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Age-related cognitive changes can be the first indication of the progression to
dementias, such as Alzheimer’s disease. These changes may be driven by a complex
interaction of factors including diet, activity levels, genetics, and environment. Here we
review the evidence supporting relationships between flavonoids, physical activity, and
brain function. Recent in vivo experiments and human clinical trials have shown that
flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance.
Improved cognition has also been correlated with a physically active lifestyle, and
with the functionality and diversity of the gut microbiome. The great majority (+ 90%)
of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the
gut microbiome level prior to absorption, and these prebiotic flavonoids modulate
microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion
may only be realized in the presence of a robust microbiome. Moderate-to-vigorous
physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-
inflammatory and immunomodulatory metabolites into circulation. The gut microbiome
exerts a profound influence on cognitive function; moderate exercise and flavonoid
intake influence cognitive benefits; and exercise and flavonoid intake influence the
microbiome. We conclude that there is a potential for combined impacts of flavonoid
intake and physical exertion on cognitive function, as modulated by the gut microbiome,
and that the combination of a flavonoid-rich diet and routine aerobic exercise may
potentiate cognitive benefits and reduce cognitive decline in an aging population, via
mechanisms mediated by the gut microbiome. Mechanistic animal studies and human
clinical interventions are needed to further explore this hypothesis.

Keywords: age-related, cognition, neuroprotective, phenolic metabolites, prebiotic flavonoids, exercise,
microbiome

INTRODUCTION

The brain can be a neglected aspect of human health. Typically, brain health is not a consideration
until people reach their 50s or 60s, when brain function can become less reliable. Moreover, lifestyle
choices are hardly ever considered as detrimental to brain health in an otherwise healthy adult.
Importantly, the number of Americans aged 65 and older is projected to nearly double from 52
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million in 2018 to 95 million by 2060 (United States Census
Bureau, 2021). As the life expectancy of the world’s population
increases, dementia (age-related decline from previously attained
cognitive levels) is a looming threat to the individual’s healthspan,
and causes a heavy economic burden to families and to
society. Researchers have put considerable effort into developing
interventions for those who have been diagnosed with a dementia
(e.g., Alzheimer’s disease, Parkinson’s disease, and Dementia with
Lewy Bodies). We posit that validating proactive strategies to
prevent cognitive dysfunction in the aging demographic should
be a high priority.

In this review, we will explore the case for flavonoids as
a prophylactic against declining brain health, investigate the
modulating role(s) of the gut microbiome, and consider evidence
for the potentiating influence of moderate–to-vigorous physical
activity (MVPA) combined with flavonoid intake. Improved
cognition is associated with a physically active lifestyle, a healthy
diet, and a robust, diverse gut microbiome (the gut-brain axis)
(Schlegel et al., 2019; Westfall and Pasinetti, 2019). We and
others have demonstrated that flavonoid-rich food interventions
(such as cocoa, berries, or tea) can attenuate biomarkers of
inflammation including neuroinflammation, effectively mitigate
cognitive dysfunction and decline, and sharpen cognitive
function (Macready et al., 2009; Whyte et al., 2020). Dietary
flavonoids act as prebiotics; as such, they can alter the profiles
and the diversity of the gut microbiome, and exercise accelerates
the circulation and transport of flavonoid metabolites after gut
microbiome catabolism. Here we review the extant literature and
weave the three – flavonoids, exercise, and the gut microbiome –
together to form a more complete picture of how lifestyle affects
cognition and how we can prevent the deterioration of cognitive
abilities across the lifespan.

FLAVONOIDS AND BRAIN HEALTH

Flavonoids, a ubiquitous group of plant secondary metabolites
with a 15-carbon structure (two phenyl rings and a heterocyclic
ring; C6-C3-C6) are an indispensable component of traditional
medicines, current nutraceuticals, and functional foods. Dietary
flavonoids are found in tea, berryfruit, citrus and other fruit
and legumes, although it is estimated that consumption in the
United States falls well below dietary guidance (U.S. Department
of Health and Human Services and U.S. Department of
Agriculture, 2015). Over a decade ago, the potential for flavonoids
to attenuate neurodegeneration was recognized (Spencer, 2009),
and growing epidemiological, in vivo, and clinical evidence
suggests that supplementation with flavonoid-rich foods benefits
cognitive function (Letenneur et al., 2007; Dodd et al., 2019;
Rajaram et al., 2019; Westfall and Pasinetti, 2019; Ruotolo
et al., 2020; Whyte et al., 2020). In part, the underlying
mechanisms may include flavonoids’ anti-inflammatory capacity
and influences on endothelial function and peripheral blood
flow (Amin et al., 2015; Morais et al., 2016; Warner et al.,
2017; Rajaram et al., 2019). We and others have established
that dietary flavonoid metabolites pass the blood brain barrier
and can be localized in brain tissues (Janle et al., 2010a,b;

Strathearn et al., 2014; Docampo et al., 2017; Angelino et al.,
2019; Westfall and Pasinetti, 2019). Importantly, the flavonoid
metabolites have been shown to deposit in brain regions that
underlie learning and memory, specifically the hippocampus
(Sokolov et al., 2013; Flanagan et al., 2018). Flavonoids are
able to exert neuroprotective activity (even at the relatively low
concentrations that reach the brain) by virtue of their ability
to modulate protein and lipid kinase signaling pathways, and
by inhibiting neuroinflammation, rather than merely through
antioxidant activity. Absorbed flavonoids and their metabolites
from foods (cocoa, berry, and tea) appear to directly interact
with cellular and molecular targets (e.g., ERK and PI3-kinase/Akt
signaling pathways) to improve neuronal connectivity and
increase expression of neuromodulatory proteins (Williams and
Spencer, 2012). Mechanistically, dietary flavonoid consumption
promotes peripheral and cerebral vascular flow as well as
neuronal survival and differentiation. Mounting evidence
supports an association between flavonoid-rich plant-based diets
and improved domains of cognition in aging, notably in executive
functions, which are higher-order cognitive abilities subserved by
the prefrontal lobe (Rajaram et al., 2019). These detriments in
executive function begin to develop in midlife.

Preclinical and clinical studies with flavonoid-rich foods
indicate that higher levels of flavonoid intake are related to
improved cognitive performance and tempered cognitive decline
(Macready et al., 2009; Hein et al., 2019; Whyte et al., 2020).
Cocoa flavanol intake, for example, has been linked to greater
brain oxygenation, and higher performance during cognitive
challenge (Gratton et al., 2020), with apparent dose-dependent
improvements in working memory, attention and processing
speed (Socci et al., 2017). A systematic review concluded that
green tea intake has a positive influence on cognition through the
combined influence of green tea extract constituents, including
flavonoids, L-theanine, and caffeine (Mancini et al., 2017). In
preclinical experiments, however, it was administration of the
green tea catechins (primarily EGCG) that were credited with
improved spatial cognition learning ability in rats (improved
reference and working memory) (Haque et al., 2006). Berries
(a dietary resource with a highly diversified flavonoid profile),
have been the intervention of choice for several trials on
flavonoids and cognition (Galli et al., 2006; McGuire et al.,
2006; Lau et al., 2007; Duffy et al., 2008; Williams et al.,
2008; Small et al., 2014; Shukitt-Hale et al., 2015; Miller et al.,
2018; Dodd et al., 2019; Whyte et al., 2020). Human clinical
interventions with flavonoid subgroups anthocyanins, flavanol
and flavanone over the past several years indicate potential
to limit or reverse age-related declines in cognition (Ahles
et al., 2021; Bird et al., 2021; Gardener et al., 2021). Blueberry-
supplemented rats demonstrated elevated hippocampal levels
of cAMP-response element-binding protein and extracellular
signal-related kinase, and brain-derived neurotrophic factor
(BDNF) compared to age-matched controls. Alteration of these
signaling proteins led to better performance on a spatial working
memory task (Williams et al., 2008; Vauzour et al., 2021). BDNF,
known for differentiation and survival of neurons of the CNS,
plays a crucial role in delay of cognitive aging by improving
hippocampal plasticity, long-term memory, and neurogenesis
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(Cunha et al., 2010). Recently, clinical results showed that
even a single acute dose of a flavonoid-rich blueberry beverage
(equivalent to 200 g fresh berries; recognized as a reasonable,
achievable dose) attenuated a decrease in plasma concentration
of BDNF, whereas BDNF levels dropped in the placebo group
(Dodd et al., 2019). Other gut-derived neuropeptides (GLP-
1, GLP-2, glucagon, etc.) affect brain activity, and can be
modulated by flavonoid consumption (Badshah et al., 2013;
Gu et al., 2014; Kashiwabara et al., 2016; Cremonini et al.,
2021), suggesting another mechanism through which flavonoids
enhance brain function.

The protective effects of flavonoid consumption occur
primarily in the hippocampus, a brain area critical for memory
function. A 3-month intervention with blueberry extract in
non-impaired older adults showed significant improvements in
delayed recognition and repetition errors (Whyte et al., 2018).
Krikorian et al. (2010) investigated blueberry supplementation
in older adults with mild cognitive impairment (MCI), finding
robust improvement in a verbal paired-associate learning
test. In a trial on working memory (WM), a significant
increase in signaling in the left inferior parietal gyrus and
left pre-central gyrus (enhanced neural activation) was found
in older adults consuming blueberries, although behaviorally,
performance on the WM task improved only marginally
(p = 0.08) (Boespflug et al., 2018). More recently, a 24-week
combined blueberry and/or fish oil intervention in older adults
with cognitive deficits concluded that blueberry intervention
improved cognitive efficiency for everyday life activities and
resilience against extraneous disturbances during recognition
memory tasks (McNamara et al., 2018).

In one of the longest duration blueberry interventions to
date (Cheatham et al., 2022), we randomized older adults (aged
65–80) who were experiencing age-related cognitive changes to
6 months of wild blueberry or placebo. Participants who were
not experiencing cognitive changes were included as a reference
group. Participants were tested for cognitive abilities using the
Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,
2005). Age-related cognitive change was operationalized as 1–1.5
SD below the standardized mean. Participants with lower scores

(>1.5 SD below the mean) were excluded from participation and
referred to their physician. Cognitive abilities were gauged using
the Cambridge Neuropsychological Test Automated Battery
(CANTAB) and an electrophysiological technique known as
event-related potentials (ERP). Those who consumed 35 g
lyophilized blueberry powder/day (equivalent to ∼300 g or 2
cups fresh fruit) did not experience any further decline in abilities,
whereas those on placebo did. In addition, those who consumed
blueberries daily exhibited improvement in speed of processing
(a basic cognitive ability that underlies all other cognitive
abilities) (Figure 1, left). This improvement was evidenced in
the behavioral tests (CANTAB) as well as the electrophysiological
tests (ERP). In addition, recognition memory improved to the
level of the reference group in the group consuming blueberries
(Figure 1, right). That is, as measured in the ERP component
N2, those consuming blueberries showed greater differentiation
between processing (N2) in response to novel versus familiar
stimuli relative to those consuming placebo. Thus, consumption
of wild blueberries halted cognitive decline and improved speed
of processing and recognition memory (Cheatham et al., 2022).

In sum, consumption of foods containing flavonoids appears
to act in the brain to improve function (Letenneur et al., 2007;
Ayaz et al., 2019). Flavonoids may enhance brain blood flow and
block beta-amyloid plaque buildup (a hallmark of Alzheimer’s
disease) in the brain. As prevention is generally preferred
and more readily achieved than remediation, we propose that
consumption of flavonoid foods are central to the prevention of
cognitive decline and quite possibly other brain functions such
as executive function, attention, and memory (Socci et al., 2017;
Westfall and Pasinetti, 2019).

GUT MICROBIOME AND COGNITION

The gut microbiome, an interactive community of
microorganisms in the gastrointestinal tract, is highly influenced
by diet (Westfall and Pasinetti, 2019; Zmora et al., 2019).
Until very recently, only loosely attributed theories about the
gastrointestinal microbial community’s impact on brain function

FIGURE 1 | Change (delta) in speed of processing by age group across the 6-month intervention in the CANTAB rapid visual processing task (left frame; negative is
better, F (2,110) = 4.14, p < 0.05). Recognition memory (right frame; positive is better) as tested by ERP (delta across 6 months) improved in the blueberry group to
the level of the reference group, whereas the placebo group did significantly worse [Group: F (8,83) = 2.63, p = 0.01].
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and behavior were available, based on highly controlled animal
studies. Recent trials, however, have shown that institutionalized
study participants experiencing cognitive decline have altered
gut bacterial composition compared to participants with
typical cognitive ability (Scheperjans et al., 2015; Bajaj et al.,
2016). These studies imply that the composition and diversity
of gut microbiota may significantly modulate gut-brain
communication, contributing to changes in cognition during
aging (Anderson et al., 2017; Manderino et al., 2017). It has
even been suggested that “westernization” of lifestyles, including
western diets and the habitual use of antibiotic treatments which
disrupt the gut microbiome, may contribute to neurological
dysfunction (Novotny et al., 2019).

A comparative review of almost a score of recent human
clinical trials suggested that deliberate intervention to change
gut microbiota composition can produce a positive bacteria-
cognition relationship, eliciting improvements in visuospatial
memory, verbal learning, and attention (Tooley, 2020). In this
narrative review, the importance of recognizing microbiota
signatures associated with cognitive performance, and identifying
potential gut microbiota interventions (including diet and
lifestyle) were highlighted. In another clinical trial, an increased
prevalence of Bacteroides in the gut microbiome was associated
with mild cognitive impairment in geriatric patients, evidenced
by impaired memory and lower global cognitive function
scores (Saji et al., 2019). The gut microbiota-brain axis has
previously been implicated in development of neurological
diseases including Alzheimer’s disease, and is proposed as a
target for cognitive decline therapeutics (Borsom et al., 2020).
Deliberate modulation of gut microbiome profiles, either by
fecal transplantation or probiotic interventions, is gaining
research momentum in the quest to control the pathogenesis of
Alzheimer’s disease (Wang and Dykes, 2021).

The microbiota-gut-brain communication is bidirectional;
changes in the composition of the gut microbiota are associated
with behavioral and cognitive alternations, and, perturbations
in behavior also alter the composition of the gut microbiota
(Mu et al., 2016; Borsom et al., 2020). Gut microbial metabolites
(including postbiotics such as bile acids, short chain fatty acids,
and tryptophan metabolites, as well as phenolic metabolites from
flavonoid catabolism) are major mediators of the microbiome-
gut-brain axis (Cryan and Dinan, 2012; Banfi et al., 2021).
We posit that cognition (memory and executive function)
are linked to the composition, functionality, and diversity of
the gut microbiota, in part because gut microbiota regulate
the production and delivery of microbiome-catabolized phenolic
metabolites into circulation following intake of flavonoid-rich foods
(Dinan et al., 2015; Manderino et al., 2017; Chu et al., 2019).

Using clinically validated behavioral measures and
electrophysiological measures of brain activity on a cohort of
older adults between 67 and 83 years of age and a diversity metric
for the gut microbiome, we recently found that gut microbial
diversity, as modulated by diet/flavonoid intake, was a predictor
of cognitive performance in free-living aging adults (Canipe
et al., 2021). We saw a significant association between behavioral
measures of paired-associate learning and spatial working
memory, and the α-diversity of the gut microbiome of older

adults; poorer performance (indicative of cognitive dysfunction)
predicted lower gut microbiome diversity (Canipe et al., 2021).
Poorer performance on spatial working memory tests and paired
associates learning was related to lower Shannon α-scores (a
diversity metric) (Peet, 1974) in the gut microbiome (Figure 2).
Electrophysiology waveforms related to attention differentially
predicted gut microbiome diversity, such that those with better
attention allocation and better sustained attention abilities had
more diverse gut microbiomes. Thus, higher gut microbiome
diversity is related to better brain function as measured by
cognitive tests. Importantly, in this same sample, we related
free-living consumption of berries to the diversity score and
found that those who reported eating more servings of berries
across three 24-h diet recalls had a more diverse gut microbiome)
(Canipe et al., 2021). Interacting ingested flavonoids can serve
a pivotal role in changing or reshaping the gut microbiota,
increasing populations of Lactobacilli spp. and Bifidobacteria
spp. and inhibiting gut pathogens (Wang et al., 2021). Reduced
abundance of pathogenic bacteria in the gut (Clostridium
perfringens, C. difficile, and gram-negative Bacteroides spp.)
without inhibition of commensal bacteria (clostridia and
lactobacilli) has been linked to prebiotic polyphenol intake
(Lee et al., 2006; Tuohy et al., 2012; Duda-Chodak et al.,
2015). Separate in vivo feeding trials with berry species
(cranberry and grape) led to consistent decrease in proportion of
Firmicutes to Bacteroidetes, and remarkable increase in growth
of Akkermansia muciniphila in the microbial community (Anhe
et al., 2014; Roopchand et al., 2015; Wang et al., 2021).

In sum, consumption of flavonoids is related to improved
speed of processing and recognition memory; consumption
of berry flavonoids is related to a more highly diverse gut
microbiome; and higher α-diversity in the gut microbiome is
related to better cognitive abilities (Canipe et al., 2021). The next
section will further explore how flavonoid consumption alters
the gut microbiome.

FLAVONOIDS AND THE GUT
MICROBIOME

Interactions between the microbiome and dietary flavonoids
have dual impacts on human health. First, diet, including
prebiotic flavonoid-rich foods, has a dramatic influence on
the composition and consequently the functionality of the gut
microbiome. The term prebiotic usually refers to indigestible
dietary fibers that benefit the gut microbiota, and flavonoids are
considered to have prebiotic-like effects as their consumption also
feeds/benefits commensal bacteria in the gut. Ingesting prebiotics
alters gut microbial community structure, favoring beneficial
commensal bacteria, and reducing levels of opportunistic species
(Anhe et al., 2014; Roopchand et al., 2015; Westfall et al.,
2018). Prebiotic flavonoids’ metabolites also have a profound
influence on inflammation in the gut, improving the epithelial
barrier’s integrity and activating tight junctions (Anhe et al., 2014;
Westfall and Pasinetti, 2019). Interestingly, the flavonoids do not
even need to be absorbed to exert these benefits; as xenobiotic
compounds, they induce cellular stress and an overcompensation
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reaction to maintain homeostasis, producing a hormetic response
that improves cell and barrier function (Calabrese et al.,
2012). The same gut-derived flavonoid metabolites that suppress
chronic intestinal inflammation are integral to inhibition of
neuroinflammation (Spencer et al., 2012).

In tandem, the gut microbiome significantly impacts flavonoid
bioavailability via extensive pre-systemic metabolism to release
active metabolites with therapeutic efficacy, including for
cognitive benefits. Only a small percentage of dietary flavonoids
are absorbed from the small intestine, before they reach
the colonic microbiota. Instead, most dietary flavonoids are
biotransformed by commensal gut microbiota into diverse
bioactive phenolic metabolites, and are delivered into circulation
where they elicit health-protective effects (Jennings et al.,
2019). The bioavailability of flavonoids is therefore largely
dependent on their catabolism by the gut microbiome and
subsequent secondary xenobiotic biotransformation in the liver
before entering circulation in the form of phenolic metabolites
(Espin et al., 2017; Williamson et al., 2018; Westfall and Pasinetti,
2019). Thus, flavonoid bioavailability depends, in part, on the
polyphenol-microbiota interactions, which ultimately regulate
both bioavailability and bioactivity (Lila et al., 2016).

Extensive evidence indicates that biotransformed metabolites
from lower-intestinal bacterial catabolism of dietary flavonoids
mediate anti-inflammatory activity in multiple tissues of the
body (Moco et al., 2012; Morais et al., 2016; Tomas-Barberan
et al., 2016; Schell et al., 2019; Deledda et al., 2021; Martin
and Ramos, 2021). Notably, diseases which cause chronic low-
grade inflammation (metabolic syndrome, diabetes, and arthritis)
are strongly linked to cognitive decline in aging (Santoro et al.,
2014; Noble et al., 2017). Strategies to attenuate the chronic,
low grade inflammatory status characteristic of aging adults
(inflammaging) can evoke systemic benefits on both physical
and cognitive health. The gut microbiota is also essential
for producing the full battery of bioavailable plasma- and
brain-bioactive metabolites that have neuroprotective capacity

(Westfall and Pasinetti, 2019). Long-term supplementation with
a probiotic could promote health by introducing colonic
microbiota that make flavonoids more bioavailable (Pereira-Caro
et al., 2015; Westfall and Pasinetti, 2019).

Evidence from our team and others shows that gut microbial-
derived metabolites of dietary flavonoids are anti-inflammatory
and immunomodulatory, can have greater bioactivity than their
parent/precursor structures, and have additive or synergistic
effects collectively (Ahmed et al., 2014; Amin et al., 2015; Duda-
Chodak et al., 2015; Nieman et al., 2017, 2018; Warner et al.,
2017). Indeed, daily consumption of anthocyanins in a diet-
induced obese mouse model with either healthy or antibiotic-
disrupted gut microbiota resulted in reduced body weight gain
and improved glucose metabolism, but only in mice with
intact gut microbiota (Esposito et al., 2015). The bidirectional
breakdown of flavonoids into active and more bioaccessible
metabolites and concurrent modulation of the gut microbial
community by these metabolites, both contribute to positive
health outcomes.

So far, we have described the positive associations between
flavonoid ingestion and cognitive health; the connections
between a robust microbiome and cognitive health; and the
two-way interactions between the gut microbiome and ingested
flavonoids, which mediate both the potency and bioavailability of
flavonoid metabolites; and the composition and functionality of
the microbiome. How might lifestyle factors, aside from diet, have
a bearing on these cognition-relevant influences?

PHYSICAL ACTIVITY AS A MEDIATOR

A physically active lifestyle is intrinsically linked to brain
health. Physically active people are less likely to demonstrate
cognitive decline, all-cause dementia, vascular dementia, and
Alzheimer’s disease; most data support MVPA for at least
150 min per week (Middleton et al., 2008; Voss et al., 2011;

FIGURE 2 | Cognitive scores (CANTAB) related to the gut microbiome diversity score Shannon Alpha [Multivariate Model F (2,56) = 4.846, R2 = 0.117] on spatial
working memory (left–longer times to success relate to lower diversity; p = 0.025) and paired associates learning (right-higher errors on the task relate to lower
diversity; p = 0.024). Reprinted from Canipe et al. (2021).
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Gow et al., 2012; Napoli et al., 2014; Piercy and Troiano, 2018;
Minghui, 2019; Chen et al., 2020). MVPA for elderly adults has
benefits for cognitive performance, brain function, and brain
structure (Voss et al., 2011). Most meta-analyses and systematic
reviews support that regular MVPA improves various aspects of
cognitive function including executive function (EF), language
ability, visuospatial ability, and memory in older adults with
cognitive impairment (Chen et al., 2020; Zhou et al., 2020).
When physical activity was directly monitored, participants
engaging in recommended levels of MVPA had lower incidence
of cognitive impairment and better maintenance of EF and
memory (Zhu et al., 2016).

The Physical Activity Guidelines for Americans state that
some benefits of physical activity on cognitive health occur
immediately after a session of MVPA (acute effect); these
include reduced anxiety, improved sleep, and improved cognitive
function (Piercy and Troiano, 2018). With regular MVPA by
older adults with or without impaired cognitive health (chronic
effect), even greater cognitive benefits are experienced including
improvements in EF, attention, memory, crystallized intelligence,
and processing speed (Weng et al., 2015; Tsukamoto et al.,
2017; Piercy and Troiano, 2018). The substantial cognitive
benefits observed with at least 150 min per week MVPA are
further amplified when MVPA is increased to 300 min per
week. Potential mechanisms for MVPA’s positive impacts on
cognition include changes in brain structures (Rovio et al.,
2010; Devenney et al., 2017), increases in cerebral blood
flow and oxygentation (Rooks et al., 2010; Tsubaki et al.,
2021), enhanced immune function, reductions in inflammation

including neuroinflammation, and/or increase neurotrophic
factors (Nieman et al., 2013; Ahmed et al., 2014; Amin et al.,
2015; Rehfeld et al., 2018; Minghui, 2019). Habitual walking
in late adulthood has been correlated with higher gray matter
volume, coincident with reduced risk of cognitive dysfunction
(Erickson et al., 2010). Flavonoid benefits coincident with
physical exertion are in part due to antioxidant and anti-
inflammatory effects, but also since these polyphenols activate
the same adaptive cell signaling pathways as physical exertion,
they are believed to complement adaptive benefits of exercise and
support performance (Hurst et al., 2019).

Moderate-to-vigorous physical activity combined with
flavonoid ingestion may improve post-exercise metabolic
recovery (Hurst et al., 2019; Nieman et al., 2019, 2020), and
augment cognitive function (Tsukamoto et al., 2018). Effects of
MVPA and flavonoid ingestion may be mediated in part through
elevations in circulating gut-derived phenolic metabolites, but
this linkage has not yet been conclusively established (Nieman
et al., 2013, 2018). MVPA does enhance the release of gut-derived
phenolic metabolites following chronic flavonoid ingestion.
In a randomized trial with long-distance runners featuring
a 17-day intervention with a flavonoid-rich supplement (or
placebo), serum metabolic signatures from colonic flavonoid
metabolites (derived from green tea or berries) were significantly
elevated for at least 14 h coincident with a 3-day intensified
exercise period, and these changes persisted through post-
exercise recovery (Nieman et al., 2013). Microbial metabolites
were dramatically elevated once the workout commenced –
the release of the metabolites into plasma was stimulated by

FIGURE 3 | Post-exercise change for 15 selected and grouped plasma gut-derived phenolics. P-values indicate contrasts with the placebo–sit group. Data are
represented as means with standard errors of the mean. *indicates a significant difference with the placebo-sit group (P values).
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physical exertion. Release of these microbial metabolites into
circulation significantly countered the athletes’ typical post-
exercise susceptibility to virus infection, by depressing ex vivo
viral replication and attenuating virulence (Ahmed et al., 2014).

In another study, the combination of 2 weeks of flavonoid
supplementation and acute exercise (both 45 min brisk walking
and 2.5 h running) enhanced the translocation of gut-derived
phenolics into circulation (Figure 3; Nieman et al., 2018).
The pre-study plasma concentration of gut-derived phenolic
metabolites was 40% higher in the leaner and fitter runners
than in the walkers. These data indicated that acute exercise
bouts (both brisk walking and intensive running) combined
with flavonoid supplementation, and an elevated fitness status
associated with habitual running, were linked to elevations in
plasma levels of gut-derived phenolics.

Several underlying mechanisms could explain these results
including flavonoid- and exercise-induced changes in gut
permeability and transporter function, increases in gut
microbiota richness, and altered gastrointestinal motility
and transport rate (Nieman et al., 2018). Chronic MVPA can
modify the composition and functional capacity of the gut
microbiota (Hughes and Holscher, 2021). Cross-sectional
human studies have revealed greater α-diversity and an
enriched profile of short chain fatty acids (SCFAs) in athletes
compared to sedentary controls (Barton et al., 2018; Mailing
et al., 2019; Nieman and Pence, 2020; Zhu et al., 2020). One
examination of phenotypic features across 3,400 individuals
found a linkage between microbiome diversity and MVPA
frequency and duration that was independent of major dietary

FIGURE 4 | Higher flavonoid intake may influence cognitive function by
augmenting gut microbial diversity and functionality and increasing circulating
levels of gut-derived phenolic metabolites. Moderate-to-vigorous physical
activity (MVPA) adds to this effect by enhancing the release of gut-derived
metabolites and improving cognitive function.

factors and BMI (Manor et al., 2020) and longitudinal MVPA
studies support some selective changes on the gut microbiome,
especially when vigorous exercise training is sustained for
months (Allen et al., 2018; Cronin et al., 2018; Kern et al.,
2020). The interaction between MVPA and the gut microbiota
is bidirectional. As already noted, flavonoids are catabolized
by and influence composition of the microbiota, and exercise
stimulated the bioavailability of flavonoid metabolites (Nieman
et al., 2018). The gut microbiota also has an influence on
exercise performance by producing SCFAs that increase muscle
blood flow and insulin sensitivity, and can be utilized as fuel
(Hughes and Holscher, 2021).

It is therefore reasonable to posit that the connection
between physical activity (e.g., exercise), dietary flavonoids, and
improved cognition (memory and executive function) is linked
to their demonstrated influence on the microbiome (diversity and
functionality) (Figure 4).

CONCLUSION

A complex interaction of factors (lifestyle, diet, genetics, and
environment) all appear to exert influence on cognition in
the aging brain. Emerging evidence suggests that there may
be potentiating interactions between some of these, including
flavonoid intake, microbiome, and physical activity levels
(exercise). What are the mechanisms responsible for the benefits
to cognition, and how can they be fully demonstrated? We
hypothesize that it is the phytoactive metabolites from flavonoid
ingestion, after catabolism at the gut microbiome level, that
interact with cellular and molecular targets (signaling pathways)
to improve neuron connectivity and promote vascular and
peripheral flow in the brain. Exercise has demonstrated ability
to provoke a surge of these phytoactive flavonoid metabolites
into circulation. It follows that the positive cognitive benefits
from dietary flavonoids and regular moderate exercise may be a
consequence of the enhanced circulation of gut-derived flavonoid
metabolites, mediated by the activities of the colonic microbiota.
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