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Radiomics has been proposed as a useful approach to extrapolate novel morphological
and textural information from brain Magnetic resonance images (MRI). Radiomics
analysis has shown unique potential in the diagnostic work-up and in the follow-up
of patients suffering from neurodegenerative diseases. However, the potentiality of this
technique in distinguishing frontotemporal dementia (FTD) subtypes has so far not
been investigated. In this study, we explored the usefulness of radiomic features in
differentiating FTD subtypes, namely, the behavioral variant of FTD (bvFTD), the non-
fluent and/or agrammatic (PNFA) and semantic (svPPA) variants of a primary progressive
aphasia (PPA). Classification analyses were performed on 3 Tesla T1-weighted images
obtained from the Frontotemporal Lobar Degeneration Neuroimaging Initiative. We
included 49 patients with bvFTD, 25 patients with PNFA, 34 patients with svPPA, and 60
healthy controls. Texture analyses were conducted to define the first-order statistic and
textural features in cortical and subcortical brain regions. Recursive feature elimination
was used to select the radiomics signature for each pairwise comparison followed
by a classification framework based on a support vector machine. Finally, 10-fold
cross-validation was used to assess classification performances. The radiomics-based
approach successfully identified the brain regions typically involved in each FTD subtype,
achieving a mean accuracy of more than 80% in distinguishing between patient groups.
Note mentioning is that radiomics features extracted in the left temporal regions allowed
achieving an accuracy of 91 and 94% in distinguishing patients with svPPA from those
with PNFA and bvFTD, respectively. Radiomics features show excellent classification
performances in distinguishing FTD subtypes, supporting the clinical usefulness of this
approach in the diagnostic work-up of FTD.

Keywords: frontotemporal dementia (FTD), primary progressive aphasia, behavioral variant frontotemporal
dementia, radiomics, support vector machine

Frontiers in Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 828029

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.828029
http://creativecommons.org/licenses/by/4.0/
http://4rtni-ftldni.ini.usc.edu/
https://doi.org/10.3389/fnins.2022.828029
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.828029&domain=pdf&date_stamp=2022-06-20
https://www.frontiersin.org/articles/10.3389/fnins.2022.828029/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-828029 June 14, 2022 Time: 15:16 # 2

Tafuri et al. Radiomics in Frontotemporal Dementia

INTRODUCTION

Frontotemporal dementia (FTD) encompasses a spectrum of
neurodegenerative diseases characterized by behavioral changes,
language abnormalities, executive dysfunctions, and social
cognition impairment (Bang et al., 2015). Current diagnostic
criteria recognize three main clinical subtypes of FTD: the
behavioral variant of FTD (bvFTD) (Rascovsky et al., 2011), the
semantic variant of primary progressive aphasia (svPPA), and the
non-fluent/agrammatic variant of PPA (PNFA) (Gorno-Tempini
et al., 2011). Nonetheless, FTD diagnosis remains challenging
due to the high degree of clinical overlap among FTD subtypes,
especially in the early disease stage.

Therefore, several neuroimaging findings, most notably,
degeneration of the frontal and/or anterior temporal brain
regions, have been proposed to support the clinical diagnosis
(Gorno-Tempini et al., 2011; Rascovsky et al., 2011). In this
context, gray matter abnormalities evaluated using region of
interest (ROI) analyses or voxel- and surface-based approaches
have been proven useful in differentiating FTD subtypes
(McCarthy et al., 2018). In particular, the pattern of atrophy in
patients with bvFTD is characterized by prominent involvement
of the frontal lobe, anterior cingulate cortex, and basal ganglia
(Pan et al., 2012; Möller et al., 2016; Meyer et al., 2017; Manera
et al., 2021). By contrast, PPA involves the language-dominant
hemisphere primarily associated with left-sided atrophy, more
specifically PNFA with inferior frontal and insular atrophy,
and svPPA with anterior temporal atrophy (Wilson et al.,
2009; Agosta et al., 2015; Bisenius et al., 2017; Kim et al.,
2019).

In recent years, radiomics has been proposed as a useful
method to extrapolate novel morphological and textural features
from imaging data. This approach assesses the interrelationships
between image pixel gray levels and patterns, providing
second-order statistics able to capture integrity properties at
the microstructural level. Radiomics and machine learning
approaches have been successfully implemented in oncology to
differentiate pathological tissues by examining multimodality
imaging (Gillies et al., 2016). More recently, radiomics has been
applied to support the clinical classification of patients with
neurodegenerative disorders (Feng et al., 2018; Ranjbar et al.,
2019; Salvatore et al., 2019). More in detail, radiomics features
of the hippocampus and corpus callosum have been used to
distinguish between patients with Alzheimer’s disease and mild
cognitive impairment (Feng et al., 2018; Ranjbar et al., 2019) and
to differentiate patients with Parkinson’s disease from healthy
controls (Cao et al., 2020). Nonetheless, studies assessing the
potentiality of the radiomics approach to distinguishing FTD
subtypes are lacking.

In the present study, we aimed to investigate whether
radiomics features, evaluated on T1-weighted Magnetic
resonance images (MRI) images, could support the clinical
differentiation of FTD subtypes. In particular, texture features
were extracted in cortical and subcortical gray matter regions
using 1st-order and 2nd-order statistics methods. Then, a
classification framework based on a support vector machine
approach was applied to distinguish FTD subtypes.

MATERIALS AND METHODS

Patients
Data used in the preparation of this retrospective study
were obtained from the Frontotemporal Lobar Degeneration
Neuroimaging Initiative (FTLDNI) database (for up-to-date
information on participation and protocol).1 We considered 60
healthy control (HC) and 108 patients with FTD (49 bvFTD,
25 PNFA, and 34 svPPA), who had valid baseline T1-weighted
MR images. To avoid potential bias derived from different
imaging protocols, we selected exclusively images acquired at the
University of California, San Francisco (UCSF), i.e., the largest
recruiting center.

All the patients underwent comprehensive neurological,
neuropsychological, and functional assessments and were
diagnosed according to the current diagnostic criteria (Gorno-
Tempini et al., 2011; Rascovsky et al., 2011). The individuals
with no previous history of diagnosed neurological or psychiatric
disorder and no complaint of memory deterioration (more
information)2 served as the control group.

Magnetic Resonance Images Data
Acquisition and Preprocessing
Magnetic resonance images were acquired on a 3T Siemens
Trio Tim system equipped with a 12-channel head coil at
the UCSF Neuroscience Imaging Center, including whole-
brain three-dimensional T1 MPRAGE (TR/TE = 2,300/2.9 ms,
matrix = 240 × 256 × 160, isotropic voxels 1 mm3, slice
thickness = 1 mm). An experienced neuroradiologist reviewed
the images for brain abnormalities other than atrophy.

For each subject, T1-weighted images were converted from
DICOM to NiFTI (NeuroInformatics Technology Initiative).
Cortical and subcortical regions were segmented using the recon-
all script included in Freesurfer v6.0.3 In particular, we defined
34 cortical regions of interest (ROIs) per hemisphere by using
the Desikan-Killiany atlas cortical parcellation (Desikan et al.,
2006). Seven subcortical ROIs (Thalamus, Caudate, Putamen,
Amygdala, Hippocampus, Pallidum, and Accumbens) were also
defined (Fischl et al., 2002). Each region was used as a mask to
extract radiomic features. Segmentation results were also visually
inspected by an expert neuroradiologist (R.D.B.), and no manual
edits were necessary.

Radiomics Features Computation
As a first step, minimal preprocessing (i.e., standardizing
the grayscale levels) was performed to harmonize the data.
Subsequently, we computed radiomics features from each cortical
and subcortical brain region through the PyRadiomics software
(van Griethuysen et al., 2017). We computed first-order statistic
features, describing the distribution of voxel intensities within the
ROI mask, and, to quantify intra-ROI heterogeneity, we extracted
textural features by analyzing the gray-level co-occurrence

1http://memory.ucsf.edu/research
2https://memory.ucsf.edu/research-trials/research/4rtni-2
3https://surfer.nmr.mgh.harvard.edu/
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matrix, run-length matrix, dependence matrix, and size-zone
matrix (Zwanenburg et al., 2020). Detailed information can be
found in Supplementary Table 1.

Machine-Learning-Based Analysis
In our framework, we considered all binary comparisons
between groups. For each initial dataset, we handled possible
imbalanced learning problems using a Majority Weighted
Minority Oversampling Technique (MWMOTE) that allows
us to generate additional samples for minority classes (Barua
et al., 2014). Thereafter, each model was evaluated in a 10-
fold cross-validation setting, including feature selection and
classification steps.

To construct a radiomics signature, we used a dimensionality
reduction algorithm, namely, the Random-Forest-Recursive
Feature Elimination (RF-RFE) (Gregorutti et al., 2017). This
supervised method iteratively trains the model, ranks features,
and retains a subset of the most relevant descriptors to produce
an accurate model. This procedure was implemented with a
repeated 10-fold cross-validation. The final number of selected
features followed the criterion proposed by Hua et al. (2005),
which suggests an optimal size proportional to

√
N (where N

is the sample size) for high-correlated features. In our models,
we retained a number of features <

√
N in accordance with the

optimal accuracy values achieved.
As a second step, to assess the prediction performance of

radiomics signatures, we defined a machine learning model based
on a Support Vector Machine (SVM) classifier using the libSVM
package (Chang and Lin, 2011). In the training step, the most
informative features extracted in the first step were used to
construct the SVM model by a radial basis kernel. We tuned
hyperparameters using a 10-fold cross-validation approach on
the training sets, namely, we adopted a grid search method to
optimize the two parameters of SVM, such as c, the width of
the RBF, and C, an input parameter for the SVM algorithm,
which controls the trade-off between having zero training errors
and allowing misclassification. We minimized the classification
error, searching the “best model” for (c, C), varying along a
grid with c = 0.1, 0.5, 1, 2, 3, 4, and C = 0.001, 0.01, 0.1, 1, 5,
10. In the testing step, we retained only descriptors selected by
RF-RFE and evaluated the performance of the pre-trained SVM
model. Finally, we evaluated the feature frequencies and the mean
performances for each cross-validated model.

Statistical Analysis
Data were explored with descriptive statistics (mean ± SD).
Group differences in age, sex, education, MMSE (Mini-Mental
State Examination), and CDR (Clinical Dementia Rating
Scale) scores were investigated through the Chi-square test,
one-way ANOVA, and Kruskal–Wallis ANOVA, followed by
post hoc comparisons. For all analyses, the corrected significance
threshold was set at p < 0.05 after Bonferroni correction for
multiple comparisons. Statistical analysis was performed by
using R software (Version 3.6.3: R Foundation for Statistical
Computing, Vienna, Austria).

Classification performances were evaluated by accuracy,
sensitivity, and specificity. Finally, the diagnostic capabilities of

the radiomics signatures were evaluated with Receiver Operating
Characteristic (ROC) curve analysis.

RESULTS

Demographic and Clinical Data
Demographic and clinical data are reported in Table 1. No
significant differences emerged in age and sex distribution.
The patients with svPPA showed lower years of education
than controls (p < 0.001, Bonferroni corrected). Concerning
clinical data, all the patient groups had significantly lower
MMSE and CDR scores than the control (p-value < 0.001,
Bonferroni corrected).

Classification Analysis
To define which radiomics predictors were most influential
in the differentiation of the considered groups, we studied
the frequency of the features selected in the 10-fold cross-
validation (see Supplementary Table 2). The frequency of ROIs
with significative radiomic measures for each binary model is
reported in Figure 1. Compared to healthy controls, patients with
bvFTD showed a bilateral distribution of involved regions with a
predominance of frontal and caudal anterior cingulate cortices.
On the other hand, PNFA and svPPA subtypes showed a more
left-sided pattern of ROIs. In particular, the patients affected
by PNFA differed from the control group in the left caudal
middle frontal gyrus, left pars opercularis, left middle temporal
gyrus, and caudate. The patients with svPPA showed a temporal
compromission of the left hemisphere, comprising the temporal
pole, entorhinal and amygdalar regions. Comparisons of bvFTD
with PNFA subjects showed a predominance of features in the
medial orbitofrontal cortex bilaterally, while the comparison with
svPPA reported a similar left temporal pattern as for controls.
Lastly, the involvement of the temporal pole, entorhinal, and
parahippocampus was highlighted in the differentiation between
svPPA and PNFA. Note mentioning is the left temporal pole
features have been selected in radiomic signatures for comparison
with HC, bvFTD, and PNFA models thus representing an optimal
discriminative characteristic of an svPPA subtype.

TABLE 1 | Patient demographics.

HC
(n = 60)

bvFTD
(n = 49)

PNFA
(n = 25)

svPPA
(n = 34)

P-value

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Age, y 64.3 ± 4.9 61.3 ± 6.9 65.2 ± 5.6 62.9 ± 6.3 Ns

Sex (male%) 0.58 0.62 0.56 0.44 Ns

Education, y 17.5 ± 1.9 15.4 ± 3.3 15.6 ± 2.6 13.9 ± 8.4 0.005*

MMSE 29.4 ± 0.7 23.6 ± 4.5 25.4 ± 4.3 24.9 ± 5.1 <0.001**

CDR 0.0 ± 0.1 1.2 ± 0.6 0.5 ± 0.4 0.6 ± 0.3 <0.001**

*HC vs. svPPA, p = 0.001.
**HC vs. bvFTD, PNFA, svPPA, p < 0.001.
HC, healthy controls; bvFTD, behavioral variant frontotemporal dementia; PNFA,
non-fluent/agrammatic variant of primary progressive aphasia; svPPA, semantic
variant of primary progressive aphasia; MMSE, Mini-Mental State Examination;
CDR, Clinical Dementia Rating Scale.

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 828029

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-828029 June 14, 2022 Time: 15:16 # 4

Tafuri et al. Radiomics in Frontotemporal Dementia

FIGURE 1 | The frequency of extracted ROIs for each binary model.

Mean classification performances for all trained models are
reported in Table 2. With respect to healthy controls, patients
with bvFTD were correctly classified with an 85% of accuracy
(sensitivity: 84%; specificity: 88%), patients with PNFA with an
84% accuracy (sensitivity: 91%; specificity: 82%) and patients with
svPPA, with a 98% accuracy (sensitivity: 98%; specificity: 98%).
Classification models between bvFTD and PPA subtypes reported
an accuracy value of 80 and 94%, respectively, for patients with
PNFA and patients with svPPA. Lastly, svPPA and PNFA patient
comparison reported performance of 91% accuracy (sensitivity:
88%; specificity: 93%).

Figures 2, 3 report the discriminative regions selected for each
model, the corresponding ROC curves, and the relative AUCs.

DISCUSSION

In this study, we analyzed, for the first time, the utility of the
radiomics approach in the diagnostic work-up of FTD subtypes.
Overall, radiomics features were able to classify FTD subtypes
from healthy controls with optimal accuracy. Similar results were
also observed in distinguishing between patient groups. Of note,
an excellent accuracy was found in differentiating patients with
svPPA from those with bvFTD or PNFA.

The lack of radiomics studies in patients with FTD spectrum
precludes the possibility of directly compare our findings with
existing literature. Nonetheless, our findings are in line with
previous studies that adopted voxel-based or surface-based
morphometry approaches. Indeed, the areas identified through
radiomics overlapped with the typically observed compromission
networks (McCarthy et al., 2018). Binary classification results
for bvFTD vs. controls confirmed the crucial role of the caudal

anterior cingulate cortex and superior frontal gyrus in the
pathophysiological process of the bvFTD (Pan et al., 2012;
Gordon et al., 2016; Möller et al., 2016; Meyer et al., 2017;
Manera et al., 2021; Nigro et al., 2021b). On the other hand,
morphometric studies conducted on PPA variants found a
predominantly left pattern of atrophy, associated with language
deficit, and demonstrated a good discriminative power (Wilson
et al., 2009; Agosta et al., 2015; Bisenius et al., 2017; Kim
et al., 2019). Consistent with these studies, our study showed
a prominent involvement of the caudal middle frontal gyrus,
pars opercularis regions and caudate for PNFA vs. the controls
classification model. Similarly, predominant involvement of
temporal brain regions, i.e., temporal pole, hippocampus, and
amygdala, was also observed for the classification between svPPA
and control (Gorno-Tempini et al., 2004; Rohrer et al., 2009b;
Bocchetta et al., 2019; Nigro et al., 2021a).

TABLE 2 | Evaluation metrics (mean ± SD) of the binary models computed with
the 10-fold cross- validation.

Accuracy
(mean ± SD)

Sensitivity
(mean ± SD)

Specificity
(mean ± SD)

HC vs. bvFTD 0.85 ± 0.09 0.84 ± 0.16 0.88 ± 0.13

HC vs. PNFA 0.84 ± 0.08 0.91 ± 0.10 0.82 ± 0.15

HC vs. svPPA 0.98 ± 0.04 0.98 ± 0.06 0.98 ± 0.06

bvFTD vs. PNFA 0.80 ± 0.15 0.90 ± 0.17 0.75 ± 0.18

bvFTD vs. svPPA 0.94 ± 0.10 0.90 ± 0.21 0.95 ± 0.11

svPPA vs. PNFA 0.91 ± 0.07 0.88 ± 0.16 0.93 ± 0.14

HC, healthy controls; bvFTD, behavioral variant frontotemporal dementia; PNFA,
non-fluent/agrammatic variant of primary progressive aphasia; svPPA, semantic
variant of primary progressive aphasia.
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FIGURE 2 | Discriminative regions in the radiomics approach and ROC curves. We report extracted ROI from subjects’ comparison (A) HC vs. bvFTD; (B) HC vs.
PNFA; (C) HC vs. svPPA. HC, healthy controls; bvFTD, behavioral variant frontotemporal dementia; PNFA, non-fluent/agrammatic variant of primary progressive
aphasia; svPPA, semantic variant of primary progressive aphasia.

Concerning FTD subtype comparisons, the behavioral variant
of FTD highlighted a prefrontal and temporoparietal network,
more shifted on the right hemisphere, when compared with
PNFA (Wilson et al., 2010). By contrast, a specific pattern of
radiomics features in left temporal regions with predominance
in the temporal pole was found in differentiating patients with
bvFTD from patients with svPPA (Bruun et al., 2019). Moreover,
radiomics features extracted in the left temporal pole allowed
to distinguish patients with svPPA from those with PNFA,
confirming previous evidences of the crucial role of this region in
the neurodegenerative mechanisms underlying svPPA phenotype
(Collins et al., 2017). Concerning classification performances,
our findings overcome the performance described in previous
studies using morphometric properties, such as cortical thickness
to distinguish FTD subtypes (Wilson et al., 2009; Agosta et al.,
2015; Bisenius et al., 2017; Bruun et al., 2019; Kim et al., 2019).
Indeed, our radiomics model between patients with svPPA and
patients with bvFTD outclassed the existent model based on
the brain atrophy indexes in terms of better sensitivity and
specificity from 80 and 93% to 90 and 95%, respectively (Bruun
et al., 2019). Note mentioning is that radiomics features achieved
a diagnostic accuracy of 91% in differentiating patients with

svPPA from patients with PNFA, highlighting the usefulness
of this approach in providing unique information associated
with these diseases.

Apart from the classification task, radiomics could display
unique advantages in the field of frontotemporal dementia.
Radiomics features have, in fact, demonstrated an optimal
predictive power in terms of response to therapy or clinical
outcomes in the field of oncology and neurodegeneration (Feng
and Ding, 2020; Conti et al., 2021; Kim et al., 2021). Hence,
radiomics, even in combination with non-imaging data such
as clinical scales and biological markers, might reasonably be
used to enhance the predictive potential of medical imaging
in FTD subtypes. Indeed, recent investigations in the oncology
field have demonstrated that the combination of radiomics
and genomic data can represent a turning point in the field
of precision medicine by facilitating computer-aided diagnosis,
treatment, and prediction of the prognosis (Shui et al., 2020; Bera
et al., 2021). Bearing in mind the abovementioned studies and
considering that up to 20–40% of FTD cases have a family history
of the disease (Rohrer et al., 2009a), the approach of combining
radiomics and genomics features may show unique potential not
only in FTD clinical work-up but also as possible presymptomatic
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FIGURE 3 | Discriminative regions in the radiomics approach and ROC curves. We report extracted ROI from subjects’ comparison (A) bvFTD vs. PNFA; (B) bvFTD
vs. svPPA; (C) svPPA vs. PNFA. HC, healthy controls; bvFTD, behavioral variant frontotemporal dementia; PNFA, non-fluent/agrammatic variant of primary
progressive aphasia; svPPA, semantic variant of primary progressive aphasia.

signature (Feis et al., 2019, 2020; Premi et al., 2022). Indeed,
previous studies have shown that machine-learning applied to
structural MRI data has proved a reliable method to track
neuroanatomical changes of patients with FTD at a single-subject
level and has been proposed as an early diagnostic marker for
presymptomatic Granulin mutation carriers.

Some limitations of the present study should be
acknowledged. First, we lack a validation cohort, acquired
with a different scan protocol, to test the generalizability
of our models and to improve the statistical power of the
results. Secondly, although the number of the participants is
comparable with previous classification studies, the sample
size should be increased to define a more generalizable
radiomics signature of FTD subtypes. Further studies should
also be conducted to investigate the classification performance
of radiomics features when combined with clinical and
neuropsychological data. Finally, multimodal MRI analyses,
combining textural radiomics features with diffusional and
functional properties, could achieve a powerful diagnostic tool
for clinical application.

To conclude, our study showed, for the first time, the
usefulness of the radiomic approach in the diagnostic work-
up of FTD. Radiomics features could be considered in clinical
practice as a reliable and practical marker to identify patients

in the frontotemporal dementia spectrum and, potentially, an
important predictor of treatment response.
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