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Voice pitch carries linguistic and non-linguistic information. Previous studies

have described cortical tracking of voice pitch in clean speech, with responses

reflecting both pitch strength and pitch value. However, pitch is also a

powerful cue for auditory stream segregation, especially when competing

streams have pitch differing in fundamental frequency, as is the case when

multiple speakers talk simultaneously. We therefore investigated how cortical

speech pitch tracking is affected in the presence of a second, task-irrelevant

speaker. We analyzed human magnetoencephalography (MEG) responses to

continuous narrative speech, presented either as a single talker in a quiet

background or as a two-talker mixture of a male and a female speaker. In clean

speech, voice pitch was associated with a right-dominant response, peaking at

a latency of around 100 ms, consistent with previous electroencephalography

and electrocorticography results. The response tracked both the presence

of pitch and the relative value of the speaker’s fundamental frequency.

In the two-talker mixture, the pitch of the attended speaker was tracked

bilaterally, regardless of whether or not there was simultaneously present

pitch in the speech of the irrelevant speaker. Pitch tracking for the irrelevant

speaker was reduced: only the right hemisphere still significantly tracked

pitch of the unattended speaker, and only during intervals in which no

pitch was present in the attended talker’s speech. Taken together, these

results suggest that pitch-based segregation of multiple speakers, at least

as measured by macroscopic cortical tracking, is not entirely automatic but

strongly dependent on selective attention.
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Introduction

Pitch is a function of temporal periodicity and spectral
order in acoustic waveforms (de Cheveigné, 2005). The
cochlea transforms temporal periodicity into a spatial code
by mapping different frequencies in the signal to different
spatial locations along the basilar membrane. Subcortical
responses retain the periodicity in ranges critical for speech
and thus represent pitch temporally and spatially (Skoe and
Kraus, 2010; Maddox and Lee, 2018). However, phase locking
at faster frequencies gradually declines in the ascending
auditory system (Joris et al., 2004). Extracranial recordings
of cortical responses have observed population-level phase
locking to periodicity in speech only up to approximately
110 Hz (Coffey et al., 2016; Kulasingham et al., 2020). This
is insufficient for encoding most voice pitches as voices often
exhibit a fundamental frequency above 100 Hz. Instead, the
auditory cortex is abundant with frequency-selective receptive
fields (Saenz and Langers, 2014), and pitch features are
encoded through a combination of place and rate code
(Fishman et al., 2013).

Cortical pitch tracking has primarily been analyzed with
higher level representations of pitch. In speech, pitch is
present intermittently, forming the basis of voiced segments
and interrupted for unvoiced segments. In total, two aspects
of pitch can thus be described separately that are relevant
for cortical tracking: pitch strength, that is, the extent to
which pitch is present at each moment in the speech signal,
and pitch value, that is, the height of the perceived pitch,
generally corresponding to the fundamental frequency. Both
these features are tracked by scalp electroencephalography
(EEG) responses to continuous narrative speech (Teoh et al.,
2019). Intracranial recordings suggest that representations of
relative pitch, corresponding to speaker-independent intonation
contours, are more prominent than representations of absolute
pitch (Tang et al., 2017) and that the pitch of speech is associated
with a prominent neural response at around 100 ms latency
(Li et al., 2021).

In this study, we investigate how pitch tracking is affected
when listening to multiple simultaneous speakers. When sound
from two speakers is mixed, the sound waveforms combine
additively. For simplicity, we will consider the case of a single
audio channel mixed signal presented diotically, that is, the
two source waveforms are mixed into a single mixed waveform
presented to both ears. The problem of stream segregation is
segregating the spectro-temporal elements of the heard sound
into those associated with either of the sources (Bregman, 1990).
Pitch can be a strong cue for stream segregation (Bregman, 1990;
Micheyl and Oxenham, 2010). For example, pitch tracking can
aid segregation by grouping together the different harmonics
of a shared fundamental frequency (Popham et al., 2018).
The spatial code in A1 provides sufficient information to
distinguish two concurrent vowels that differ in fundamental

frequency by four semitones, consistent with human perceptual
judgments (Fishman et al., 2014, 2016). Non-primary areas
might thus reconstruct pitch from this representation (Bendor
and Wang, 2005), for example, using harmonic templates
(Fishman et al., 2014). This would potentially allow the auditory
cortex to segregate the pitch of two speakers, especially if
those two streams differ substantially in pitch (e.g., a male
and a female speaker). A pitch-sensitive region in the anterior
portion of the superior temporal plane (Norman-Haignere
et al., 2013) could be the potential locus for such pitch-
based segregation.

If pitch extraction is automatic for each of several sources
in a mixture, it could then be used as bottom-up cue in
stream segregation. This would be consistent with suggestions
that the subcortical representation of voice pitch (Maddox
and Lee, 2018; Van Canneyt et al., 2021a,b) is affected by
attention (Forte et al., 2017; Etard et al., 2019; Saiz-Alía
et al., 2019). Cortical responses might then be expected
to simultaneously track the pitch in the attended and the
ignored speakers. Pitch tracking might still be affected by
overlapping pitch to the extent that the overlap imposes
additional demands for segregation. On the other hand, pitch
tracking might reflect a secondary representation constructed
during attentive speech processing, for example, for linguistic
prosody. In this case, pitch tracking might depend on selective
attention, possibly without demonstrating pitch tracking for the
ignored speaker at all.

To investigate this, we analyzed a previously studied dataset
of magnetoencephalography (MEG) responses to audiobooks
in two conditions: speech from a single speaker in a quiet
background and speech from two speakers, one male and
one female, reading different audiobooks mixed together and
presented diotically, with the task of listening to one speaker
and ignoring the other (Brodbeck et al., 2020). In the original
study, we analyzed responses as a function of spectrogram
representations and found that listeners segregate acoustic
features even of the ignored speaker from the acoustic mixture.
In this study, we ask to what degree listeners additionally
track pitch in the attended and the ignored speaker. In this
analysis of pitch tracking, all predictors used in the original
analysis are also controlled for Brodbeck et al. (2020). For clean
speech, we model pitch through two separate time-dependent
predictors, pitch strength and pitch value (Figure 1A). For the
two-speaker mixture, we additionally distinguish (1) between
pitch in the attended and the ignored talker, and (2) between
pitch when it is overt, that is, when only one of the two speakers
exhibits pitch at a time, and when it is masked, that is, when
both speech signals contain pitch simultaneously (Figure 1B).
Masked pitch deserves special attention because the two sources
of pitch may interfere with each other, such that naive pitch
detection algorithms would fail without considering the effect of
that interference through some kinds of segregation mechanism
(Micheyl and Oxenham, 2010).
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A

B

FIGURE 1

Predictors for analyzing pitch tracking. (A) For a single speaker, pitch tracking was estimated using two predictors: pitch strength, reflecting the
degree to which a distinctive pitch is present in the sound signal, and pitch value, reflecting the fundamental frequency of the pitch, relative to
the baseline. For moments when pitch strength is 0, the pitch value is set to the default baseline value. (B) For two-speaker stimuli, pitch
strength and value were estimated separately for each speaker and then split into two separate predictors, reflecting overt pitch (i.e., pitch is
present only in a single speaker) and masked pitch (i.e., pitch is present in both speakers). Note that, as a consequence of this definition, the two
masked pitch predictors are always simultaneous, whereas the overt pitch predictors are mutually exclusive.

Methods

We reanalyzed MEG responses from 26 native speakers
of English (8 females, 18 males; age mean 45.2 years, range
22–61 years), listening to multiple 1-min duration audiobook
segments, in quiet and in a two-talker mixture (8 and 16 min,
respectively). Mixtures always consisted of a male and a
female speaker, clearly separable by pitch. Most of the analysis
followed essentially the same procedures as the original study
(Brodbeck et al., 2020) but with additional predictors to isolate
representations of pitch.

MEG recordings were pre-processed in MNE-Python
(Gramfort et al., 2014) with temporal signal-space separation
(Taulu and Simola, 2006) and a 1- to 40-Hz band-pass filter
(zero-phase FIR filter, MNE-Python 0.15 default settings).
Independent component analysis (Bell and Sejnowski, 1995) was
used to remove known biological artifacts such as eye blinks
and heart beat (on average, 4.7 components were removed per
subject). An additional 20-Hz low-pass filter (same details as
the band-pass filter) was applied to increase analysis power
because consistent phase-locked responses occur predominantly

at lower frequencies (Ding and Simon, 2013). Response epochs
related to the stimuli were then extracted and downsampled
to 100 Hz. For two-talker stimuli, the first second contained
only the target talker, and data corresponding to this second
were discarded. Responses were then projected to current
dipoles oriented perpendicularly to the white matter surface
(fourfold icosahedral subdivision) using distributed minimum
`2 norm source current estimates, using a noise covariance
estimate from empty room data and regularization λ = 1/6 (no
depth weighting).

Predictors

Pitch was extracted from each stimulus using Praat
(Boersma and Weenink, 2017). Pitch strength was taken
directly from the Praat estimate, which quantifies the degree
of periodicity in the signal, taking values between 0 and 1.
The pitch value, reflecting the frequency in hertz, was log-
transformed, and sections without pitch (pitch strength of zero)
were set to the 5th percentile value of sections with pitch (see
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Figure 1A). This baseline correction was performed for each
1-min segment separately, to derive relative pitch, regardless
of the specific speaker’s fundamental frequency. The pitch
value was oriented relative to the lower end of the scale to
account for the observation in electrocorticography that native
English speakers show selective responses to higher relative
pitch (Li et al., 2021). Across all stimuli, pitch strength and
value were moderately correlated (r = 0.66). To control for
spectro-temporal acoustic processing, we included the acoustic
spectrogram and onset spectrogram predictors from the original
study (eight bands each).

We also considered a pitch onset predictor (Krumbholz
et al., 2003), based on the half-wave rectified derivative of
the pitch strength. We reasoned that this predictor might
be able to isolate responses related to the initial detection
of pitch. However, the predictor did not improve predictive
power beyond pitch strength and value [tmax = 2.28, p = 0.385,
when restricted to the superior temporal gyrus (STG)], and we
consequently dropped it from further analysis. A reason for this
might be that pitch onset in speech almost always coincides
with a sound onset in the spectrogram, which our analysis
always controlled for.

For the two-speaker condition, we first generated pitch
predictors for each of the two source segments in the mixture.
Masking was operationalized as a binary distinction: The
ignored speaker was considered masked where the pitch
strength of the attended speaker exceeded 0.5, and vice versa.
Based on this, both speaker’s pitch predictors were split into
two different sets, one reflecting overt pitch and the other
masked pitch (Figure 1B). On average, overt speech predictors
were non-zero at 24.6% of time points and masked speech
predictors at 29.9%. To control for spectro-temporal processing,
we included all predictors from the two-talker condition of the
original study, including overt and masked onsets (Brodbeck
et al., 2020, second equation on p. 17).

Model tests

Multivariate temporal response function (mTRF) models
were estimated separately for each subject and source dipole
with Eelbrain (Brodbeck et al., 2021). As in the original study,
models with a latency range 0–500 ms were estimated and tested
on held-out data using fourfold cross-validation. Predictive
power was quantified as the proportion of the variability in
the source-localized MEG responses explained by the model.
Each predictor was evaluated by comparing the predictive
power of the complete model (all predictors) with a model
that was estimated while excluding the to-be-tested predictor.
Importantly, these tests assess the unique predictive power of
the predictor under investigation, after controlling for all other
predictors (i.e., a significant result indicates that this predictor
contains information about the brain responses that is not

present in any of the other predictors). This is important because
different speech features are often correlated, and a spurious
predictor by itself might derive some predictive power simply
from being correlated with a neurally meaningful speech feature
(e.g., Gillis et al., 2021).

We defined anatomical areas for mass-univariate tests
(based on “aparc” labels; Desikan et al., 2006): For pitch
representations of clean speech, we initially tested in the
whole cortex, with the exception of the occipital lobe, insula,
and cingulate cortex (i.e., regions in which we did not
expect a substantive auditory response, excluded in order
to expedite these numerically intensive computations). Based
on these results, we performed tests for the two-speaker
condition in more restricted areas in the STG (transverse and
superior temporal gyrus labels) and the inferior frontal gyrus
(IFG; pars opercularis, pars triangularis, and pars orbitalis
labels). Anatomical maps of predictive power were smoothed
(SD = 5 mm) and compared with mass univariate related
measures t-tests, correcting for multiple comparisons with
threshold-free cluster enhancement (Smith and Nichols, 2009)
and a permutation distribution based on 10,000 random
permutations of condition labels. Tests of whether a given
predictor improved predictive power were one-tailed, and all
other comparisons were two-tailed. Even though we sometimes
report results separately for the left and right hemispheres,
multiple comparisons correction was always based on a
permutation distribution estimated from the combination of
both hemispheres.

To express model predictive power as a meaningful quantity,
the predictive power of different predictors is expressed as % of
the explanatory power of the most complete model (separately
for the single speaker and the two-speaker conditions).

There is no standard measure of effect size for mass
univariate tests. As a compromise, we report tmax for mass
univariate tests, that is, the largest t-value in the significant
area (or the whole tested area for non-significant results).
However, to provide a more traditional measure of effect size,
we also defined a functional region of interest (ROI). This ROI
was defined based on the intersection of significant activation
in the single speaker condition (to either of the two pitch
predictors) and the STG anatomical area. We used this ROI
to extract the average explained variability attributable to pitch
strength and value combined (for swarm plots) or each predictor
individually (for univariate ROI tests).

ANOVA for difference in localization

Localization differences in MEG should be interpreted
with caution (Lütkenhöner, 2003; Bourguignon et al., 2018).
However, the question whether two localizations are based on
the same underlying source configuration can be tested in a
straightforward manner, based on the linearity of the forward
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and inverse models. Two brain activation patterns with the
same underlying source configuration should produce the same
relative measurements at the sensor level (McCarthy and Wood,
1985) and, consequently, in the source-localized responses.
Based on this, we test the null hypothesis that two predictors
are represented in the same neural sources by first normalizing
the two respective maps and subtracting one from the other.
If the two underlying maps have the same shape, the sources
should now only contain random noise. We thus used a one-
way repeated measures ANOVA with factor source dipole to test
whether there is a systematic pattern left after the subtraction (in
other words, whether there is a systematic difference between
the patterns of localization of the two predictors).

Temporal response functions

To analyze temporal response functions (TRFs), mTRF
models were re-estimated using a latency range from −100
to 500 ms and without held-out data (but still using early
stopping based on cross-validation). For TRF estimation,
predictors and MEG responses were normalized, and TRFs
were analyzed at this normalized scale. Note that TRFs are
equivalent to coefficients in a regression problem and, unlike
the model tests, may thus be sensitive to contamination from
correlated predictors.

Results

Pitch strength and value are tracked in
single-talker speech

In single-talker clean speech, pitch strength and pitch value
were both represented neurally (Figure 2). This was assessed
by comparing the predictive power of a full model, containing
pitch strength and value along with an auditory spectrogram
and an acoustic onset spectrogram, with the predictive power
of two control models which were fit either without the
pitch strength or without the pitch value predictor. This
indicated that both predictors contributed unique predictive
power to the full model (strength: tmax = 5.58, p < 0.001;
value: tmax = 6.00, p < 0.001). Overall, source localization is
consistent with the majority of sources being in the vicinity
of the auditory cortex in Heschl’s gyrus and the superior
temporal gyrus (see Figure 2A). Pitch strength was significantly
right-lateralized (Figure 2B; tmax = 4.90, p < 0.001), with
no significant tracking in the left hemisphere (tmax = 3.24,
p = 0.670).

The localization of pitch value was more complex:
when tested in the whole brain, it was significantly right-
lateralized (tmax = 4.90, p < 0.001). However, the region of
significant difference coincided with the anatomical label

of the pars opercularis of the IFG. When repeated in the
STG only, lateralization was not significant (tmax = 2.28,
p = 0.385). To confirm that pitch strength and value
are tracked by non-identical sources, we applied a one-
way ANOVA with factor source dipole to the difference
between the two normalized activation patterns in the right
hemisphere (see section “Methods”, “ANOVA for difference
in localization”). This indicated that the distribution of
sources tracking the two predictors was indeed different
(F(117,2925) = 1.85, p < 0.001). Together, these results
suggest that pitch value tracking engages additional,
more anterior sources than pitch strength tracking. The
source localization raises the possibility that pitch value
specifically engages the right IFG, although due to the
proximity to the anterior temporal lobe, it is impossible to
exclude the possibility of an anterior temporal source with
dispersion into IFG due to imperfect source localization
(cf. Bourguignon et al., 2018).

Response to pitch peaks around
100 ms latency

The temporal response functions (TRFs) are the estimated
impulse responses to elementary pitch features, shown in
Figures 2C,D. Figure 2C shows the response magnitude,
summed across source dipoles, as a function of time. Responses
are shown in functional ROIs, based on combining the region of
significant model predictions (union across the two predictors)
with anatomical STG and IFG labels. Most of the response
power is concentrated in the first 50–200 ms, with a clear
response peak to pitch value around 100 ms. Comparison of
responses to pitch value in the STG and IFG ROIs suggests that
the relative involvement of the anterior peak is stronger at the
shorter latencies. The anatomical distribution of the response
magnitude is consistent with this, showing a stronger response
at the anterior source in the early time window (Figure 2D).

In two simultaneous talkers,
pitch-tracking depends on selective
attention

To test how pitch is tracked when listening to one of two
concurrent talkers, we generated four versions of each predictor:
first, we generated separate versions for pitch of the attended
speaker and that of the ignored speaker; second, for each of
those, we separated each time point into overt or masked
pitch, based on whether pitch was simultaneously present in the
other talker or not (see Figure 1B). First, we tested for pitch
tracking in the STG by combining pitch strength and value in
each of the four categories (Figure 3A). The results indicated
significant pitch tracking for overt pitch, regardless of whether
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A B
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FIGURE 2

Separable tracking of pitch strength and pitch value of a single talker. (A) Pitch strength and pitch value both improved model predictions
independently, when controlling for acoustic envelope and onset spectrograms (p ≤ 0.05, corrected; darkened areas excluded from analysis).
The color scale reflects the explained variability in MEG responses, expressed as % of the complete model. (B) Both pitch predictors showed
some right lateralization. The plots show the right–left hemisphere predictive power difference, same scale as (A). (C) Temporal response
functions (TRFs) showed dominant responses at latencies between 50 and 200 ms. TRF magnitude is shown for regions of significant model
prediction. The three horizontal red bars indicate time windows used in (D). (D) Anatomical distribution of TRFs in 50 ms time windows. LH, left
hemisphere; RH, right hemisphere; STG, superior temporal gyrus; IFG, inferior frontal gyrus; aSTG, anterior STG.

pitch originated from the attended (tmax = 4.38, p < 0.001)
or the ignored speaker (tmax = 3.74, p = 0.008). In contrast to
this, masked pitch was tracked only in the attended speaker
(tmax = 3.57, p = 0.003), whereas we did not find evidence for
tracking of masked pitch in the unattended speaker (tmax = 2.42,
p = 0.432). None of the effects were significantly lateralized.
Although tracking of overt pitch in the ignored speaker was
only significant in the right hemisphere, the lateralization of this
effect was not significant either (tmax = 2.47, p = 0.054; other
ps ≥ 0.199).

A direct comparison in the STG confirmed effects of
selective attention for tracking of overt and masked pitches. For
masked pitch, tracking was significantly stronger in the attended
speaker than in the unattended speaker in both hemispheres

(one-tailed test: right: tmax = 3.88, p = 0.005; left: tmax = 3.07,
p = 0.042). For overt pitch, tracking of the attended speaker was
stronger in the left hemisphere only (tmax = 3.26, p = 0.031; right:
tmax = 2.48, p = 0.415), again without significant lateralization of
the effect. While these results appear more robust for masked
pitch than for overt pitch, there were somewhat more data for
masked pitch than for overt pitch (29.9 vs. 24.6%), suggesting
that the former test might be somewhat more powerful, and this
difference should be interpreted with care.

Only attended masked pitch was also significant in the
IFG area (tmax = 3.20, p = 0.025), and in this area, attended
masked pitch was significantly stronger than ignored masked
pitch (tmax = 3.54, p = 0.017). Representation of attended
masked pitch was also stronger than that of attended overt pitch
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A B C

D

FIGURE 3

Pitch tracking in two simultaneous speakers depends on selective attention. (A) Significance tests of pitch tracking for overt and masked pitch in
the attended and ignored speakers. STG and IFG were separately tested (darkened area excluded from tests). (B) Individual subject data (%
variability explained) in a region of interest, defined as the intersection of the region of significant activity in the single speaker condition and the
STG anatomical label. (C) Temporal response function (TRF) magnitude with dominant response at 100–200 ms latency. The three horizontal
red bars indicate time windows used in (D). (D) TRF activity localized mainly to the auditory cortex, with involvement of a more anterior region
for masked pitch in the attended speaker. LH, left hemisphere; RH, right hemisphere; STG, superior temporal gyrus; IFG, inferior frontal gyrus;
aSTG, anterior STG.

(tmax = 3.40, p = 0.035) (subject to the same caveat that there
were slightly more data for masked pitch).

Next, we asked whether pitch strength and pitch value were
independently tracked for concurrent speakers in each of the
significant categories. Surprisingly, in mass univariate tests in

the STG, none of the pitch strength predictors were significant,
while all three pitch value predictors were significant. To derive
proper measures of effect size, we also performed univariate
tests in an ROI based on significant STG activation in the one
speaker condition (Table 1). While these results are largely
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TABLE 1 In the two-talker mixture, pitch tracking is dominant due to pitch value, and not pitch strength.

Left hemisphere Right hemisphere

Speaker Masking Pitch t p d t p d

Attended Overt Strength 2.09 0.023 * 0.41 0.36 0.361 0.07

Value 4.21 <0.001 *** 0.83 3.18 0.002 ** 0.62

Masked Strength 0.85 0.202 0.17 −1.44 0.919 −0.28

Value 3.85 <0.001 *** 0.75 3.45 0.001 ** 0.68

Ignored Overt Strength 0.71 0.242 0.14 −0.25 0.600 −0.05

Value 1.76 0.045 * 0.35 2.90 0.004 ** 0.57

Each row shows the unique predictive contribution of one predictor, in the two-speaker condition, in an STG ROI based on significant activity in the one speaker condition. Shown are a
one-sample t-test of the difference in prediction accuracy when excluding a given predictor, and Cohen’s d. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.

consistent with the mass univariate test results, they do suggest
marginally significant tracking of overt pitch strength in the
left hemisphere. The univariate tests are likely less conservative
than the mass univariate tests, by not correcting for multiple
comparisons in the two hemispheres. Nevertheless, the result
suggests that some pitch strength tracking might exist, although
with a much weaker effect size than pitch value tracking.

Based on the aforementioned results, we only analyzed TRFs
to pitch value. The TRFs to overt pitch in the attended and the
ignored speaker were qualitatively similar (Figures 3B,C). By
contrast, masked pitch in the attended speaker was associated
with a large peak in the right STG around 140 ms. Figure 3D
shows the anatomical distribution of the TRFs between 50 and
200 ms.

Discussion

Our analysis of responses to clean speech confirms a
previous report of separate cortical pitch strength and pitch
value tracking seen with EEG (Teoh et al., 2019). In addition,
source localization suggested a differentiation between the two
representations, with a right-lateralized STG representation of
pitch strength and a bilateral STG representation of pitch value,
with potential additional involvement of a more anterior region.
While source localization suggests that this more anterior region
lies in the IFG, we cannot exclude the possibility of this being
an artifact of imperfect source localization (Bourguignon et al.,
2018) as a source in the anterior STG would be more consistent
with fMRI reports of a pitch representation in the anterior STG
(Norman-Haignere et al., 2013).

In the presence of two simultaneous speakers, pitch tracking
depends on selective attention, but not exclusively. Overt pitch
was similarly represented, regardless of whether that pitch was
in the attended or the ignored speaker. This suggests that overt
pitch extraction occurs without a need for selective attention
and might form part of an auditory background representation.
On the other hand, when pitch was present in both speakers
simultaneously, selective attention had a strong effect: pitch in

the attended speaker was tracked very robustly, with recruitment
of additional, more anterior neural sources, possibly reflecting
additional resources recruited for speaker segregation. At the
same time, we found no evidence for the representation of pitch
in the ignored speaker when pitch was simultaneously present
in the attended speaker.

Stream segregation of a monaural
mixture is cortical and depends on
selective attention

A long-standing question on cocktail party speech
processing is whether segregation of multiple speakers occurs
pre-attentively, with selective attention merely selecting one
of multiple input streams, or post-attentively, with selective
attention actively contributing to the segregation. Recent
evidence supports the latter view, at least when the speech
signals are mixed together monophonically, that is, without
spatial separation cues (Puvvada and Simon, 2017; O’Sullivan
et al., 2019; Brodbeck et al., 2020). Our new results are
consistent with this. On the one hand, significant tracking
of overt pitch in the ignored speaker suggests that pitch
tracking itself does not require selective attention, as long as the
pitch is easily extracted through the periodicity of the signal.
However, in masked pitch, we found a strong effect of selective
attention, with no evidence of tracking of ignored pitch at all.
Consistent with the previous reports, the present results do
not provide evidence for pre-attentive pitch-based segregation,
but do suggest enhanced pitch processing in a selectively
attended speaker.

Cortical pitch tracking reflects acoustic
and possibly linguistic processes

Our results also have implications for determining the
neural processes that give rise to cortical pitch tracking. Cortical
voice pitch tracking might reflect purely acoustic processing,

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.828546
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-828546 August 2, 2022 Time: 14:46 # 9

Brodbeck and Simon 10.3389/fnins.2022.828546

that is, the extraction of pitch and the pitch trajectory (e.g.,
Andermann et al., 2021). However, pitch also carries linguistic
information (Stevens, 1998), and neural responses to linguistic
events may be confounded with responses to pitch per se.
For instance, the presence of pitch normally coincides with
voiced segments, predominantly vowels, and thus, responses
related to pitch might also reflect extraction of vowel features.
Furthermore, the pitch contour is a prosodic cue that relates to
the information structure and phrase structure of an utterance.
Pitch tracking could thus also reflect processing of such higher
level properties such as pitch accents (Llanos et al., 2021).

Our data suggest that pitch tracking at least partially reflects
relatively low-level, auditory processing. We here observed
robust tracking of overt pitch in the ignored talker during times
when the attended talker did not also produce pitch. Previous
work suggests that linguistic processing of ignored speech in
selective listening tasks is very limited (Brodbeck et al., 2018;
Broderick et al., 2018). In particular, in the same dataset as used
here, we found no evidence for time-locked processing of words
in the ignored speaker (Brodbeck et al., 2018). The tracking
of pitch in the ignored speaker thus likely reflects acoustic
processing at a pre-lexical stage. The sources of pitch tracking
in the attended speaker thus likely include similar acoustic
processing but might in addition include higher level, linguistic
processes. Engagement of higher level processing might also
explain the enhanced tracking of overt pitch in the attended
speaker vs. ignored speaker in the left STG.

Lateralization

Cortical pitch processing has sometimes been specifically
associated with the right hemisphere. For example, pitch
judgments engage the right prefrontal cortex (Zatorre et al.,
1992), and the right auditory cortex might play a causal role
in pitch discrimination learning (Matsushita et al., 2021). Our
results provide additional evidence for a tendency toward right
lateralization of at least some aspects of pitch tracking in speech
as we found evidence for stronger pitch representations of
clean speech in the right hemisphere. However, we did not find
significant lateralization effects in the two-speaker condition.
This suggests that pitch processing might become more bilateral
in the more demanding condition, possibly through recruitment
of additional (left hemispheric) higher level processes.

Conclusion

The central finding of this study is that cortical pitch
tracking is modulated by selective attention. While listeners
represent overt pitch similarly in an attended or an ignored
speaker, they do not seem to track pitch of an ignored speaker
that is masked by pitch in the attended speaker. By contrast,

tracking of masked pitch is robust for an attended speaker,
suggesting that this pitch is selectively extracted and processed.
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