrounding space. The maps are able to model
the spatial movement of agent and objects in space, so the
multimodal connection can also help to capture the nature of
spatial phenomena.

This model has no restrictions for processing information
online and can also be used for real-time processing of incoming
signals. This could be done by adding recurrence to the
SOM (Voegtlin, 2002) or by integrating SNNs. SNNs have a
distributed network structure (Xin and Embrechts, 2001; Ghosh-
Dastidar and Adeli, 2009; Schliebs and Kasabov, 2013), but they
do not forget the signal nature of received data and process
them as spikes, in a sequential mode. Algorithms using SNNs
have already allowed us to solve quite important and varied
problems, such as unsupervised learning (Bohte et al., 2002;
Dong et al., 2018), auto-encoding (Kamata et al., 2021), and even
supervised Al problems (Kheradpisheh and Masquelier, 2020).
Also, their good performance in terms of prediction accuracy and
energy consumption (Amirshahi and Hashemi, 2019; Kim et al.,
2020) promise their great potential for further development. The
concept of SNN can be also combined with the SOM, as shown
by other researchers (Hazan et al., 2018). Thus, we see great
potential to develop our architecture by integrating it with SNNs
for signal-type data processing.

The ReSOM multimodal association learning methods
explored in this work were performed sequentially in two phases:
first, we trained the SOMs for unimodal classifications, and
second we created and reinforced bidirectional connections
between pairs of maps based on their activities on the
same training dataset. We refer to this learning approach as
asymmetric. This is particularly interesting in the context of
offline learning when working on pre-established datasets. First,
in a purely practical way, it gave a lot of flexibility since we
could train the unimodal SOMs on their respective available
data separately, then train the multimodal association based on
a smaller synchronized multimodal dataset. Synchronized here
means that the multimodal samples that belong to the same class
are presented at the same time. Second, from a developmental
point of view, it has been shown that auditory learning begins
before birth while visual learning only starts after birth (Althaus
and Mareschal, 2013). Moreover, the ability to build associations
between words and objects in infants appears to develop at about
14 months of age (Werker et al, 1998). The opportunity to
process visual and auditory information sequentially may offer
computational advantages in infant learning, as it could be a
facilitating factor in the extraction of the complex structures
needed for categorization (Althaus and Plunkett, 2015). These
observations support the actual learning approach of ReSOM,
where multimodal associations begin to develop after unimodal
representations are learned sequentially.

Nevertheless, in the context of online learning in a dynamic
and changing environment, another approach would be to
perform both Kohonen-like and Hebbian-like learning at the
same time, continuously. For example, this approach is followed
using STDP learning in Rathi and Roy (2021). For this purpose,
the KSOM would be replaced by a DSOM. The reason is that the
KSOM has a decaying learning rate and neighborhood width, so
that the learning stabilizes after a certain number of iterations.
Therefore, the learning is stable but not dynamic, and can be
considered as an offline unsupervised learning algorithm. In
contrast, the DSOM is a variation of the KSOM algorithm where
the time dependency of the learning rate and neighborhood
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function has been replaced by a dependence on the distance
between the BMU and the input stimulus. While the DSOM
is less accurate than the KSOM (Khacef et al., 2019), it is
more suitable for online learning. In addition, we would need
a dynamic learning rate so that the multimodal association
becomes stronger when the sample is well learned by the SOM,
i.e., when the distance between the BMU and the sample is small.
One way to do that is to use Gaussian kernel-based distances,
so that the multimodal binding becomes more relevant after the
convergence of the SOMs, without any manual tuning of the
SOM hyperparameters.

6.2.4. Confronting SOMs to SNNs

Self-organization based on local plasticity mechanisms is a
powerful computational principle that has been modeled in both
SOMs and SNNs. In both cases, the basic computational unit
is an artificial neuron whose synapses are plastic and learn to
converge toward a “prototype,” i.e., the centroid of a given cluster
of the data as shown in Figure 1. However, the SOM neuron and
the spiking neuron computations are different, since they are at
two different levels of abstraction from biological neurons. On
the one hand, the SOM neuron is at a high level of abstraction
where neural activity is modeled as a valued quantity, with a
synchronous computation at each algorithmic time step which is
adapted to frame-based sensors. On the other hand, the spiking
neuron is at a lower level of abstraction where neural activity
is modeled as spikes, and exhibits more biological plausibility
(Maass, 1997). More importantly for practical applications, spike-
based computation takes the timing of spikes into consideration,
and consequently takes advantage of the spatio-temporal sparsity
of event-based sensors streams with asynchronous computation.
However, when applied to frame-based problems such as MNIST
classification as in Diehl and Cook (2015), SNNs are ineflicient
because of the rate coding from images into spikes.

In fact, we have shown in a previous study that spiking
neurons are less energy-efficient than formal valued neurons
(a Perceptron was used as a reference) if three or more clock
cycles are needed to make a prediction (Khacef et al., 2018).
This is due to the integration and leak over time that have to
be computed in several algorithmic times steps due to the spike
coding from static frames. Therefore, SOMs are a better option
for frame-based datasets, while SNNs have a greater potential
for event-based datasets where time is inherently present in the
patterns of interest and not an additional dimension due to
the spike encoding. Both SOMs and SNNs have been applied
to unsupervised learning as discussed in Section 2.1. Both
networks rely on excitation and inhibition at the network level,
with different inhibition mechanisms. In particular, the SOM
uses a gradual inhibition in the topological neighborhood such
that close neurons in the map learn the same patterns and
converge toward similar prototypes. This property has been
applied to SNNs in Hazan et al. (2018), resulting in a better
classification accuracy.

SNNs have also been applied to multimodal association
in Rathi and Roy (2021). In both SOM-based and SNN-
based multimodal frameworks, every neuronal map receives a
single afferent modality, representing a given cortical region.

Multimodal connections connect the different maps to improve
the system’s perception of the environment which is quantified
in these works as a classification performance. Nevertheless,
the multimodal connections in the proposed multimodal SNN
(Rathi and Roy, 2021) are uni-directional and initialized with
a random connectivity. This limits the multimodal plasticity
to connections that have been randomly fixed, which induces
important variations in the network performance. In addition, it
affects the system’s accuracy that goes down beyond 26% of the
multimodal connections, while the ReSOM performance simply
reaches a plateau of accuracy as shown in Figure 7B. A detailed
comparison to the ReSOM model has been conducted in Khacef
et al. (2020b).

6.2.5. Application to Other Problems

This work proposes one possible method for using lateral
connections to transfer activations between SOMs. The model’s
evaluation occurs using a non-negligible number of annotations
(at least 1% of the training data). This is somewhat in conflict
with the proposed self-organizing model, which is capable of
completely unsupervised reasoning. However, the information
stored in lateral connections may be rich enough to define
the stable clustering on its own, with almost no use of the
labels. Therefore, it seems possible to develop a completely
unsupervised, or much less labeled algorithm, using graph
cutting or distance clustering methods.

Such a system might be capable of learning on real data
(such as video and audio signals captured simultaneously) by
creating the clustering for all signal modalities using only
the dependencies between them. Thus, simply by observing
the objects around it, a robot could be capable of dividing the
world into separate classes or categories. The model will thus be
able to “understand” the world, by learning its distinguishable
concepts. The development of such models is planned for future
research studies.
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