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Initial romantic attraction (IRA) refers to a series of positive reactions toward potential
ideal partners based on individual preferences; its evolutionary value lies in facilitating
mate selection. Although the EEG activities associated with IRA have been preliminarily
understood; however, it remains unclear whether IRA can be recognized based on EEG
activity. To clarify this, we simulated a dating platform similar to Tinder. Participants
were asked to imagine that they were using the simulated dating platform to choose
the ideal potential partner. Their brain electrical signals were recorded as they viewed
photos of each potential partner and simultaneously assessed their initial romantic
attraction in that potential partner through self-reported scale responses. Thereafter, the
preprocessed EEG signals were decomposed into power-related features of different
frequency bands using a wavelet transform approach. In addition to the power spectral
features, feature extraction also accounted for the physiological parameters related to
hemispheric asymmetries. Classification was performed by employing a random forest
classifier, and the signals were divided into two categories: IRA engendered and IRA un-
engendered. Based on the results of the 10-fold cross-validation, the best classification
accuracy 85.2% (SD = 0.02) was achieved using feature vectors, mainly including the
asymmetry features in alpha (8—13 Hz), beta (13-30 Hz), and theta (4-8 Hz) rhythms. The
results of this study provide early evidence for EEG-based mate preference recognition
and pave the way for the development of EEG-based romantic-matching systems.

Keywords: aesthetic preference, mate choice, physiological signals, frequency band, hemispheric asymmetries

INTRODUCTION

Finding an ideal partner is a prerequisite for achieving high-quality romantic relationships.
However, finding an ideal partner in real life can be extremely challenging (Spielmann et al., 2013;
Joel et al., 2017). Because mate selection is not only a multivariate process involving the integration
and trade-offs of multiple preferences but is also influenced by many factors, such as gender, culture,
and personal experience (Buston and Emlen, 2003; Thomas et al., 2020). However, opportunities
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always coexist with these challenges. This is precisely because of
the challenge of this task, which has created a huge economic
market for matchmaking services (Joel et al, 2017). In this
market, matchmaking agencies strive to provide customers with
“tailored” romantic matching services and earn huge returns
on this. The success of such a business model hinges on
finding key features from appropriate signals that can effectively
identify a user’s initial romantic interest toward a potential
partner, as this largely determines the effectiveness of a matching
service and consequently whether a user is willing to pay for it
(Joel et al., 2017).

The current mainstream approach taken by matchmaking
companies is that when users register for romantic matching
services, they are required to fill in a series of questionnaires
about their own characteristics and preferences based on their
subjective feelings; these answers will then be fed into the
matching algorithm as features to match suitable potential
partners for users. Many matchmaking companies claim that
effective romantic pairing can be achieved in this manner (Joel
et al, 2017). However, Joel et al. (2017) demonstrated that
it was impossible to predict initial romantic desire using any
combination of traits and preferences reported prior to dating.
In other words, effective romantic pairing cannot be achieved
using this method. For matchmaking companies that take this
as the core selling point, this conclusion is undoubtedly very
destructive. However, from the perspective of psychology, this
conclusion is undoubtedly reasonable, because the self-reported
data are easily affected by subjective consciousness and the
surrounding environment, which makes many characteristics
of the input matching algorithm invalid, thereby invalidating
the matching algorithm (Lin et al., 2010; Alarcao and Fonseca,
2019).

The essence of initial romantic attraction (IRA) is a series
of positive responses to potential ideal partners based on
individual preferences, including positive emotional responses
(such as feelings of exhilaration and craving for emotional
union) (Fisher, 1998; Fisher et al., 2002, 2005; Gerlach and
Reinhard, 2018; Yuan and Liu, 2021; Yuan et al, 2021). An
individual’s internal emotional reaction can be revealed not
only through subjective self-reports but also through internal
expression (i.e., physiological signals) (Gunes et al, 2011;
Alarcao and Fonseca, 2019). Moreover, physiological signals
have many advantages over self-reported data, one of which
is that they are less susceptible to subjective consciousness
and environmental factors (Lin et al, 2010; Alarcao and
Fonseca, 2019). Thus, these signals open up new possibilities
for identifying users’ emotional responses and preferences for
potential partners. For instance, Zhang et al. (2021) successfully
identified participants’ initial romantic interest to potential
partners based on the features extracted from electrocardiogram
signals, while Lu et al. (2020) successfully detected participants’
initial romantic desire to potential romantic partners based on
the information extracted from photoplethysmogram signals.
These results demonstrate that IRA, as an important part
of human emotion, can be recognized on the basis of
periphery physiological signals (Lu et al., 2020; Zhang et al.,
2021).

In addition to periphery physiological signals, signals captured
from the central nervous system, such as EEG, functional
magnetic resonance imaging, or positron emission tomography,
have also been proved to provide informative information for
emotion recognition (Lin et al., 2010; Alarcao and Fonseca, 2019).
Furthermore, among the many biosignals recorded over the
brain, EEG is considered to a preferred method in studying the
brain’s response to emotional stimuli due to its characters of high
temporal resolution, non-invasive, inexpensive and convenient
(Niemic, 2004; Alarcao and Fonseca, 2019). Therefore, in the
field of neurophysiology, some studies have begun to investigate
brain activities associated with IRA based on EEG signals. For
instance, using event-related potential source analysis, Yuan
et al. (2021) found that the arousal of IRA will significantly
enhance the activation intensity of emotional processing-related
areas, including the orbital frontal cortex and insula; attention
control-related areas, including the frontal eye field and cingulate
cortex; visual processing-related areas; and social evaluation-
related areas, including the left dorsolateral prefrontal cortex.
In another study, Yuan and Liu (2021) used time-frequency
(TF) decomposition technology and found that processing of
individual face preferences that triggered IRA was associated with
a decrease in power in the alpha and lower beta bands over the
lateral occipital complex and vertex areas; they hypothesized that
changes in alpha and beta power may reflect cortical activation
related to emotional stimulus significance (Schubring and
Schupp, 2019, 2021). In addition, numerous neuropsychological
studies have demonstrated that the asymmetry between the
two hemispheres of the frequency band (FB) (especially the
alpha and beta bands) was correlated with emotional activities
and preferences (Balconi and Mazza, 2009; Liu et al, 2011;
Hadjidimitriou and Hadjileontiadis, 2012; Huang et al., 2012;
Jatupaiboon et al., 2013; Alarcao and Fonseca, 2019).

In the field of neuroeconomics, although EEG signals have not
been used to identify users’ emotional responses and preferences
toward potential partners, they have been widely used to identify
users emotional responses and preferences to other stimuli
(Aldayel et al., 2020a,b,c, 2021; Khurana et al., 2021; Naser and
Saha, 2021; Zheng et al.,, 2021). Among previous studies, many
researchers have used frequency bands (FBs) as features (Aldayel
et al., 2020c, 2021; Khurana et al., 2021; Naser and Saha, 2021;
Zheng et al., 2021). For example, Chew et al. (2016) measured the
preference of virtual three-dimensional shapes using band power
as a feature for two preference categories and obtained accuracies
of up to 80%. Aldayel et al. (2020b) measured the preference
of consumer using frequency bands features as the feature for
two preference categories and obtained accuracies of up to 93%.
Meanwhile, several studies on preference also used hemispheric
asymmetry scores (ASs) as input features (Aldayel et al,
2020a,b; Naser and Saha, 2021). For instance, Hadjidimitriou
and Hadjileontiadis (2013) measured the preference of music
using band power and hemispheric ASs as features for two
preference categories using the k-nearest neighbors to obtain
accuracies of up to 86.52%. Moon measured the preference of
visual stimuli using band power and hemispheric ASs as features
for four preference categories, achieving accuracies of up to
97.39% (Moon, 2013; Chew et al., 2016).
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Although EEG signals have been widely used to identify
users’ emotional responses and preferences to other stimuli, and
EEG activities associated with IRA have also been preliminarily
understood, whether users’ emotional responses and preferences
toward potential partners can be identified on the basis of EEG
signals remains unclear. To clarify this, we simulated a mate
selection platform similar to Tinder. Participants were asked to
imagine that they used the platform to select potentially desirable
partners. Their EEG signals were recorded when they viewed
and rated the photographs of each potential partner according to
their preferences. Specifically, during the EEG recording task, the
heterosexual participants were asked to rate photos of opposite-
sex potential partners on two dimensions: an four-point IRA
rating scale (based on the question “How much would you like
to date this person?”; response: “not at all,” “a little,” “somewhat,”
or “very much”) as well as a three-point zero-acquaintance
rating scale (based on the question “Have you ever seen the
person in the photo before?”; responses: “no,” “not sure,” or
“yes”) (Yuan and Liu, 2021; Yuan et al.,, 2021). The IRA scale
was used to assess the romantic interest of participants toward
potential romantic partners, because the desire for emotional
union with potential partner is one of the main characteristics of
initial romantic attraction arousal. The zero acquaintance scale
was used to ensure that participants were at the same level of
familiarity with the stimulus material. Numerous studies have
demonstrated that the random forest classifier (RFC) performs
well in preference classification tasks based on EEG signals;
therefore, in this study, the RFC was used to classify and detect
the users’ IRA toward potential partners based on features
obtained through TF analyses.

MATERIALS AND METHODS

Both the auxiliary experiment and the main experiment
were approved by the Ethical Review Committee of
Southwest University.

Auxiliary Experiment

Participants

Sixty student volunteers participated in the auxiliary experiment
(30 women and 30 men; age: 21.4 & 2.6 years). All participants
reported normal or corrected-to-normal visual acuity and had no
history of psychiatric or neurological disorders, as confirmed via
a screening interview.

Experimental Procedure

The induction rate of IRA has been reported to be quite low (only
a few percent) (Zsok et al., 2017), the IRA induction rate should
be increased to obtain enough data to train the model (Yuan and
Liu, 2021; Yuan et al., 2021). Numerous studies have shown that
physical attractiveness is a good predictor of a an individual’s
popularity (i.e., probability of being selected by the opposite sex)
with the opposite sex (Asendorpf et al., 2011; Olderbak et al.,
2017; Gerlach and Reinhard, 2018; Yuan et al., 2021). Therefore,
in this study, we planned to increase the average induction rate

of IRA by increasing the proportion of stimuli with high physical
attractiveness (Yuan and Liu, 2021; Yuan et al., 2021).

To achieve this goal, we first assessed the attractiveness level of
each stimulus. To assess the attractiveness level, we first focused
on downloading thousands of high-resolution personal portrait
photographs from a high-definition copyright commercial
photograph library (i.e., Hummingbird') and standardized them
(face and hair only; size, 839 x 1,080 pixels). To control
the interference factors, we then selected 1,600 photographs
from the standardized portrait photograph library; the criteria
for screening the photographs were similar orientation and
expression of the face and comparable background complexity.
Thereafter, the physical attractiveness level of each face
was assessed using a nine-point Likert scale. Notably, the
male participants rated only female faces, while the female
participants rated only male faces. We then calculated the
average attractiveness level of each face by averaging the ratings
of the same face from 30 participants of the opposite sex.
Finally, according to the average attractiveness level, these
faces were divided into three categories: high attractiveness
[mean = 6.9, standard deviation (SD) = 0.33], medium
attractiveness (mean = 5.2, SD = 0.25), and low attractiveness
(mean = 3.9, SD = 0.31).

In the natural environment, the proportion of individuals
with high, medium, and low attractiveness should conform to
the normal distribution. However, in this study, we deliberately
increased the proportion of individuals with high attractiveness,
reduced the proportion of stimuli with low attractiveness, and
adjusted the ratio of high, medium, and low attractiveness to
0.25:0.6:0.15 to increase the average induction rate of IRA. The
number of times each participant would need to be exposed
to different stimuli was determined to be between 300 and 400
after the comprehensive trade-offs of induction efficiency and
participant burden. Ultimately, 360 photographs were selected as
the stimulus material for the main experiment for each sex from
among 800 photographs of women and 800 photographs of men
(Yuan and Liu, 2021; Yuan et al., 2021).

Main Experiment

Participants

Fifty student volunteers participated in the main experiment
(all single; 25 women and 25 men; age: 21.2 + 2.4 years).
All participants reported normal or corrected-to-normal visual
acuity and had no history of psychiatric or neurological disorders,
as confirmed via a screening interview.

Experimental Procedure

The number of stimuli used in the main experiment was
significantly reduced by the aforementioned strategy; however,
processing of 360 stimuli was still a high-load task for the
participants. Specifically, when the participants were asked to
complete the task over a short period, they were more likely
to experience aesthetic fatigue, which may interfere with the
experimental effect. Therefore, to minimize the probability of
or delay aesthetic fatigue, we first divided 360 photographs
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FIGURE 1 | Experimental protocol and trial structure. (A) Experimental protocol. (B) Trial structure.

disappear after response

disappear after response 2000 ms

of women (or men) equally into two sessions based on their
attractiveness level and stipulated that the interval between
completing the two parts of the experiment should be at least
1 day (Figure 1A). Thereafter, the 180 photographs from each
session were divided equally into three runs using the same rules,
and a 5-6-min break was provided between every two runs.
During the rest period, the participants viewed serene landscapes
while listening to soothing music. Notably, the experiment
was conducted in a dark and quiet environment to keep the
participants focused on the stimulus.

For each session, the trial structure of the EEG recording
task is shown in Figure 1B. A black fixation cross appeared in
the center of a white computer screen for 1,000 ms, followed
by a photograph appearing for 3,000 ms. The participants were
then asked to assess their romantic interest toward the potential
partner based on the question, “How much would you like
to date this person?” on a four-point rating scale (0 = not at
all; 1 = little; 2 = somewhat; 4 = very much) (Finkel et al,
2007; Cooper et al., 2012; Gerlach and Reinhard, 2018; Yuan
and Liu, 2021; Yuan et al., 2021). Thereafter, they were asked,
“Have you ever seen the person in the photograph before?”
(0 = no; 1 = not sure; 2 = yes). Finally, there was a 2,000-
ms blank screen.

Data Acquisition and Processing

The EEG signals were recorded using the 128-channel BioSemi
ActiveTwo system (BioSemi Inc., Heerlen, Netherlands) with
a 24-bit analog-to-digital conversion. The 128 electrodes were
equally spaced on an electrode cap and customized with
an integrated primary amplifier (Figure 2). The data were
filtered online at a 0.16-100-Hz band-pass filter and sampled
at 512 Hz (Yuan and Liu, 2021; Yuan et al,, 2021). After the
completion of data acquisition, the continuous EEG signals

were re-referenced offline to the average of all channels after
rejecting bad segments and interpolating bad traces; the bandpass
filter ranged from 0.1 to 50 Hz. An independent component
analysis was used to correct electrooculography artifacts from
eye movements and blinks. The preprocessed EEG signals were
split into epochs from 200 ms before the presentation of the
stimulus to 2,000 ms after the onset of the stimulus. EEG data
analysis was conducted using the open-source MATLAB signal
processing toolbox FieldTrip and in-house functions in MATLAB
(Oostenveld et al., 2011).

According to the score for “How much would you like
to date this person?” the EEG epochs were divided into IRA
engendered and IRA un-engendered (Fisher et al., 2005; Gerlach
and Reinhard, 2018; Yuan and Liu, 2021; Yuan et al., 2021).
The IRA engendered category comprised the epochs in which
the participants rated their IRA for the potential partners as 3
(very much) or 2 (somewhat). The IRA un-engendered category
comprised the epochs in which the participants rated their
IRA for the potential partners as 0 (not at all). To minimize
ambiguity, we excluded epochs with a rating score of 1. The
number of acceptable epochs under the IRA engendered category
was 1439, while the number of all acceptable data segments
in the IRA un-engendered category was 15298. To solve the
problem of serious mismatch in the number of samples between
the two preference categories, we randomly selected a number
of accepted samples under the IRA un-engendered category
to match the number of accepted samples under the IRA
engendered category.

Feature Extraction

To recognize the users’ discrete preferences, we used the wavelet
transform (WT) with a sliding time-window approach for TF
feature extraction based on the TF analysis (Lindsen et al., 2010;
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De Cesarei and Codispoti, 2011; Kang et al., 2015; Yuan and
Liu, 2021). Specifically, the time-frequency representation (TFR)
was obtained through a five-cycle complex Morlet WT. The
sliding windows were advanced in 12-ms and 1-Hz increments
to estimate the changes in power over time and frequency in the
five FBs: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), and gamma (30-49 Hz). The TF features of the EEG
activities were calculated according to event-related oscillations
(Pfurtscheller and Lopes da Silva, 1999; Hadjidimitriou and
Hadjileontiadis, 2013; Liu et al., 2018; Yuan and Liu, 2021). In
this study, two types of TF features were extracted: the power
spectral feature (PSF) and the AS (i.e., difference in spectral
power between the left and right hemispheres). For each epoch
j and channel i, each PSF was computed as follows:

V-B

PSF = 5 (1)

where V represents the quantity estimated during the photograph
viewing (PV) period, and B represents the quantity estimated
during the baseline state (BS) period. To obtain the quantity V,
we averaged the TFR during the PV period over the constituent

frequencies and time (2). Similarly, B was computed in the same
manner as in PV, as shown in (3).

VfE(i,j): Z( ZTFR [tf) (2)

By (i,]) = (3)

Lx(zman )

where [t, f] represents the discrete (time and frequency) points
in the TF plane; TFRPY represents the obtained TFR during
the PV period (Figure 3); and N,,, Npg, denote the number of
sample points in the time window of 0-2 s and the number of
frequency bins in each FB, respectively (Yuan and Liu, 2021).
Similarly, TFR?S represents the obtained TFR during the BS
period (Figure 3), and N,,, Npg, denote the number of sample
points in the time window of —0.2-0 s and the number of
frequency bins in each FB, respectively. Herein, a TFRBS was used
to correct the emotional baseline of the TFR"Y to exclude the
confounding effects of other factors.
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In addition to the PSFs, the ASs of all 55 symmetrical pairs of  that might be caused by emotional stimuli (Liu et al., 2018; Yuan
electrodes on the left and right hemispheres in the five FBs were  and Liu, 2021). In general, a total of 915 (640 PSFs and 275 ASs)
extracted to measure the possible lateralization of brain activity ~EEG features were extracted.
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Preference Recognition With Feature Selection

Nine hundred and fifteen features were extracted from the
EEG signals on 128 electrodes, which is undoubtedly a
high-dimensional dataset. To effectively analyze the data and

TABLE 1 | Confusion matrix of each test data set.

True label Predicted IRA IRA un-
label engendered engendered
Test data set 1 IRA engendered 144 27
IRA un-engendered 20 179
Test data set 2 IRA engendered 163 23
IRA un-engendered 41 141
Test data set 3 IRA engendered 128 19
IRA un-engendered 20 130
Test data set 4 IRA engendered 139 25
IRA un-engendered 25 125
Test data set 5 IRA engendered 117 16
IRA un-engendered 17 116
Test data set 6 IRA engendered 118 23
IRA un-engendered 18 100
Test data set 7 IRA engendered 137 25
IRA un-engendered 26 107
Test data set 8 IRA engendered 110 22
IRA un-engendered 14 105
Test data set 9 IRA engendered 98 21
IRA un-engendered 17 101
Test data set 10 IRA engendered 80 14
IRA un-engendered 13 119

save computational resources, we conducted necessary feature
selection before classification (Lu et al., 2020; Zhang et al., 2021).
The paired sample t-test was used to screen out the feature
subsets with significant differences between the IRA engendered
and IRA un-engendered categories. A total of 188 features with
significant differences (p < 0.05) were identified. On this basis,
the recursive feature elimination with cross-validation sequential
forward feature selector (RFECV) was applied to conduct further
feature selection.

To use the entire dataset to train and test the classifier,
we used a nested 10-fold cross-validations to obtain reliable
model estimates for feature selection and model training
(Pourmohammadi and Maleki, 2020; Zhang et al, 2021).

TABLE 2 | The results of each test data set.

Metrics PAM CA SE SP AUC Ji FM

Test data set 1 0.72 0.8730 0.8780 0.8689 0.87 0.7539 0.8597
Test data set 2 0.66 0.8261 0.7990 0.8598 0.83 0.7181 0.8539
Test data set 3 0.72 0.8664 0.8601 0.8725 0.87 0.7593 0.8632
Test data set 4 0.68 0.8408 0.8476 0.8333 0.84 0.7354 0.8476
Test data set 5 0.74 0.8579 0.8731 0.8788 0.88 0.7800 0.8764
Test data set 6 0.68 0.8417 0.8676 0.8130 0.84 0.7241 0.8520
Test data set 7 0.74 0.8271 0.8405 0.8106 0.83 0.7287 0.8431
Test data set 8 0.71 0.8566 0.8871 0.8268 0.86 0.7534 0.8594
Test data set 9 0.67 0.8397 0.8522 0.8279 0.84 0.7206 0.8376
Testdataset 10 0.73 0.8805 0.8602 0.8947 0.88 0.7477 0.8556
Mean 0.6990 0.8528 0.8566 0.8486 0.8540 0.7439 0.8530
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FIGURE 6 | Optimal feature subsets of the RFC. Red, blue, and orange present the asymmetry features of the alpha, beta, and theta bands, respectively. Green
represents the alpha band PSF. RFC, random forest classifier.

Specifically, the inner loop was responsible for selecting the (SP), area under curve (AUC), Jaccard index (JI), F-measure
optimal subset of features (Figure 4). In the outer loop and using  (FM), and polygon area metric (PAM) (Aydemir, 2020). The
the selected subset of features, the RFC was evaluated by unseen = mathematical definitions are, respectively, given as follows:

test data set via a subject-wise 10-fold cross-validation (Saeb et al.,

2017). Thereafter, the confusion matrix was formed based on CA = TP+ TN 4)
the true and predicted labels of sample in the each unseen test TP+ TN + FP + FN

data set. Then, based on the confusion matrix, common metrics

are calculated to assess performance of machine learning system, TP

including classification accuracy (CA), sensitivity (SE), specificity SE = TP + EN (5)
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TN
P= —— (6)
TN + FP
TP
= ——— (7)
TP + FP + FN
2TP
M= ————— (8)
2TP + FP + FN
1
AUC = [ f(x)dx 9)
0

Where TP is the number of actual positive samples that were
predicted to be positive, FN is the number of actual positive
samples that were predicted to be negative, TN is the number of
actual negative samples that were predicted to be negative, and
FP is the number of actual negative samples that were predicted
to be positive (Aydemir, 2020). The classifier selected in this study
is a widely used classifier with good performance, namely, the
RFC (Aldayel et al., 2020a,b). For the RFC, the Gini impurity was
used as a function to measure the quality of a split; the maximum
depth of the tree was set to 30; and the other super parameters
were set to default.

RESULTS AND DISCUSSION

The classification performance of the proposed EEG-based mate
preference recognition algorithm was verified using a total
of 2878 EEG samples (including 1439 samples of the IRA
engendered category and 1439 samples of the IRA un-engendered
category) collected from 50 participants. To obtain an optimal
feature subset from 188 features with significant differences
(p < 0.05) between the two categories, we used a nested 10-fold
cross-validation scheme based on the RFECV-REC algorithm for
feature selection. The number of features varied from 1 to 188,
and the best feature subset was selected in each step. Figure 5
displays the mean classification accuracies on the validation sets
of each inner loop when selecting different numbers of features.
As can be seen from Figure 5, the number of features of the
optimal feature subset selected by each internal cycle is roughly
the same (about 17, SD = 0.57). The performance of the model
is evaluated on the corresponding test set based on the optimal
feature subset selected in each inner loop. The results are shown
in Tables 1, 2. It can be seen from Table 2 that the best mean
CA value, mean PAM value, mean se value, mean SP value, mean
AUC value, mean Ji value and mean FM value are 0.8528, 0.6990,
0.8566, 0.8486, 0.8540, 0.7439, and 0.8530, respectively.

Figure 6 shows the union of the optimal feature subsets
selected by each inner loop and the distribution of each feature.
Based on the results shown in Figure 6, we found that the
asymmetric features over the frontal and parietal lobes play an
extremely important role in recognizing initial romantic interest
because 15 of the 20 most discriminating features originated from
these two regions. Moreover, 14 of these 15 features belonged to
the alpha and beta bands. Previous studies have demonstrated
that the frontal and parietal lobes are the most informative

regions of emotional states, while the alpha and beta waves appear
to be the most discriminative (Alarcao and Fonseca, 2019; Zheng
etal., 2020). Yuan and Liu (2021) found that the changes in alpha
and beta power on the sensors over the anterior regions play
an important role in the generation and evaluation of IRA. In
addition, numerous studies have demonstrated that frontal and
parietal asymmetries in the alpha and beta FBs are observable for
valence and arousal recognition (Cacioppo, 2004; Huang et al.,
2012; Alarcao and Fonseca, 2019). In particular, Aldayel et al.
(2020a,b) showed that the asymmetric features in alpha and beta
frequencies over the frontal and parietal regions can effectively
identify users’ emotional responses and preferences to market
stimuli (Touchette and Lee, 2016; Liu et al., 2018; Ramsoy et al,,
2018). In addition, Naser et al. showed that asymmetric features
of alpha frequency on the frontal and parietal lobe regions could
effectively identify users’ preference for music (Naser and Saha,
2021). We also found that the asymmetric features in the alpha,
beta, and theta bands over the lateral occipital complex and
the asymmetric features in the theta bands over the frontal
and parietotemporal regions were sensitive in recognizing IRA.
Previous studies have observed that the generation of IRA leads to
desynchronization of alpha and beta bands in the lateral occipital
complex region (Yuan and Liu, 2021). The theta FB over the
frontal and parietotemporal areas was also considered to be an
effective feature for identifying emotional states (Aftanas et al.,
2001; Cartier et al., 2012).

Taken together, these findings demonstrate that users’
preferences for potential romantic partners can be determined
on the basis of EEG signals. Furthermore, the TF features from
channels over the frontal, parietal, and occipital regions are
informative and suitable for the identification of IRA toward
potential partners.

CONCLUSION

The purpose of this experiment was to determine the possibility
of using EEG signals to identify users’ aesthetic preferences for
potential romantic partners. In this study, our system achieved
a best accuracy of 85.2% (SD = 0.03) in recognizing the initial
romantic interest. This result demonstrated that based on the
information provided by users’ EEG signals, we can determine
whether they are romantically interested in a potential partner.
In addition, the best accuracy 85.2% (SD = 0.03) in this study
was obtained mainly using the asymmetry features of the alpha,
beta, and theta FBs on the sensors over the frontal lobe, parietal
lobe, and lateral occipital complex. These results suggest that
the TF features from channels over the frontal, parietal, and
occipital regions are suitable for identifying human preferences
for potential romantic partners. Therefore, in future work, we
plan to extract features from different dimensions, such as
the time domain and source domain, and explore how to use
the minimum channels to optimize the classification accuracy
through multi-dimensional feature integration.

In addition, as an exploratory study, this study used portrait
photos rather than real people as stimuli to induce IRA based
on feasibility considerations. The advantage of this approach is
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that by increasing the amount of stimulus, it can effectively solve
the problem of insufficient trials in which IRA was successfully
induced due to the low average induction rate. However, in
real social scenes, initial romantic interest usually occurs in
the environment that allows some meaningful interaction, but
the types of stimuli used in the present study did not allow
participants to interact effectively with potential partners in the
photos (Yuan and Liu, 2021; Yuan et al., 2021). This is a problem
that needs to be paid attention to and solved in the follow-up
research. It is believed that in the near future, mate preference
recognition and matching systems based on EEG signals will be
applied to online or offline dating scenarios to assist individuals
in finding their ideal partners.
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