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Pediatric medical imaging represents a real challenge for physicians, as children who are

patients often move during the examination, and it causes the appearance of different

artifacts in the images. Thus, it is not possible to obtain good quality images for this

target population limiting the possibility of evaluation and diagnosis in certain pathological

conditions. Specifically, magnetic resonance imaging (MRI) is a technique that requires

long acquisition times and, therefore, demands the use of sedation or general anesthesia

to avoid the movement of the patient, which is really damaging in this specific population.

Because ALARA (as low as reasonably achievable) principles should be considered for

all imaging studies, one of the most important reasons for establishing novel MRI imaging

protocols is to avoid the harmful effects of anesthesia/sedation. In this context, ground-

breaking concepts and novel technologies, such as artificial intelligence, can help to

find a solution to these challenges while helping in the search for underlying disease

mechanisms. The use of new MRI protocols and new image acquisition and/or pre-

processing techniques can aid in the development of neuroimaging studies for children

evaluation, and their translation to pediatric populations. In this paper, a novel super-

resolution method based on a convolutional neural network (CNN) in two and three

dimensions to automatically increase the resolution of pediatric brain MRI acquired in

a reduced time scheme is proposed. Low resolution images have been generated from

an original high resolution dataset and used as the input of the CNN, while several scaling

factors have been assessed separately. Apart from a healthy dataset, we also tested our

model with pathological pediatric MRI, and it successfully recovers the original image

quality in both visual and quantitative ways, even for available examples of dysplasia

lesions. We hope then to establish the basis for developing an innovative free-sedation

protocol in pediatric anatomical MRI acquisition.

Keywords: deep learning (DL), magnetic resonance imaging (MRI), pediatric imaging, sedation, super-resolution

(SR), convolutional neural networks (CNN)
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is the key modality for
obtaining pathophysiological information in a non-invasive
manner, while avoiding the use of ionizing radiation that may be
harmful to patients, causing them short- or long-term damaging
effects. By using MRI, it is possible to obtain high-resolution
images describing the anatomy, function, diffusion, etc. of the
patient and capture decisive details. Although there are no
major issues among most of the adult populations, pediatric
MRI acquisition represents, however, an important challenge,
as their cooperation becomes more difficult to attain for the
clinical trial success. Children need to stand still and immobile
during the examination and get to tolerate the claustrophobic
environment inside the scanner. However, this is challenging
and motion artifacts appear as a direct consequence, frequently
worsening the image quality and sharpness, thus, restraining its
usability as a diagnosis and treatment tool. In this scenario, and
also due to intense noise and the aforementioned restriction
of space inside the MRI scanner, sedation is very advisable for
examinations of children in most situations, as stopping an
MRI scan is expensive and ineffective, hence the failure rate
needs to be mitigated (Schulte-Uentrop and Goepfert, 2010).
Nevertheless, despite these artifacts can be refrained with the
aid of sedation or anesthesia and reach a high image quality,
children could suffer potential long-term neurological and
cognitive side effects, such as hallucinations or nightmares, and
also cardiovascular affectations, like hypertension, bradycardia,
alterations in mean arterial pressure, and myocardial depression
(Slovis, 2011; Ahmad et al., 2018). Additionally, because as low
as reasonably achievable (ALARA) principles are considered for
all imaging studies -especially pediatric ones- the main goal is
to restrict its dispense as much as possible and limit it only to
imperative cases.

In this sense, there exist distraction methods that have
revealed a reduction in the percentage of sedated infants
compared to control groups (Harned Ii and Strain, 2001; McGee,
2003; Khan et al., 2007), so parents’ stress decrease substantially
because sedation and its associated recovery time are luckily
skipped. One of the most common distraction methods consists
of wearing video goggles and earphones in order to watch and
listen to films as a distraction during the examination. Another
way to calm children and infants during the acquisition is
displaying a video on a mobile screen monitor that can be
adjusted according to any position of the patient inside the
scanner. Moreover, a certified child-life specialist gets children
ready to behave correctly in the scanner and attract their
attention during the examination with the direct effect of
improving image quality. Sleep manipulation might represent an
alternative way to handle children’s movements (Edwards and
Arthurs, 2011). Deprivation of sleep before the examination has
been demonstrated to prevent infants from sedation and acts as a
substitute for pharmacological sleep induction.

While all these techniques are extremely useful in shortening
scan time, they still result insufficient to avoid sedation in some
pediatric patients. In this context, ground-breaking concepts and
novel technologies can help to find a solution to these challenges

while helping in the search for underlying disease mechanisms.
Very recently, the feasibility and acceptability of MRI imaging
studies without anesthesia have been demonstrated in adolescent
populations with moderate or severe neuropathic pain (Verriotis
et al., 2020), or autism spectrum disorders (Smith et al., 2019). In
this sense, post-MRI-acquisition super-resolution (SR) methods
play an essential role. SR methods can provide high resolution
(HR) images from low resolution (LR) images and consequently
achieve a resultant image quality similar to ideal HR images with
a shorter acquisition time.

Traditional mathematical methods can address the SR
problem in MRI. For instance, Peled and Yeshurun (2001)
and Yan and Lu (2009) use the iterative back projection
method in Diffusion Tensor images and anatomical images,
respectively. In the case of Gholipour et al. (2010), a stochastic
regularization process is applied to brain fetal MRI. Another
popular implementations are sparse methods, which subdivide
the image and store the result in a dictionary. Lustig et al. (2007)
made subimage sampling for sparse coding on the frequency
domain, and Zhang et al. (2019) succeeded to recover details
from neonatal T1 and T2-weighted MRI, with the help of older
children’s images. However, all these classical methods for SR
come with performance limitations when applied to pediatric
MRI. With that in mind, it is preferred to develop a scheme
that profits from deep learning (DL) tools to generate the SR
image, as they imply an improvement compared with results
using classical methods.

We can find convolutional neural network (CNN)
implementations in the literature that successfully solve the
SR problem using MRI. Pham et al. (2019) and Chaudhari et al.
(2018) implemented a 3D CNN with no feature dimension
reduction and evaluated the network for many scaling factors.
They also demonstrate that one single network gets to deal with
more than one scaling factor. In the case of Pham et al. (2019),
the same number of filters is applied for each layer and they use
residual operations and a single skip connection. Qualitative
evaluation is carried out fromHR neonatal reconstructions as the
ground truth of real LR data is not available. In Zeng et al. (2020),
a fully dense connected cascade network is developed and they
compared the results with a Unet, which is the base architecture
in our work. Chen et al. (2018) also proposed a 3D densely
connected network for brain MRI SR with the same number of
filters inside the dense block. Pham et al. (2017) designed a 3D
CNN with variation in the number of filters depending on the
layer, while Du et al. (2020) opt for a residual CNN whose input
is individual 2D MRI slices. As well, Qiu et al. (2020) combine a
three hidden layer 2D CNN with a sub-pixel convolutional layer
using knee MRI and Zeng et al. (2018) carry out a sophisticated
approach where they benefit from distinct modality information
and the architecture implies two consecutive CNNs.

Apart from CNN development in brain MRI SR, some works
based on Generative Adversarial Networks (GANs) have been
published in the last few years. Sánchez and Vilaplana (2018)
used T1 MRI for two different scaling factors, and Lyu et al.
(2018) takes as input T2 individual MRI slices for training
two kinds of GANs. Wang et al. (2020) implement a 3D GAN
framework with T1 images. Finally, You et al. (2020) and
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Tan et al. (2020) make a more elaborated implementation of the
GAN framework.

In this work, we exploit recent development in Graphics
Processing Units (GPU) and we present a DL approach to address
the SR problem for pediatric MRI. Our CNN is based on the
form of a Unet autoencoder and we get to successfully recover
the resolution from pediatric LR MRI. The CNN architecture
includes skip connections, residual operations, and feature maps
with distinct dimensions depending on the layer, allowing the
network to learn features with many levels of complexity. Using
consecutive convolutions, we intend to extract critical features
that determine the SR process during the encoding stage. Then,
the objective is to reconstruct the output from deep features
maps as dimension and domain from input and output MRI
of CNN need to be the same in order to compare both at the
evaluation stage.

2. MATERIALS AND METHODS

2.1. Dataset
An open dataset containing brain MRI volumes of 155
healthy controls has been used for the main implementation
and technical assessment of our DL architecture (Richardson
et al., 2018). This dataset is composed of 33 adults (20
female; 24.8 ± 5.3 years, range of 18–39 years) and 122
children (64 female; 6.7 ± 2.3 years, range of 4–12 years).
Anatomical T1-weighted and functional MRI volumes have been
acquired on a Siemens TIM Trio 3T MRI scanner (Siemens
Healthineers, Erlangen, Germany) located at the Athinoula A.
Martinos Center for Biomedical Imaging (Boston, MA, USA).
Anatomical volumes were obtained with a 32 channel head
coil using an MPRAGE sequence (TR = 2.53 s, TE = 1.64
ms, FlipAngle = 7◦, 1 mm isotropic voxel) including two
different matrix sizes: 176 × 256 × 256 and 176 × 192 ×
192. Specific head coils have been used for subjects younger
than 5 years.

An additional dataset composed of 12 children (3 female,
9.29 ± 3.76; range of 3–16 years) brain MRI volumes diagnosed
with different types of dysplasia and presenting different lesions
has been used for a more detailed clinical assessment (Table 1).
Anatomical T1-weighted volumes have been acquired on two
different General Electric (GE) 3T MRI scanners, a Signa HDxt
3.0T and a Signa Premier(GE Healthcare, Waukesha, WI, USA)
located at Quirónsalud Madrid University Hospital (Pozuelo de
Alarcón, Madrid). Among them, 8 volumes were obtained with
an 8 channel head coil using an EFGRE3D sequence (TR = 9.244
ms, TE = 3.428 ms, TI = 750 ms, FlipAngle = 10◦, 1.13mm
isotropic voxel) and 4 of them were acquired with a 48 channel
head coil using an MPRAGE sequence (TR = 2.2 s, TE = 2.8 ms,
FlipAngle = 8◦, 1 mm isotropic voxel). The use of these images
for the present study was approved by the local Institutional
Review Board.

2.2. Data Preprocessing
2.2.1. Quality Assurance and Size Standardization
Quality assurance (QA) in the open database revealed that from
the initial 155 healthy controls, 32 children volumes (matrix size
176 x 192 x 192) demonstrated evident imaging artifacts that
could negatively impact our procedure and, as a consequence,
they were excluded from the final dataset. Thus, 123 healthy
controls were selected after QA: 33 adults (20 female; 24.8 ± 5.3
years, range of 18–39 years) and 90 children (46 female; 7.1± 2.0
years, range of 4–12 years).

The final matrix size of the selected images after QA is
176x256x256. Zero-padding was applied on both sides in the first
dimension to ease later patching of the volumes when fed to
our CNN architecture while maintaining the brain centered in
the final volume. Additionally, the background was homogenized
using a binary mask. The images were not denoised, bias
corrected, or registered as part of the pre-processing stage.

The same procedure was applied to the clinical pediatric
dataset. No images were discarded in this process. However, as
our original pipeline was developed for a matrix size of 256 ×

256× 256 in the open access dataset, we resized all MRI volumes
from 512× 512× 512 to 256× 256× 256.

TABLE 1 | Demographic data of the pediatric dataset used for the clinical evaluation of the algorithm.

ID# Age Sex Disease MRI sequence (Scanner)

001 8 F Simple cortical dysplasia EFGRE3D (Signa HDxt)

002 9 F Taylor dysplasia EFGRE3D (Signa HDxt)

003 11 M Bilateral opercular syndrome EFGRE3D (Signa HDxt)

004 16 M Aqueductal stenosis; Opercular syndrome; Heterotopia; Cystic brain lesion EFGRE3D (Signa HDxt)

005 6 F Opercular syndrome EFGRE3D (Signa HDxt)

006 8 M Taylor dysplasia EFGRE3D (Signa HDxt)

007 5 M Cingulum dysplasia EFGRE3D (Signa HDxt)

008 13 M Opercular syndrome EFGRE3D (Signa HDxt)

009 3 M Opercular syndrome; Cerebral fissure malformation MPRAGE (SIGNA Premier)

010 8 M Cortical dysplasia MPRAGE (SIGNA Premier)

011 13 M Taylor dysplasia MPRAGE (SIGNA Premier)

012 6 M Cortical dysplasia MPRAGE (SIGNA Premier)
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2.2.2. Creation of Low Resolution Database
The selected databases are composed of HR images. Therefore,
the first step is the artificial production of LR images from HR
original ones. First, we simultaneously apply both downsampling
and smoothing operations convolving a 3D cubic gaussian kernel
of 5 voxels size (σ = 1) with the MRI volume, in one of
each N voxels per dimension. If the original volume dimensions
are (d1, d2, d3), dimensions of HR image downsampled will be
(d1/N, d2/N, d3/N) with N as the selected scaling factor. This
way of deriving the LR counterparts is in consonance with
previous works in the state of the art (Rueda et al., 2013; Shi et al.,
2015; Pham et al., 2017, 2019; Zeng et al., 2018).

Low resolution downsampled images are then interpolated
to HR image size. Although interpolation is an image
transformation that could add noise to the downsampled image,
it avoids fitting the CNN to an specific scaling factor. In this
manner, the designed CNN does not depend on LR image size,
and it becomes a robust method to implement on any image
size. Hence, LR images are rescaled to original HR image size
(d1, d2, d3). New intensity values are created among existing ones
to get the necessary matrix size. In the majority of the mentioned
studies that have applied CNNs to SR of MRI, bicubic splines is
the key method for interpolation, thus used in this work.

Then, we apply min-max normalization to all MRI volumes.
The intensity values of every image are transformed to a common
[0, 1] range. As every LR volume is created from an HR image,
each LR normalization takes the arguments (minimum and
maximum intensity values) from the associated HR image.

2.2.3. Volumes Patching
Convolutional neural network architecture determines the way
images feed the network. This work explores two network
modalities: 2D and 3D. 3D CNNs receive 3D volumes as input,
but not full LR volumes in our case. NVIDIA graphic cards
cannot store all parameters for the whole volume because of
their limited memory, which forces us to extract patches from
the images. Patches are cubic volumes of size 32 and they are
extracted in train and validation sets using a stride equal to 32,
with no overlap, in order to be differentiated from test patching.
This patching process is carried out identically for both input and
label images of the network. On the other hand, 2D CNNs receive
two-dimensional inputs which are complete individual slices of
size 256 x 256.

The data augmentation process is carried out to assure a
sufficient amount of information and get CNN generalization. It
consists of randomly rotating each volume in every dimension
by selecting a random angle within the interval [−30, 30]
degrees. We select this interval range of angles as 30 degrees is
the maximum possible shift of the subject position inside the
MRI scanner.

2.3. Hardware and Software
Computational equipment includes a processor Intel(R)
Core(TM) i9-10980XE CPU, 128 GB RAMmemory,Ubuntu 20.04
operating system, and 1 TB hard disk storage. Data preprocessing
has been developed using Python 3, and CNNs were designed

and trained with Tensorflow 2 library using GPU NVIDIA
GeForce RTX 3080.

2.4. Super-Resolution Formulation
The DL-based SR process aims to estimate an HR image X̂ from
an LR image Y ∈ R

n that is simulated from an HR ground-
truth image X ∈ R

m. Thus, the connection between X and Y

is formulated as follows:

Y = T(X) = (D↓S)X+N (1)

withT ∈ R
m,n (m > n) as the general transformation, in our case,

based on applying to the ground truth HR image a combination
of downsamplingD↓ and smoothing S processes.N indicates the
noise related to the transformation. For the purpose of finding
the inverse mapping estimation, it is convenient to minimize a
least-squares cost function:

X̂ = argmin
X

‖X− T−1(Y)‖2 = argmin
X

‖X− R(I↑(Y))‖2 (2)

being T−1 an ensemble of a recovery matrix R ∈ R
m,m and

an upsampling operator I↑ regarding the spline interpolation of
LR image Y. Since we have multiple subjects available, R̂ can be
achieved by minimizing the following additive function:

R̂ = argmin
R

N∑

i=1

‖Xi − R(I↑(Yi))‖
2 (3)

where N is the number of subjects available for generating the
model. Finally, the optimal R̂ learnt allows to produce an SR
estimation X̂ from a new LR image Y:

X̂ = R̂(I↑(Y)) (4)

2.5. CNN Architecture
The neural network chosen to perform SR is the Unet
autoencoder, whose basic structure and function are presented
in Ronneberger et al. (2015). This structure is taken as the core
basis to insert residual operations to improve performance. In
the encoding stage, several downsampling transformations are
performed by max pooling operations (pool value of 2 voxels
per dimension), and the number of filters is double increased.
Moreover, the decoding stage contains transposed convolutions
(stride value of 2 voxels per dimension) as upsampling
operations, where the number of filters is consecutively halved to
achieve the initial image size. In the course of the decoding stage,
after each transposed convolution, skip connections concatenate
feature maps with their homologous encoding phase to preserve
information from multiple scales and complexities. Apart from

the dimensions of convolution kernels, 2D and 3D CNNs have

identical architecture.
Our proposed architecture is divided into 9 stages. The first

four stages are focused on encoding, the fifth one is the latent

space, whereas the last four ones belong to the decoding stage.

The first two stages in encoding and last two stages on decoding

have two convolutional blocks each, whereas the rest of the stages
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contain three convolutional blocks, and we get 23 convolution
blocks in all. Each of those blocks consists of a convolutional layer
followed by batch normalization and ReLU activation function.
Also, we have one final convolution at the end of the network and
4 transposed convolutions in the decoding stage, which makes a
total of 28 convolutional layers for the whole CNN.

All convolutional layers use (3,3,3) kernel size except the last
one. We take into account that the model accuracy may worsen
as the network depth increases so the number of convolutional
layers is the minimum needed to succeed with generalization.
Also, we tested the model with dilated convolutions but they
have been discarded as they did not improve the performance.
This demonstrates that a more complex and sophisticated
implementation of neural networks does not always give
better results.

Residual operations intend to avoid the gradient vanishing
problem and are located before each max pooling layer and after
each transposed convolution. They append the input features
maps to the output feature maps of the current stage. These
input maps are previously convolved with a kernel size (1,1,1).
Finally, the last convolutional layer employs (1,1,1) kernel size
and a sigmoid activation function to bound the intensity values,
in case some exceeds the interval [0, 1]. Figure 1 shows a general
overview of the CNN architecture.

2.6. Experimentation
Once data preprocessing is implemented on the original volumes
and the model CNN architecture is defined, subjects are divided
into different subsets. The main purpose of this work is to
significantly improve the resolution of MRI among the infant
population. As mentioned before, there are images of adults in
the healthy database, and we benefit from them to start the
training process and provide a first learning step for our model.

Although adult subjects are not sufficient to reach the expected
performance, they generate a first model approach as a starting
point for training with children’s data. By doing so, the variability
and size of the database are increased and we gain a better model
generalization. In this manner, we apply transfer learning by
retraining healthy children from best adults model, which allows
to attain faster and closer the optimal solution of the SR proposal.

There are 33 adult volumes available and they are assigned to
the training set (80%, 26 volumes) and test set (20%, 7 volumes).
The reason why there is no validation group in adults is that
these subjects help to get a first approach to the model but not
to evaluate the final model performance, as this work is focused
on children SR. For 90 total healthy children, test and validation
sets correspond to 18 volumes each (20%) and the training set
contains 54 volumes (60%). In the case of dysplasic patients, we
obtained worse results doing transfer learning from the healthy

FIGURE 1 | Schematic representation of our network architecture. Our autoencoder implementation processes low-resolution images to generate

high-resolution images.
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children model than when processing these volumes directly
with the aforementioned model. For that reason, this last set of
subjects is not divided into subsets and they just form together
with the test set (12 volumes).

As optimizer, we chose Adam with an initial learning rate
of 0.0001, which is reduced e0.2 times if validation loss stops
decreasing for more than 4 epochs, being 0.00001 its minimum
possible value. Our loss function is the sum of the mean absolute
error and a gradient absolute error function. This allows to give
value to regions, such as borders or contours, where information
could be easily missed otherwise while focusing also on the rest
of the image.

Adult and children models have been trained for 50
and 100 epochs, respectively. Those number of epochs are
large enough to achieve the convergence of the model. The
model selected to perform an evaluation on the test set is
the one that gets a smaller value of loss function on the
validation group, to avoid both underfitting and overfitting.
Furthermore, the loss function is calculated in every iteration
only on tissue voxels to prevent background noise from
influencing the learning process. Also, batch size has been
defined as 12 patches for 3D CNN and 8 patches for 2D
CNN, whichmeans that backpropagation updates the parameters
after that number of patches. The number of initial filters
is 64 for both 3D and 2D CNNs. Even though 2D kernels
imply less memory to store, the input patch in 2D CNN
contains more voxels than its 3D counterpart and we can not
manage with a higher number of filters. Kernel weights are
initialized randomly.

Different experiments are performed for every CNN
designed. Each CNN (2D and 3D) is trained with three
distinct scaling factors (x2, x3, x4) separately. The goal
is to analyze at which point there is the best trade-
off between the quality of HR estimated image and a
significant reduction of MRI acquisition time. In a summary,
6 different training experiments are developed. Spline
interpolation is not considered an experiment itself but it
is however included in later results for comparing it with
CNN-based methods.

2.7. Evaluation and Metrics
Before proceeding with the evaluation stage, the complete
estimated volume must be reconstructed by merging the patches
or slices generated by the CNN. Image reconstruction for
2D network output is straightforward as it simply consists of
attaching one slice above the other. 3D reconstruction requires
a more sophisticated procedure. If we merely allocated the
produced patches to recover the total volume, borders among
them would be evident when visualizing the image. Thus, we
extract patches from interpolated LR test images with a stride
value lower than the patch side size (in our case this size is
32 voxels and stride value is defined as half size, that is, 16
voxels). Once the CNN outputs the SR estimated patches, they
are placed on the final volume and we extract the inner cube of
16 side voxels.

The output of our CNN model is not a single scalar value
but a complete image. Thus, we measure the model performance

with those mathematical functions able to compare the similarity
between the output image and the ground truth image. Three
metrics are used in this stage: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Metric (SSIM), and Mean Absolute
Error (MAE).

Peak Signal-to-Noise Ratio tries to estimate how noise affects
image quality. Its value is commonly expressed in decibel (dB)
logarithmic scale:

PSNR(ŷ, y) = 20 log10

(
MAX√
MSE(ŷ, y)

)
[dB] (5)

where MAX represents the maximum intensity value of the HR
ground truth image, that is 1 in our case, andMSE refers to Mean
Squared Error.

Mean Absolute Error measures the mean magnitude
of errors between images. It calculates the average
absolute differences between each pair of equivalent
voxels, and it is expressed in intensity values of
the image:

MAE(ŷ, y) =
1

N

N∑

i=1

|ŷ(i)− y(i)| (6)

Structural similarity index metric is a metric that quantifies
the degradation of the estimated image by extracting
3 key features of the images: luminance, contrast, and
structure. It is a non-dimensional metric, much more
coherent with human visual perception and is able
to imitate it in a quantitative manner. The range of
possible values fluctuates in the interval [−1,+1], with 1
meaning exact images. Mathematically, it can be expressed
as follows:

SSIM(ŷ, y) =
(2µŷµy + c1)(2σŷy + c2)

(µ2
ŷ
+ µ2

y + c1)(σ
2
ŷ
+ σ 2

y + c1)
(7)

where c1 and c2 are regularization constants of the metric itself,
σŷy is the images joint covariance, µŷ and µy are the averages of

images, and σ 2
ŷ
y σ 2

y are the images variances.

Although it makes sense to calculate metrics only on the brain
tissue using the binary mask and preventing the background
of biasing and distorting the evaluation, most of the related
literature provides the results on the whole volume and we,
therefore, provide metrics for the complete image. While PSNR
and SSIM are relative measures and do not depend on the
intensity values scale, MAE is however sensitive to it. Thus, we
indicate the MAE metric in terms of [0, 255] standard range of
possible values.

2.8. Statistical Analysis
Statistical analysis was performed using Python. The quantitative
performance of the different methods was assessed by comparing
the metrics computed between ground truth images and
super-resolved images, using a repeated measures analysis of
the variance (ANOVA) to evaluate the effect of the method
(interpolation, 2D CNN, 3D CNN), scaling factor (x2, x3, x4),
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and their interaction, followed by paired-samples Wilcoxon
signed rank tests to assess if the performance of each CNN
was significantly different from the rest of the methods.
Statistical significance was considered when the p-value was
lower than 0.05.

For the purpose of evaluating the detection of dysplasia lesions
in our SR images, an expert radiologist performed two different
tests. The first one consists of providing a binary answer whether
the lesion can be diagnosed for each of the patients. We only
have positive cases in our second database so the sensitivity
calculated provides a measure that represents the percentage
from all affected SR images where the physician is able to still
detect the dysplasias. The second test performed is a 5-point
Likert scale. It assigns to each image one of five different levels,
where level one means it is impossible to detect the lesions and
level five indicates the dysplasia is found perfectly and easily.

3. RESULTS

In this section, we provide both qualitative and quantitative
assessments of our methods. These two assessments were also

used to infer which architecture (2D vs. 3D) fits better with the
SR task. All models were assessed on pediatric images, and all
assessments were performed for the different scaling factors to
evaluate the ability of our SR scheme to recover data. Finally,
we provide some clinical insights into the best model as assessed
in the clinical dataset and a further evaluation of the resulting
images in a diagnostic scenario.

3.1. Qualitative Assessment
An expert radiologist performed a qualitative assessment by
visually inspecting the resulting images to confirm the accuracy
of our method; our pipeline performed equally well in all
cases considered in the original dataset. Figures 2, 3 show a
visual comparison between different super-resolution methods
(Interpolation, CNN-2D, CNN-3D) and scaling factors (x2,
x3, x4) compared to the LR input and the HR ground
truth image in a representative case of a 5-year-old subject
in the dataset. We can see how the bicubic interpolation
method provides an overall improvement over LR images.
However, despite solving the loss of spatial resolution, the
resultant images are still excessively smoothed, presenting
a lack of detail and contrast. The detailed definition of

FIGURE 2 | Results of both CNN methods on three scaling factors of super-resolution. A representative slice is shown, together with the original high-resolution

image, the low resolution image and the results of bicubic interpolation.

Frontiers in Neuroscience | www.frontiersin.org 7 October 2022 | Volume 16 | Article 830143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Molina-Maza et al. Pediatric MRI Super-Resolution Through CNNs

FIGURE 3 | Detail on the images of Figure 2.

structures and contours is not well recovered in the interpolated
image because it is based on “blind” learning, just on
neighboring information from the LR image, thus the newly
generated intensity values are basically noise added to the
LR image.

Visual inspection of the images generated by both CNNs
(2D and 3D) shows that this problem disappears, and the
contours are successfully recovered. The granulation that exists
in the original HR image is lost, and our resulting images
show smoother intensities than the original ones due to some
inherent filtering/denoising performed by the CNN, but the
shape of the brain was reconstructed generally well despite
patient-specific anatomic variations. Actually, the comparison
between the patient-specific HR volume and different SR
volumes shows that our method accurately estimates the ground
truth, delimiting the contours and differentiating tissues for
all scaling factors. Visual inspection of the results show the
high quality of the SR estimation and the robustness of the
method, which is able to capture details of the different
tissues in non smooth areas such as the brain circumvolutions.
However, as expected, results from higher scaling factors (x3
and x4) present fewer details than those from x2 scaling
factor, losing certain high pixel intensities. Additionally, the
2D CNN slightly loses contour definition compared to the
3D CNN.

TABLE 2 | Results for different metrics and scaling factors among healthy children

test set using bicubic interpolation method.

Healthy children BICUBIC INTERPOLATION

x2 x3 x4

PSNR (dB) 33.543 ± 1.404 33.382 ± 1.400 31.841 ± 1.374

MAE 1.569 ± 0.233 1.610 ± 0.238 1.919 ± 0.280

SSIM 0.966 ± 0.004 0.961 ± 0.005 0.945 ± 0.006

TABLE 3 | Results for different metrics and scaling factors among healthy children

test set using 2D CNN method.

Healthy children CNN 2D

x2 x3 x4

PSNR (dB) 38.596 ± 1.239 36.852 ± 1.189 35.207 ± 1.182

MAE 0.892 ± 0.123 1.081 ± 0.144 1.293 ± 0.173

SSIM 0.988 ± 0.001 0.983 ± 0.002 0.974 ± 0.003

3.2. Quantitative Assessment
Besides qualitative evaluation, various metrics (PSNR, MAE,
and SSIM) have been calculated using the test children’s
images from the open dataset. Tables 2–4 show the resultant
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mean and SD for the different metrics, scaling factors, and
SR method, computed as the average among children in the
dataset. Similarly, Figures 4–6 display the statistical distribution
of these participants regarding the same aspects. Adult models
are included in the violin plots to show that results improve
when performing transfer learning from the adult dataset to
the pediatric dataset in all cases considered. Statistical tests are

TABLE 4 | Results for different metrics and scaling factors among healthy children

test set using 3D CNN method.

Healthy children CNN 3D

x2 x3 x4

PSNR (dB) 40.167 ± 1.298 37.290 ± 1.239 35.637 ± 1.273

MAE 0.750 ± 0.107 1.022 ± 0.142 1.229 ± 0.176

SSIM 0.992 ± 0.001 0.985 ± 0.002 0.977 ± 0.003

FIGURE 4 | Violin plots for PSNR metric comparing the different methods at

the distinct scaling factors. Each violin plot corresponds to one specific

experiment, and it is calculated from healthy subjects.

FIGURE 5 | Violin plots for MAE metric comparing the different methods at the

distinct scaling factors. Each violin plot corresponds to one specific

experiment, and it is calculated from healthy subjects.

performed to compare interpolation and the pediatric CNNs, not
including the adult CNNs in these analyses.

All metrics reveal a considerable improvement of CNNs
compared to the interpolation approach. In particular, the 3D
CNN reaches better results compared to its 2D counterpart.
This could be mainly due to a leakage of information along
the third dimension when using 2D convolutions, affecting
recovering continuity of anatomical structures within that
dimension. Nevertheless, the 2D version of the CNN represents
a valuable alternative in cases where complete volumes cannot
be acquired and isolated two-dimensional slices are the only
data available.

Analysis of variance test for PSNR reveals a statistically
significant effect for the “method” in all the scaling factors:
x2, x3, and x4 [F(2, 51) = 44.91; p = 5.65 x 10−12],
and the SR procedures: interpolation, 2D, and 3D [F(2, 51) =

42.71; p = 7.73 x 10−3]. ANOVA test for MAE also reveals
a statistically significant effect for the “method” in all the scaling
factors: x2, x3, and x4 [F(2, 51) = 53.01; p = 3.52 x 10−13]
and the SR procedures: interpolation, 2D, and 3D [F(2, 51) =

9.82; p = 2.47 x 10−4]. In the SSIM case, ANOVA test
reveals a statistically significant effect for the “method” in all
the scaling factors: x2, x3, and x4 [F(2, 51) = 307.37; p =

3.54 x 10−29] and the SR procedures: interpolation, 2D, and
3D [F(2, 51) = 87.64; p = 3.16 x 10−17]. For all three
metrics, the decomposition of such statistical results using paired
comparisons by means of the Wilcoxon test reveals that all
pediatric methods are statistically different from each other at all
scaling factors and procedures (p′s < 0.01).

The same trends can be observed in the quantitative
results over the clinical dataset, where CNNs reveal an
improvement compared to interpolation methods, with the
3D CNN demonstrating the best performance in all metrics
(Tables 5–7, Figures 7–9).

Violin plots reveal that only the interpolation method and
the adult models present outliers, confirming that CNNs are

FIGURE 6 | Violin plots for SSIM metric comparing the different methods at

the distinct scaling factors. Each violin plot corresponds to one specific

experiment, and it is calculated from healthy subjects.
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TABLE 5 | Results for different metrics and scaling factors among dysplasic

children test set using bicubic interpolation method.

Dysplasic children Bicubic interpolation

x2 x3 x4

PSNR (dB) 32.944 ± 2.097 32.553 ± 2.188 31.211 ± 2.232

MAE 1.484 ± 0.750 1.570 ± 0.798 1.870 ± 0.966

SSIM 0.967 ± 0.002 0.962 ± 0.002 0.946 ± 0.003

TABLE 6 | Results for different metrics and scaling factors among dysplasic

children test set using 2D CNN method.

Dysplasic children CNN 2D

x2 x3 x4

PSNR (dB) 35.406 ± 1.851 33.655 ± 2.088 32.028 ± 2.271

MAE 1.089 ± 0.510 1.366 ± 0.686 1.690 ± 0.903

SSIM 0.983 ± 0.006 0.9730 ± 0.011 0.9586 ± 0.020

TABLE 7 | Results for different metrics and scaling factors among dysplasic

children test set using 3D CNN method.

Dysplasic children CNN 3D

x2 x3 x4

PSNR (dB) 36.164 ± 2.688 33.642 ± 2.381 32.103 ± 2.409

MAE 0.928 ± 0.457 1.332 ± 0.700 1.663 ± 0.912

SSIM 0.987 ± 0.005 0.974 ± 0.010 0.959 ± 0.020

FIGURE 7 | Violin plots for PSNR metric comparing the different methods at

the distinct scaling factors. Each violin plot corresponds to one specific

experiment, and it is calculated from dysplasic patients.

more accurate and robust methods, introducing less variability
among the results for several subjects, especially when trained
with specific data. PSNR shows similar trends and dispersion
for different scaling factors; MAE values present a more biased
widespread distribution in the values above the median than in
the values below it; SSIM values are much more concentrated

FIGURE 8 | Violin plots for MAE metric comparing the different methods at the

distinct scaling factors. Each violin plot corresponds to one specific

experiment, and it is calculated from dysplasic patients.

FIGURE 9 | Violin plots for SSIM metric comparing the different methods at

the distinct scaling factors. Each violin plot corresponds to one specific

experiment, and it is calculated from dysplasic patients.

around the median than the rest of the metrics. Moreover,
as expected, the x2 scaling factor is the one that provides
the best performance among all the scaling factors, with
the 3D CNN demonstrating being the one that shows the
best results.

Additionally, it is obvious that analyzing each method’s
results worsen as LR image size decreases. In other
words, a greater scaling factor involves the loss of
tissue/intensity information but implies a significant
reduction on MRI acquisition time. Thus, the final
acceptable scaling factor would depend on how acceptable
these results with distinct scaling factors are in the
final clinical practice, as shown and discussed in the
following subsection.

3.3. Clinical Assessment
Our expert radiologist performed a clinical assessment by
visually inspecting the resulting images to provide with her
overall qualitative opinion of the reconstructed images regarding
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diagnosis (5-point Likert scale) and their ability to use them for
actual diagnosis in the clinical dataset. A first inspection of the
reconstructed images demonstrated that the 3D CNN method
visually outperformed the 2D method; thus, subsequent analyses

were performed on the resulting 3D images. It is also worth
mentioning that images in the clinical dataset were acquired
in two different MRI scanners implementing two different
anatomical T1-weighted sequences. Thus, we have separated

TABLE 8 | Results for two different qualitative metrics provided by the expert radiologist.

Sensitivity 5-Point likert scale

x2 x3 x4 x2 x3 x4

EFGRE3D 0.80 ± 0.42 0.70 ± 0.38 0.10 ± 0.32 3.60 ± 0.97 2.50 ± 1.08 1.60 ± 1.07

MPRAGE 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.50 5.00 ± 0.00 4.30 ± 0.50 3.30 ± 0.50

BOTH 0.83 ± 0.39 0.75 ± 0.45 0.25 ± 0.45 3.80 ± 1.00 2.80 ± 1.30 1.80 ± 1.10

FIGURE 10 | Results of both CNN methods on three scaling factors of super-resolution on images of a patient with dysplasia. A specific region of a slice is shown,

with the three red arrows pointing to a lesion.
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the corresponding analyses to assess the actual potential of the
method in a clinical scenario.

Visual inspection of the images generated by our 3D CNN
shows that, depending on the nature of the disease, identification
of dysplasias could be straightforward or challenging depending
on the baseline scaling factor. Table 8 shows the decomposition
of the results for the 5-point Likert scale and the sensitivity by
scaling factor and sequence. As expected, both metrics decrease
their values as the scaling factor increases. The 5-point Likert
scale reaches a 3.8 ± 1.0 score and a sensitivity of 0.83 ± 0.39
for the x2 scaling factor when assessing the whole clinical dataset.

Additionally, in all these cases, as expected, the CNN provides
better results in those images acquired with the same type of
sequence that was used for training (MPRAGE), with the 5-point
Likert scale and the sensitivity increasing up to 5.0 ± 0.0 and
1.0±0.0, respectively, for the same scaling factor, when analyzing
the MPRAGE images only.

Figures 10, 11 show representative examples of patients
acquired using the EFGRE sequence on a GE Signa HDxt 3.0T
MRI scanner, while Figures 12, 13 show representative examples
of patients acquired using the MPRAGE sequence on a GE Signa
Premier MRI scanner. While these images show a representative

FIGURE 11 | Results of both CNN methods on three scaling factors of super-resolution on images of a patient with dysplasia. A specific region of a slice is shown,

with the red arrow pointing to a lesion.
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slice, our expert radiologist used the whole volume for the
clinical assessment.

Figure 10 shows a 13-years-old male diagnosed with band
heterotopia (double cortex syndrome), a form of diffuse gray
matter heterotopia due to neuronal migration disorders. In this
specific case, the CNN is not able to recover all the details for the
x4 scaling factor, producing a very blurred image; however, as we
move forward to the x3 and the x2 scaling factors, we can observe
further improvements, allowing for the assessment of the bands
along the brain.

Figure 11 shows a 16-years-old male diagnosed with
aqueductal stenosis, opercular syndrome, heterotopia, and a
cystic brain lesion. This patient is specifically difficult to assess

due to the presence of diverse diseases. Again, our method fails to
recover the details for the x4 scaling factor and improves moving
forward to the x3 and the x2 scaling factors. The ventricle
enlargement is easy to assess, but the boundaries are better
displayed in the image reconstructed from the x2 scaling factor.
The opercular dysplasia can be identified in the x3 and the x2
scaling factors.

Figure 12 shows a 9-years-old male diagnosed with opercular
syndrome and cerebral fissure malformation. As we move
forward toMPRAGE images, we can see the abrupt improvement
in the reconstructed images for all scaling factors. Despite the lack
in detail for circumvolutions in the dysplasia for the x4 scaling
factor, the thickening of the gray matter can still be assessed.

FIGURE 12 | Results of both CNN methods on three scaling factors of super-resolution on images of a patient with dysplasia. A specific region of a slice is shown,

with the red arrow pointing to a lesion.
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Reconstructions based on the x3 and x2 scaling factors allow for
delineating even better dysplasia contours and edges.

Figure 13 shows a 12-years-old male diagnosed with a small
cortical dysplasia. This patient is especially challenging due to the
small size of the dysplasia. However, the lesion can be identified in
images reconstructed from all scaling factors. The reconstruction
based on the x2 scaling factor provides an excellent contrast
resolution, allowing even to identify the shape of the lesion and
presenting less noise than the original HR image.

All these results show that, at least, the x2 scaling factor is able
to recover most of the details in the images, providing with good
enough reconstructions to perform disease identification.

4. DISCUSSION

Brain related pathologies often need MRI as a decisive

imaging acquisition technique to find the correct diagnosis.

Nevertheless, motion artifacts usually appear in pediatric MRI
and a method is required to improve the resolution from

LR images correctly acquired in a reduced examination time

to exclude the use of either sedatives or anesthetics. This

project has been based on the design and implementation
of a CNN that learns how to automatically increase the
resolution of an LR MRI without the need to know its
HR counterpart.

FIGURE 13 | Results of both CNN methods on three scaling factors of super-resolution on images of a patient with dysplasia. A specific region of a slice is shown,

with the red arrow pointing to a lesion.
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In this work, we have proved how the use of CNNs can
satisfactorily solve the initial SR proposal. The database chosen
consists of a sufficient number of subjects for the CNN to be
able to generalize. In addition, the preprocessing carried out on
the original MRI images has managed to adapt them correctly as
input to the CNN and the drawback of the artificial generation
of the LR database has not adversely affected the performance
of the CNN. We obtain visual-pleasing results which agree with
the metrics employed to assess the correlation and difference
between each pair of images. No matter which scaling factor is
utilized, different brain tissues can always be differentiated and
most of their details are maintained on the SR image.

We have also carried out an MRI simulation for the original
matrix size with 1 mm isotropic voxel and its related scaling
factor images (2, 3, and 4 mm). The decrease in acquisition time
was around 50% for the first scaling factor and 60% for the second
one. This reduction could feed physicians with good quality MRI
that aid the clinical routine. Depending on the MRI scanner, the
time employed to complete a study ranges from 30 min to 2 h
and brain MRI takes an average of 45 min or even longer (Slovis,
2011). It then becomes possible to decrease the examination time
by about 20 min.

Our results are compared with the state of art methods that
use different datasets than ours. These differences include the
MRI sequence, the size and age range of the database, and the
scanner specifications. We, therefore, need to be careful when
comparisons are made with reviewed literature. Furthermore, the
LR images were not directly acquired from the scanner and we
made the assumption of resemblance between our artificial LR
images and the hypothetical LR acquired ones, in order to be able
to discuss the different results.

In future work, it would be desirable to extrapolate the results
obtained to different datasets and other modalities of MRI, such
as T2-weighted, Diffusion Tensor imaging, or functional MRI.
Transfer learning from this work model could be applied to
those other modalities and build a stronger method that does
not depend on a specific MRI modality. If possible, LR images
should be acquired directly from MRI equipment and physicians
should check in a clinical study that SR images preserve the same
diagnostic value than original acquired images.

5. CONCLUSION

This paper proposes a new CNN pipeline to perform
superresolution on pediatric MRI and allows a reduction of

MRI examination time. We assessed several CNN architectures
on different scaling factors. Our work represents a substantial
innovation in the pediatric MRI field, proposing an initial
starting point to eliminate the need for a sedation protocol
among the infant population.
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