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A Library for fMRI Real-Time
Processing Systems in Python
(RTPSpy) With Comprehensive
Online Noise Reduction, Fast and
Accurate Anatomical Image
Processing, and Online Processing
Simulation

Masaya Misaki*, Jerzy Bodurkat and Martin P. Paulus

Laureate Institute for Brain Research, Tulsa, OK, United States

Real-time fMRI (itfMRI) has enormous potential for both mechanistic brain imaging
studies or treatment-oriented neuromodulation. However, the adaption of ritfMRI has
been limited due to technical difficulties in implementing an efficient computational
framework. Here, we introduce a python library for real-time fMRI (tfMRI) data
processing systems, Real-Time Processing System in python (RTPSpy), to provide
building blocks for a custom rtfMRI application with extensive and advanced
functionalities. RTPSpy is a library package including (1) a fast, comprehensive, and
flexible online fMRI image processing modules comparable to offine denoising, (2)
utilities for fast and accurate anatomical image processing to define an anatomical
target region, (3) a simulation system of online fMRI processing to optimize a pipeline
and target signal calculation, (4) simple interface to an external application for feedback
presentation, and (5) a boilerplate graphical user interface (GUI) integrating operations
with RTPSpy library. The fast and accurate anatomical image processing utility wraps
external tools, including FastSurfer, ANTs, and AFNI, to make tissue segmentation
and region of interest masks. We confirmed that the quality of the output masks was
comparable with FreeSurfer, and the anatomical image processing could complete in a
few minutes. The modular nature of RTPSpy provides the ability to use it for a simulation
analysis to optimize a processing pipeline and target signal calculation. We present
a sample script for building a real-time processing pipeline and running a simulation
using RTPSpy. The library also offers a simple signal exchange mechanism with an
external application using a TCP/IP socket. While the main components of the RTPSpy
are the library modules, we also provide a GUI class for easy access to the RTPSpy
functions. The boilerplate GUI application provided with the package allows users to
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develop a customized rtfMRI application with minimum scripting labor. The limitations
of the package as it relates to environment-specific implementations are discussed.
These library components can be customized and can be used in parts. Taken together,
RTPSpy is an efficient and adaptable option for developing rnfMRI applications.

Code available at: https://github.com/mamisaki/RTPSpy

Keywords: real-time fMRI, neurofeedback, online noise reduction, python library, fast segmentation

INTRODUCTION

Online evaluation of human brain activity with real-time
functional magnetic resonance imaging (rtfMRI) expands the
possibility of neuroimaging. Its application has been extended
from on-site quality assurance (Cox et al., 1995), brain-computer-
interface (BCI) (Goebel et al., 2010), brain self-regulation with
neurofeedback (Sulzer et al., 2013), and online optimization in
brain stimulation (Mulyana et al., 2021). Nevertheless, a complex
system setup specific to an individual environment and noisy
online evaluation of neural activation due to a limited real-
time fMRI signal processing have hindered the utility of rtfMRI
applications and reproducibility of its result (Thibault et al,
2018). Indeed, the significant risk of noise contamination in the
neurofeedback signal has been demonstrated in recent studies
(Weiss et al., 2020; Misaki and Bodurka, 2021). These issues have
been addressed with a community effort releasing easy-to-use
rtfMRI frameworks (Cox et al., 1995; Goebel, 2012; Sato et al.,
2013; Koush et al., 2017; Heunis et al., 2018; Kumar et al., 2021;
Maclnnes et al., 2020) and consensus on reporting detailed online
processing and experimental setups (Ros et al., 2020).

As one of the contributions to such an effort, we introduce
a software library for rtfMRI; fMRI Real-Time Processing
System in python (RTPSpy). The goal of the RTPSpy is to
provide building blocks for making a highly customized and
advanced rtfMRI system. The library is not assumed to provide
a complete application package but offers rtfMRI data processing
components to be used as a part of a user’s custom application.
We suppose that the tools of RTPSpy can also be combined with
other frameworks as a part of processing modules.

RTPSpy is a python library that includes a fast and
comprehensive online fMRI image processing pipeline
comparable to offline processing (Misaki and Bodurka, 2021)
and an interface module for an external application to receive
real-time brain activation signals via TCP/IP socket. Each online
data processing component is implemented in an independent
class, and a processing pipeline can be created by chaining
these modules. In addition to the online fMRI signal processing
modules, the library provides several utility modules, including
brain anatomical image processing tools for fast and accurate
tissue segmentation, and an online fMRI processing simulation
system. Although these utilities may not always be required in
a rtfMRI session, the fast anatomical image processing can be
useful for identifying anatomically defined target regions, and
the simulation analysis is vital for building an optimal processing
pipeline (Ramot and Gonzalez-Castillo, 2019; Misaki et al.,
2020; Misaki and Bodurka, 2021). We also provide a boilerplate

graphical user interface (GUI) application integrating operations
with RTPSpy, and a sample application of neurofeedback
presentation using PsychoPy (Peirce, 2008) to demonstrate how
the RTPSpy is implemented in an application and to interface to
another external application. The GUI application is presented as
just one example of library usage. However, a user may develop a
custom neurofeedback application with minimum modification
on this example script.

The aim of this manuscript is to introduce the structure of
the RTPSpy library and its usages as a part of a neurofeedback
application. We hope that RTPSpy is used as a part of a user’s own
custom application so that the current report focuses on how to
script the RTPSpy online processing pipeline and implement it in
an application. The detailed usage of the example application is
presented in GitHub." Also, this manuscript does not provide a
comprehensive evaluation of the library’s performance in detail.
Such evaluations have been done in our previous report (Misaki
and Bodurka, 2021), and only a short overview of the previous
report was given in this report. Comparison with other exiting
rtfMRI frameworks is also out of the scope of this manuscript. We
recognize that many excellent packages are released for rtfMRI
(Cox et al., 1995; Goebel, 2012; Sato et al., 2013; Koush et al., 2017;
Heunis et al., 2018; Kumar et al., 2021; MacInnes et al., 2020),
and we do not claim that RTPSpy is the best. The claim of the
advanced functionality of the RTPSpy is for its own sake and not
relative to other tools. RTPSpy and this manuscript aim to offer
users another option for developing a custom rtfMRI application.

This manuscript is organized as follows. The next section
summarizes the installation and supporting system information.
The third section introduces the online fMRI data processing
modules in RTPSpy, the main components of the library. The
issues and caveats in online fMRI data analysis and how they
are addressed in RTPspy implementation are discussed here.
The fourth section describes fast and accurate anatomical image
processing tools. A custom processing stream was made by
wrapping external tools, FastSurfer (Henschel et al., 2020),
AFNI? and ANTs.> We also evaluated the accuracy of tissue
segmentation and the quality of tissue-based noise regressors
made by this stream compared to FreeSurfer segmentation. The
fifth and sixth sections illustrate the usage of library classes to
build a processing pipeline and run a simulation analysis. An
example GUI implementation is presented in the seventh section.
The last section discusses the system components that are not

Uhttps://github.com/mamisaki/RTPSpy/tree/main/example/ROI-NF
Zhttps://afni.nimh.nih.gov/
3http://stnava.github.io/ ANTs/

Frontiers in Neuroscience | www.frontiersin.org

March 2022 | Volume 16 | Article 834827


https://github.com/mamisaki/RTPSpy
https://github.com/mamisaki/RTPSpy/tree/main/example/ROI-NF
https://afni.nimh.nih.gov/
http://stnava.github.io/ANTs/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Misaki et al.

RTPSpy: A Real-Time fMRI Library

provided with RTPSpy but are required for a complete system
depending on an individual environment. The RTPSpy can be
obtained from GitHub* with GPL3 license.

INSTALLATION AND SUPPORTING
SYSTEMS

RTPSpy is assumed to be run on a miniconda3’ or Anaconda®
environment. A yaml file for installing the required python
libraries in an anaconda environment is provided with the
package for easy installation. RTPSpys anatomical image
processing depends on several external tools, AFNI (see text
footnote 2), FastSurfer,’ and ANTs.® While AFNI needs to
be installed separately, FastSurfer and ANTs installation is
integrated into the RTPSpy setup. Refer to the GitHub site (see
text footnote 4) for further details.

RTPSpy can take advantage of graphical processing unit
(GPU) computation. GPU can be utilized in the online
fMRI data processing and anatomical image processing with
FastSurfer (see text footnote 7). To use GPU computation, a
user needs a GPU compatible with NVIDIAs CUDA toolkit’
and to install a GPU driver compatible with the CUDA.
The CUDA toolkit will be installed with the yaml file. We
note that GPU is not mandatory for RTPSpy. Online data
processing speed in RTPSpy is fast enough for real-time
fMRI even without GPU, while GPU can enhance it further
(Section “Real-Time Performance”). Also, RTPSpy provides
an alternative anatomical image processing stream not using
FastSurfer, while the image segmentation accuracy is better with
FastSurfer (Section “Evaluations for the Segmentation Masks and
Noise Regressors”).

RTPSpy has been developed on a Linux system (Ubuntu
20.04). It can also be run on Mac OS X and Windows with the
Windows Subsystem for Linux (WSL), while GPU computation
is not supported on OS X and WSL for now.

RTPSpy ONLINE fMRI DATA
PROCESSING

Overview of the Library Design

Figure 1 shows an overview of the modules composing an online
processing pipeline. RTPSpy includes six online fMRI data
processing modules; a real-time data loader (RTP_WATCH),
slice-timing correction (RTP_TSHIFT), motion correction
(RTP_VOLREG), spatial smoothing (RTP_SMOOTH), noise
regression (RTP_REGRESS), and an application module
(RTP_APP). A utility module for an external application
to receive a processed signal, RTP_SERYV, is also provided.

*https://github.com/mamisaki/RTPSpy
>https://docs.conda.io
Shttps://www.anaconda.com/
"https://deep-mi.org/research/fastsurfer/
Shttps://pypi.org/project/antspyx/
“https://developer.nvidia.com/cuda-toolkit

RTP_WATCH is the entrance module, and RTP_APP is the
terminal module of a pipeline. Other modules have common
input and output interfaces so that they can be connected in
any combination and order. For example, when a conventional
pipeline only with a motion correction is enough, the pipeline
can be made only with RTP_WATCH, RTP_VOLREG, and
RTP_APP modules. If more comprehensive processing is
required, all the components can be chained in a pipeline.

These modules are implemented as a python class. The
module’s interface method is “do_proc,” which receives a
NiBabel' NiftilImage object. Its calling format is the same for
all modules. The modules exchange data with the NiftilImage
object of the whole-brain volume data. The processing chain can
be made by setting the “next_proc” property to an object
of the next module. Calling the “do_proc” method at the
head of the pipeline calls the next module’s “do_proc” method
in the chain. This simple function interface enables the easy
creation of a custom pipeline (see Section “Building a Processing
Pipeline” for details).

We assume that the input and output parts should be
customized according to the user’s environment and an
application need. For example, if a user wants to use another real-
time image feeding (e.g., a dicom export feature of a scanner),
RTP_WATCH can be replaced or modified in a preferred
way. Also, the RTP_APP can be customized to calculate a
neurofeedback signal in a user’s way. An example script for such
customization is presented in Section “An Example Graphical
User Interface Application Integrating the RTPSpy Modules.”
We note that RTPSpy is not intended to provide a complete
application for any environment. Instead, a necessary module for
each environment is supposed to be developed by a user. RTPSpy
offers a framework of the interface and building blocks of online
fMRI data processing.

Real-Time Performance
Retaining the whole-brain data throughout the pipeline enables
a common interface between modules. It also provides freedom
of neurofeedback signal calculation (i.e., an ROI average,
connectivity of multiple regions, and multi-voxel patterns in the
whole brain) with various combinations of processing modules.
Although this implementation seemed burdensome for real-time
computation, we found that processing whole-brain volume does
not significantly affect the real-time performance in RTPSpy.
Our previous report (Misaki and Bodurka, 2021) showed that
the pipeline processing was completed in less than 400 ms on
a current PC equipped with a GPU. Here, we also evaluated
the processing time with several PC specifications with and
without GPU for a sample fMRI data (128 x 128 x 34
matrix, 203 volumes). Note that this evaluation is not a
comprehensive performance test but rather a rough guide
to the PC specifications required for real-time processing
with RTPSpy.

Table 1 shows the specifications of the tested PCs.
“Linux+GPU” is the same one used in Misaki and Bodurka
(2021). The evaluated pipeline included all modules implemented

https://nipy.org/nibabel/
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Input Online image processing Output
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RTP_WATCH volume RTP_TSHIFT volume RTP_APP
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FIGURE 1 | Overview of the RTPSpy module design for creating an online fMRI processing pipeline. RTP_WATCH is the entrance module, and RTP_APP is the
terminal module of a pipeline. Other modules have common input and output interfaces. They can be connected in any combination and order. The modules
exchange data with the Nifti1image object of the whole-brain volume data. RTP_SERYV is a utility module for an external application to receive a processed signal.

TABLE 1 | PC specifications used for the computation time evaluation.

Name CPU RAM Storage GPU

Linux + GPU  Dual Intel Xeon Gold 6126, 256 GB, DDR4 HDD  NVIDIA
2.6 GHz, 12-core TITAN V

Linux Dual Intel Xeon Gold 6126, 256 GB, DDR4 HDD No
2.6 GHz, 12-core

MacBookPro1 Intel Core i9, 2.3 GHz, 8-Core 32 GB, DDR4  SSD No

MacBookPro2 Intel Core i7, 2.7 GHz, 4-core 16 GB, DDR3  SSD No

Windows 1 Intel Xeon W-2245, 3.9 GHz, 32 GB, DDR4 SSD No
8-core

Windows?2 Intel Core i5, 2.0 GHz, 4-core 8 GB, DDR3  HDD No

in RTPSpy and RTP_REGRESS includes all available regressors.
Figure 2 shows processing times for each module. The figure
shows the results after TR = 45 since the regression waited to
receive 40 volumes, excluding the initial three volumes, and
the processing of the first regressed volume took a long time
due to initialization and retrospective processing (see Section
“Implementations of the Online fMRI Processing Algorithms,”
RTP_REGRESS). The processing time of RTP_WATCH is from
a file creation time to send the volume data to the next module.

The processing time of RTP_APP is to extract an ROI average
signal and write it in a text file.

The results were consistent with the previous report (Misaki
and Bodurka, 2021). The most time-consuming processing was
RTP_VOLREG. RTP_REGRESS’s processing time increased with
TR since cumulative GLM uses more samples in later TRs
(see Section “Implementations of the Online fMRI Processing
Algorithms,” RTP_REGRESS). The slope of the increase was
the lowest with GPU, indicating that GPU can be beneficial
when a scan has many volumes. Interestingly, however, the
total processing time was not significantly different by GPU
usage, and MacBookPro showed comparable performance with
a high-end Linux PC, at least for the present scan length. The
Windows showed relatively longer processing times regardless
of the specification, which might be due to the overhead of the
Windows subsystem for Linux. These results indicate that the
PC requirement for RTPSpy is not high, at least for an ordinary
real-time fMRI scan with a few seconds TR and less than a few
hundred volumes.

Even if computation time does not limit real-time fMRI
processing, the limited number of sample points available online
poses a challenge for online processing yet. The next section
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FIGURE 2 | RTPSpy online fMRI data processing times. See Table 1 for the specification of the PCs. The evaluation was done with a sample fMRI data
(128 x 128 x 34 matrix, 203 volumes). Processing with RTP_REGRESS included all available regressors (Legendre polynomials for high-pass filtering, 12 motion
parameters, global signal, mean white matter and ventricle signals, and RETROICOR regressors).

50 75 100 125 150 175 200

50 75 100 125 150 175 200
TR

describes the details of each module functionalities and online
analysis methods in RTPSpy to address this issue.

Implementations of the Online fMRI

Processing Algorithms

Table 2 summarizes the functions of RTPSpy processing
modules. The class files for these modules can be found in the
“rtpspy” directory of the package. The issue of the limited
number of online available sample points is critical for slice
timing correction, signal scaling, and online noise regression.
This section describes the methods used in the RTPSpy modules
to address this issue.

RTP_WATCH finds a newly created file in a watching
directory in real-time, reads the data, and sends it to the
next processing module. The watchdog module in python"
is used to detect a new file creation. RTP_WATCH uses the
NiBabel library (see text footnote 10) to read the file. The
currently supported file types are NIfTI, AFNIs BRIK, and
Siemens mosaic dicom. Technically, this module can handle all
file types supported by NiBabel, so a user can easily extend
the supported files as needed. The whole-brain volume data
is retained in the NiBabel NiftilImage format throughout the
RTPSpy pipeline. The observer function used in RTP_WATCH
(PollingObserverVES) is system-call independent and can work
with various file systems. However, polling may take a long time
if many files are in the monitored directory, hindering real-time
performance. If a user finds a significant delay by saving files of

"https://pythonhosted.org/watchdog/index.html

many runs in a single directory, it is recommended to clean or
move files at each run.

Although RTP_WATCH offers a simple interface to read
a data file in real-time, how the MRI scanner saves the
reconstructed image varies across the manufacturers and sites.
RTPSpy does not provide a universal solution for that. A user
may need another package to send data to the watched directory
or modify the script file (rtp_watch.py) to adjust for each
environment. We will discuss this limitation of the environment-
specific issues in the last section.

RTP_TSHIFT performs a slice-timing correction by aligning
the signal sampling times in different slices to the same one
with temporal interpolation. Because we cannot access the
future time point in real-time, the online processing cannot be
equivalent to offline. RTPSpy aligns the sampling time to the
earliest slice for avoiding extrapolation. RTPSpy implements two
interpolation methods, linear and cubic. The linear interpolation
uses only the current and one past time point so that it is
equivalent to offline processing. The cubic interpolation uses
four time-points; two from the past, the present, and one future.
RTPSpy puts a pseudo future point with the same value as
the present one to perform the cubic interpolation. We have
confirmed that this pseudo cubic method has a higher correlation
with a high-order interpolation method (e.g., FFT) than a
linear method (Misaki et al., 2015). By default, RTPSpy uses
cubic interpolation.

Slice-timing correction is often skipped in real-time fMRI
processing, and its effect could be minor when TR is short (Kiebel
et al., 2007; Sladky et al., 2011). However, some neurofeedback
signal extraction methods, such as the two-point connectivity
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TABLE 2 | Summaries of RTPSpy real-time processing modules and their
differences from offline processing.

Class module
(library file)

Processing

Difference from an
offline processing

RTP_WATCH
(rtp_watch.py)

RTP_TSHIFT
(rtp_tshift.py)

RTP_VOLREG
(rtp_volreg.py)
RTP_SMOOTH
(rtp_smooth.py)

RTP_REGRESS
(rtp_regress.py)

RTP_RETROTS
(rtp_retrots.py)

RTP_APP
(tp_app.py)

RTP_SERV
(rtp_serv.py)

Monitoring a new fMRI volume file
creation to read and convert the
data as NiBabel Nifti1image.

Slice-timing correction with
temporal interpolation and
resampling time points.

Motion correction with
registration to a reference volume.
Spatial smoothing by convolving
a Gaussian kernel inside a brain
mask.

Signal scaling and noise
regression. Regressors include
high-pass filtering, motion
parameters and their temporal
derivatives, global signal, mean
signals in the white matter and
ventricle regions, and cardiac and
respiration noise models with
RETROICOR (Glover et al., 2000).

This module is not a part of the
pipeline but a supporting module
for RTP_REGRESS to calculate
the RETROICOR regressor.

Calculating the neurofeedback
signal from the processed image
to send the signal to an external
application. General application
controls, including anatomical
image processing, are also
performed.

This module is not a part of the
pipeline but is to be used in an
external application. The module
launces a TCP/IP server in a
background thread, receiving a
processed signal from RTP_APP.
An external application can
retrieve the received signal as a
property of the module.

N/A

Cubic interpolation uses a
pseudo future point with
the same value as the
present one.

None.

None.

The regression starts after
acquiring enough
volumes.

The signal scaling uses
the average signal before
starting the regression.
High-pass filtering and
RETROICOR regressors
are updated at each time
(Misaki and Bodurka,
2021).

Although the same
algorithm as offline
processing is used, the
online calculation of the
regressors cannot be
accurate (Misaki and
Bodurka, 2021).

N/A

N/A

N/A, Not applicable to offline processing. The library files can be found in the
“rtpspy” directory of the RTPSpy package.

(Ramot et al., 2017), could be sensitive to a small timing
difference between slices. The two-point method evaluates the
consistency of the signal change direction (increase/decrees) at
each TR, which could be sensitive to the timing of signal direction
change between ROIs in different slices. The user can choose to
use this module or not, and RTPSpy does not enforce the specific
pipeline for the real-time fMRI processing. We also note that
slice-timing correction takes no significant cost of computational
time (Figure 2).

RTP_VOLREG performs motion correction by registering
volumes to a reference one. The same functions as the AFNTI’s
3dvolreg,'> a motion correction command in the AFNTI toolkit, is
implemented in RTP_VOLREG. We compiled the C source codes
of 3dvolreg functions into a custom C shared library file (librtp.so
in the RTPSpy package), and RTP_VOLREG accesses it via the
python ctypes interface. Thus, this online processing is equivalent
to the offline 3dvolreg. By default, RTP_VOLREG uses heptic
(seventh order polynomial) interpolation at image reslicing, the
same as the 3dvolreg default.

RTP_SMOOTH performs spatial smoothing by convolving a
Gaussian kernel within a masked region. Like RTP_VOLREG,
RTPSpy uses the AFNTI’s 3dBlurInMask" functions compiled into
a Cshared library file (librtp.so), and accessed via ctypes interface
in python. This process has no difference between online and
offline processing.

RTP_REGRESS performs a signal scaling and noise regression
analysis. The regression requires at least as many data points as
the number of regressors and will not commence the process until
sufficient number of data points have been collected. The signal
scaling is done with the average signal in this waiting period and
converts a signal into percent change relative to the average in
each voxel. We note that this scaling is not equivalent to the
offline processing using an average of all time points in a run
so that the absolute amplitude cannot be comparable between
the online and offline processing. We also note that the volumes
before the start of regression are processed retrospectively so that
the saved data includes all volumes. Once enough volumes are
received, the regression is done with an ordinary least square
(OLS) approach using the PyTorch library," which allows a
seamless switching of CPU and GPU usage according to the
system equipment. The residual of regression is obtained as a
denoised signal.

The regressors can include high-pass filtering (Legendre
polynomials), motion parameters (three shifts and three
rotations), their temporal derivatives, global signal, mean signals
in the white matter and ventricle regions, and cardiac and
respiration noise models with RETROICOR (Glover et al., 2000).
The order of the Legendre polynomials for high-pass filtering
is adjusted according to the data length at each volume with
1 + int(d/150), where d is the scan duration in seconds (the
default in AFNT). The motion parameters were received from the
RTP_VOLREG module in real-time. The global signal and the
mean white matter and ventricle signals are calculated from the
unsmoothed data, which is also received from the RTP_VOLREG
module. These regressors were made from the mask files
defined in “GS_mask” (global signal mask), “WM_mask,” and
“Vent_mask” properties of the module. As the RTP_REGRESS
depends on RTP_VOLREG outputs, RTP_VOLREG must be
included before RTP_REGRESS when it is used in a pipeline.
A user can also include any pre-defined time-series such as a task
design as a covariate in the regressors. It is up to a user to decide
which regressor to use. The report in Misaki and Bodurka (2021)

Phttps://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html
Bhttps://afni.nimh.nih.gov/pub/dist/doc/program_help/3dBlurinMask.html
“https://pytorch.org/
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has shown which regressor was effective in reducing what noise
in what brain regions and connectivity, which may help decide
the noise regressor choice.

RTPSpy uses cumulative GLM (cGLM), which performs
regression with all samples at each time, rather than incremental
GLM (iGLM), which updates only the most recent estimates
based on previous estimates (Bagarinao et al, 2003). In
Misaki and Bodurka (2021), we indicated that high-pass
filtering regressor, either Legendre polynomial or discrete
cosine transform, filtered higher frequencies than the designed
threshold at early TRs unless the regressor was adjusted at
each TR. This adjustment requires a retrospective update of
the regressor. Similarly, the online creation of RETROICOR
regressors, made from real-time cardiac and respiration signal
recordings, could not be accurate compared to the offline
creation, and the error was accumulated unless retrospective
correction was made (see Figures 2, 3 in Misaki and
Bodurka, 2021). RTPSpy uses ¢cGLM because ¢cGLM has the
advantage of being able to recalculate regressors at each
volume, thereby improving the quality of regressors made
online with limited samples. Although this implementation,
whole-brain processing with ¢GLM, seemed burdensome for
real-time processing, the computation time is not inhibitive
to real-time performance, as shown in Section “Real-Time
Performance.”

RTP_RETROTS is not a pipeline component (thus, not shown
in Figure 1) but a supporting module for RTP_REGRESS
to calculate the RETROICOR regressors from cardiac and
respiration signals in real-time. In our environment, cardiac and
respiration signals are measured using photoplethysmography
and a pneumatic respiration belt, respectively. Although this
hardware implementation could depend on the environment
of each site (see Section “Limitations and Environment-
Specific Issues”), once the signal acquisition is set up, the
usage of RTP_RETROTS is simple. Its interface method
(“do_proc”) receives respiration and cardiac signal values
as one-dimensional arrays, the signals’ sampling frequency,
and fMRI TR parameters. Then, the method returns the
RETROICORE regressors.

RTP_RETROTS implements the same functions as the AFNT’s
RetroTS.py script, which are rewritten in C codes and compiled
into a shared library (librtp.so). The module makes four cardiac
and four respiration noise basis regressors. It is possible to also
create a respiration volume per time (RVT) regressors (Birn et al.,
2008). However, we do not recommend using them in online
processing. Our previous study (Misaki and Bodurka, 2021)
indicated that the online evaluation of RVT regressors could not
be accurate, and its usage could introduce an artifactual signal
fluctuation in the processed signal in an online regression.

RTP_APP receives the processed image and calculates the
neurofeedback signal from it. The default implementation
extracts the average signal in an ROI mask, defined in the
“do_proc” method of the rtp_app.py file. This method is
provided as a prototype and can be customized according to the
need for individual applications. Section “An Example Graphical
User Interface Application Integrating the RTPSpy Modules”
and Figure 10 show an example of a customized method.

The RTPSpy noise reduction is performed for the whole-brain
voxels, which is advantageous in calculating the feedback signals
from multiple regions, such as the functional connectivity and
decoding neurofeedback (Watanabe et al., 2017). The calculated
signal can be sent to an external application through a network
socket to the RTP_SERV module (Figure 1; see also Section
“An Example Graphical User Interface Application Integrating
the RTPSpy Modules” and Figure 11). The RTP_APP class
also implements general application control methods, including
anatomical image processing described in the next section and
a high-level scripting interface explained in Section “Example
Real-Time fMRI Session.”

RTP_SERV is not a part of the image processing pipeline
but offers an interface class for an external application to
communicate to RTPSpy. This module is assumed to be
implemented in an external application as a receiver of the
processed signal. Instantiating this class launches a TCP/IP
server in a background thread in an external application
to receive a real-time neurofeedback signal (see Section “An
Example Graphical User Interface Application Integrating the
RTPSpy Modules”).

ANATOMICAL IMAGE PROCESSING
WITH FAST AND ACCURATE TISSUE
SEGMENTATION

Anatomical image processing is often required in a rtfMRI
session. While there are several ways to define the target region
for neurofeedback (e.g., functional localizer), if the target brain
region is defined in the template brain with a group analysis,
we need to warp the region mask into the participant’s brain.
The noise regressions with the global signal and white matter
and ventricle mean signals also require a brain mask and tissue
segmentation masks on an individual brain image.

Although there are many tools for brain tissue segmentation
using a signal intensity, they are prone to an image bias field
and often need a manual correction. Another approach for
tissue segmentation uses anatomical information to segment the
regions in addition to the signal intensity, such as FreeSurfer.”
FreeSurfer usually offers more accurate and robust segmentation
than using only the signal intensity, but its process takes
hours or longer to complete, inhibiting its use in a single
visit rtfMRI session. Recently, an alternative approach of brain
image segmentation using a deep neural network has been
released as FastSurfer (Henschel et al.,, 2020). FastSurfer uses
a U-net architecture (Ronneberger et al, 2015) trained to
output a segmentation map equivalent to the FreeSurfer’s
volume segmentation from an input of anatomical MRI
image. FastSurfer can complete the segmentation in a few
minutes with GPU. We made a script called FastSeg utilizing
the advantage of FastSurfer to extract a brain mask (skull
stripping), gray matter, white matter, and ventricle segmentation.
FastSeg is implemented as part of the RTPSpy anatomical
image processing pipeline and also released as an independent

Dhttps://freesurfer.net/
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tool.'® The FastSurfer process in the FastSeg could take very
long (about an hour) if GPU was not available. Therefore,
RTPSpy also offers another processing stream that does not
use FastSeg. This section describes the flow of the anatomical
image processing steps and shows the evaluation results of their
segmentation accuracy and noise regressor quality compared to
FreeSurfer’s segmentation.

Anatomical Image Processing Pipeline
RTPspy offers a simple function interface to run a series
of anatomical image processing, the “make_masks”
method in RTP_APP class. Figure 3 shows the processing
pipeline in this method. The method receives filenames
of a reference function image (func_orig), anatomical
image (anat_orig), template image (template, optional),
and a region of interest (ROI) image in the template space
(ROI_template, optional). If the alternative processing stream
without FastSeg is used, white matter and ventricle masks
defined in the template space (WM_template, Vent_template)
can also be received. The process includes the following
five steps.

(1) Extracting the brain (skull stripping), white matter, and
ventricle regions using FastSeg. FastSeg uses the first stage
of the FastSurfer process to make a volume segmentation
map (DKTatlas+aseg.mgz). Then, all the segmented voxels
are extracted as the brain mask with filling holes. The white
matter mask is made with a union of the white matter
and corpus callosum segmentations. The ventricle mask
is made with lateral ventricle segmentation. We did not
include small ventricle areas because the mask is used only
for making a regressor for online fMRI denoising.

In the alternative stream not using FastSeg (blue box in
Figure 3), AFNI’s 3dSkullStrip is used for brain extraction. White
matter and ventricle masks are made in a later step (step 4) by
warping the template masks into an individual brain.

(2) Aligning the extracted brain image to a reference function
image using AFNI align_epi_anat.py.

(3) Aligning and resampling the brain mask into the reference
function image space using the parameters made in step
2 and making a signal mask of the function image using
3dAutomask in AFNI. The union of these masks is made
as a real-time processing mask (RTPmask.nii.gz), used
at spatial smoothing in RTP_SMOOTH and defining
the processing voxels in RTP_REGRESS. The intersect
of these masks is also made as a global signal mask
(GSRmask.nii.gz), used in RTP_REGRESS.

(4) If the template image and the ROI mask on the template
are provided, the template brain is warped into the
participant’s anatomical brain image using the python
interface of ANTs registration.”” Then, the ROI mask on
the template is warped into the participant’s brain anatomy
image and resampled to the reference function image to

16https://github.com/mamisaki/FastSeg
7https://github.com/ANTsX/ANTsPy

make an ROI mask in the functional image space. This
mask will be used for neurofeedback signal calculation.

In the alternative stream not using FastSeg (blue box in
Figure 3), white matter and ventricle masks defined in the
template brain are also warped into an individual brain.

(5) Eroding the white matter (two voxels) and ventricle
(one voxel) masks and aligning them to the functional
image space using the alignment parameters (affine
transformation) estimated at step 2. These masks will be
used for the white matter and ventricle average signal
regression.

These anatomical image processing could be completed in
less than a few minutes. Table 3 shows the processing times
with and without FastSeg on the PCs listed in Table 1 for one
sample image (MPRAGE image with 256 x 256 x 120 matrix
and 0.9 x 0.9 x 1.2 mm voxel size).

Evaluations for the Segmentation Masks

and Noise Regressors

Since the anatomical segmentation by FastSurfer is not exactly
the same as FreeSurfer (Henschel et al., 2020), we evaluated the
quality of white matter and ventricle masks made by the FatSeg
compared to the FreeSurfer segmentation. The comparison was
made for 87 healthy participants’ anatomical and resting-state
fMRI images (age 18-55 years, 45 females) used in our previous
study (Misaki and Bodurka, 2021). We also performed the same
comparison for the masks made by the alternative processing
stream without FastSeg.

Figure 4 upper panel shows the Dice coefficients of
the segmentation masks with the FreeSufer segmentation in
anatomical image resolution. The masks made by FastSeg had
high Dice coefficients with FreeSurfer segmentation showing
their good agreement, while the masks made by the alternative
stream had lower agreements, especially for the white matter
mask. Nevertheless, the effect of these discrepancies could be
minor in creating a noise regressor at functional image resolution.
The bottom panel of Figure 4 shows the correlation between the
average white matter and ventricle fMRI signals created from the
FastSeg (or alternative stream) and FreeSurfer masks. For the
FastSeg, the correlation was nearly 1.0 (higher than 0.98 even for
the minimum sample). Although a few samples had a relatively
low Dice coefficient for the FastSeg ventricle mask, that was
because their ventricle region was small, and minor error affected
the Dice coefficient much. Indeed, the signal correlation for the
sample with minimum Dice coeflicient (0.77) was as high as 0.99,
indicating a minor segmentation error. Thus, the effect of the
segmentation difference between the FastSeg and FreeSurfer was
minor on the mean white matter and ventricle signals. The noise
regressors made from the FastSeg hold equal quality to those
made from FreeSurfer segmentations.

For the alternative processing stream without FastSeg, the
correlation was lower than the FastSeg, while they were still
higher than 0.9 for most samples with the minimum of 0.89.
Although the FastSeg offers a better segmentation quality, the
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RTP_APP.make_masks(func_orig, anat_orig, template, ROI_template, [WM_template, Vent_template])

3. RTP and GSR
masks

2. Anatomical

1. FastSeg image registration

4. Warp template

Warp a template and
a ROI mask on the
template to individual
brain using ANTs.

Extract the brain,

white matter, and
ventricle regions
using FastSeg.

Make a real-time

Align the brain image processing (RTP) and

to the base function

5 : global signal
image using AFNI f
Extract the brain align_epi_anat.py regression (GSR)
using AFNI masks.
3dSkullStrip.
anat_orig anat, Brain RTP mask ROI_template

func_orig ROI mask

Brain, WM, Ventricle
segmentations

FIGURE 3 | Procedures of creating image masks in the “make_masks” method of RTP_APP. Two blue boxes show the procedures used in the alternative stream
without using FastSeg. In the alternative stream, the first process is replaced by a blue box, and the fourth process is performed by adding the procedure in the blue
box. The images below demonstrate what image processing is done at each step.

TABLE 3 | Anatomical image processing times on the PCs shown in Table 1.

PC Linux + GPU* Linux

MacBookPro1

MacBookPro2 Windows1 Windows2

Processing time (s) 89 146

197 188 241 473

*FastSeg was used in Linux + GPU. The alternative stream was used for others.

alternative processing stream would have an acceptable quality
to make a noise regressor if GPU is not available.

RTPSpy USAGE

Building a Processing Pipeline

Low-Level Interface

Figure 5 shows a pseudo script to create an online fMRI data
processing pipeline. This is presented for explaining the low-level
interfaces of building an RTPSpy pipeline. A script with higher-
level interfaces using RTP_APP utility methods is presented later
(Figure 6). To make a pipeline, we should create instances of each
processing module (Figure 5A), set the chaining module in the
“next_proc” property (Figure 5B), and the pipeline is ready.
The modules’ combination and the order can be arbitrary, except
that RTP_VOLREG must exist before RTP_REGRESS. The head
module can be used as an interface to the pipeline (Figure 5C).

Properties of the modules in a pipeline can be directly accessed
and set by the module instances (Figure 5D). For example,
“volreg” and “mask_src_proc” is set to rtp_regress to
receive motion parameters and unsmoothed image data, which
are used to create a motion regressor and an average signal
regressor in a segmented mask. The “save_proc” property
(saving the processed volume data in a NIfTT file) and
“online_saving” property (saving is done at each volume)
are also set for rtp_regress to save the processed volume image
in a file. When the “online_saving” property is set True, the
processed image at each volume is saved in real-time. The online
saving is done after the downstream processing of the pipeline
is completed so as not to affect the real-time performance of the
pipeline processing.

Calling the “redy_proc” method initialize the pipeline
(Figure 5E). The processing is run by feeding a NiBabel
NiftilImage object to the “do_proc” method of the pipeline
(Figure 5F). The pipeline is closed by calling the “end_reset”
method (Figure 5G), and then a concatenated image file is saved
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FIGURE 4 | Quality evaluations for the masks created by the RTPSpy
anatomical image processing streams by comparing to FreeSurfer
segmentation. The upper panel shows Dice coefficients with FreeSurfer
segmentations for the white matter and ventricle masks in the anatomical
image resolution. The bottom panel shows correlations of the mean signals
calculated from the masks in functional images.

in a file. These low-level interfaces could be useful to develop
custom input and output modules by users.

High-Level Interface With RTP_APP

RTPSpy also offers high-level utility methods in RTP_APP.
Figure 6 shows a snippet of an example script to run a
real-time processing pipeline using RTP_APP interfaces.
Refer also to the system check script in the package
(rtpspy_system_check.py) for a complete script. Instantiating the
RTP_APP class (Figure 6A) creates all processing modules
automatically inside it. The processing modules can be
accessed by “rtp_app.rtp_obj[‘TSHIFT’]” for
RTP_TSHIFT, for example. If you use the “make_masks”

method to create the mask images, call the method
of the rtp_app instance (Figure 6B). Then, the
properties of the mask files, RTP_SMOOTH.mask _file,

RTP_REGRESS.mask_file, RTP_REGRESS.GS_mask (global
signal mask), RTP_REGRESS.WM_mask, RTP_REGRESS.
Vent_mask, and RTP_APP.ROI mask are automatically set.
The module properties can also be set directly by accessing
the “rtp_app.rtp_obj” property (e.g., Figure 6C) or by
feeding a dictionary to the “rtp_app.RTP_setup” method
(Figures 6D,F). You can set a custom mask using these interfaces

when you want to set a mask without using the “make_masks”
method. The order of the pipeline cannot be modified in this
interface, but you can disable a specific module by setting the
“enables” property False (e.g., Figure 8A). This example
uses dummy physiological signals (Figure 6C) to simulate the
cardiac and respiration signal recordings. If these signals are
not available, set the “phys_reg” property of “REGRESS” to
“None” (Figure 6E). All the properties and possible parameters
are described in the script files of each module (see Table 2 for
the filenames). The pipeline creation is done in the “rtp_app.
RTP_setup” method. The “save_proc” property of the last
module (e.g., RTP_REGRESS) is automatically set True, and
the RTP_APP object is connected after the last module in the
“rtp_app.RTP_setup” method.

Calling the “rtp_app.ready_to_run” initializes the
pipeline (Figure 6G). The processing can be started by calling
the “manual_start” method (Figure 6H), and then the
RTP_WATCH module starts watching a new file in the watched
directory. The start of the processing can also be triggered by
a TTL signal implemented in the RTP_SCANONSET module
(rtp_scanonset.py file). To close the pipeline, call the “end_run”
method (Figure 6I), then the WATCH module stops monitoring,
and the online processed data is saved in a file.

To customize the feedback signal calculation, you can
modify the “do_proc” method in RTP_APP (rtp_app.py). The
RTP_APP module works as a pipeline terminal, receiving the
processed data, extracting the neurofeedback signal, and sending
the signal to an external application. By default, it extracts the
mean signal in the ROI mask, but it can be overridden according
to the individual application need. An example way to make a
customized application class is shown in Section “An Example
Graphical User Interface Application Integrating the RTPSpy
Modules,” and Figure 10.

Example Real-Time fMRI Session
Figure 7 presents an example procedure of a real-time fMRI
(rtfMRI) session. Note, this is not a requirement for the library
but only an example of a single-visit session and anatomically-
defined neurofeedback target region. The rtfMRI session using
RTPSpy could start with an anatomical image scan and a
reference functional image scan to make the mask images. We
usually perform a resting-state scan after an anatomical scan,
and an initial image of the resting-state scan acquired in real-
time is used as the reference function image. A pre-acquired
anatomical image can also be used in the processing if the
study is multi-visits and an anatomical image has been scanned
previously. The mask creation using the “make_masks”
method in RTP_APP can be finished during the resting-state
scan so that no waiting time is required for a participant. If
no resting-state scan is necessary, a short functional scan with
the same imaging parameters as the neurofeedback runs can
also be used. Then, you can set the RTP parameters, run the
“RTP_setup” and “ready_to_run” methods, and start the
neurofeedback scan.

A critical RTP property related to the task design is the
“wait_num” in RTP_REGRESS. This property determines how
many volumes the module waits before starting the regression.
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# A Create module instances.
rtp_tshift = RTP_TSHIFT()
rtp_volreg = RTP_VOLREG ()
rtp_smooth = RTP_SMOOTH()
rtp_regress = RTP_REGRESS ()

# B Chaining the modules.
rtp_tshift.next_proc = rtp_volreg
rtp_volreg.next_proc = rtp_smooth
rtp_smooth.next_proc = rtp_regress

pipeline = rtp_tshift

# D Set rtp_regress properties.
rtp_regress.volreg = rtp_volreg

rtp_regress.save_proc = True
rtp_regress.save_online = True
rtp_regress.work_dir = ‘rpt work’

pipeline.ready_proc()

pipeline.do_proc(fmri_img, vol_idx)

# ... repeat for volumes.

# G Close the pipeline.
pipeline.end_reset()

pipeline is closed by calling the “end_reset” method (G).

# C The head module is an interface to the pipeline.

# Set a module to get motion parameters.
rtp_regress.mask_src_proc = rtp_volreg # Set a module to get unsmoothed image.
# Save the processed image.

# Save processed image at each volume.
# The image is saved in work_dir.

# E Initialize the pipeline to ready for the process.

# F Calling ‘do_proc’ method to feed a data into the pipeline.

# ‘fmri_img’ is a NiBabel NiftilImage object.

# Processed image will be saved in a file.

# The saved filename is set by ‘{process_prefix} {fmri_img.get_filename()}_{vol_idx}’.
# e.g., ‘process_prefix‘ is ‘regRes’ for RTP_REGRESS.

# A concatenated processed image is saved in a file.

FIGURE 5 | A pseudo script of low-level interfaces of pipeline creation with RTPSpy. The comments with bold alphabet indicate a part of the script explained in the
main text. To make a pipeline, we should create instances of each processing module (A) and set a chaining module to the “next_proc” property (B). The head
module can be used as an interface to the pipeline (C). Properties of the modules in a pipeline can be directly accessed and set by the module instances (D). Calling
the “redy_proc” method initializes the pipeline (E). The processing is run by feeding a NiBabel Nifti1image object to the “do_proc” method of the pipeline (F). The

The task block should start after this burn-in time. Note that this
number does not include the initial volumes discarded before the
fMRI signal reaches a steady state. The “wait_num” must be
larger than the number of regressors, but the just enough number
is not enough because the regression with small samples overfits
the data, resulting in a very small variance in the denoised output
(Misaki et al.,, 2015). The actual number of required samples
depends on the number of regressors and the target region.
This waiting time could limit the neurofeedback task design.
However, using a noise-contaminated signal as neurofeedback
has a high risk of artifactual training effect (Weiss et al., 2020),
which may degrade the validity of an experiment. Therefore,
the online image processing should include necessary noise
regressors, and the task design should accept the initial burn-in
time. A simulation analysis would help determine the necessary
noise regressors and the optimal number of waiting TRs. Our

previous report (Misaki and Bodurka, 2021), investigating what
brain regions and connectivity were more contaminated with
noises as well as the effect of each noise regressor to reduce the
noise, may also help. The volumes during the burn-in time are
processed at the beginning of RTP_REGRESS processing (thus,
the first processing time of RTP_REGRESS could take long, as
shown in Figure 4 of Misaki and Bodurka (2021). These volumes
can be used, for example, for the baseline calculation to scale the
neurofeedback signal (Zotev et al., 2011; Young et al., 2017).

SIMULATING REAL-TIME fMRI
PROCESSING

One of the most effective ways to examine the integrity of
real-time signal calculation is to simulate online processing and
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# A Create RTP_APP instance
rtp_app = RTP_APP(work_dir=work_dir)

# B Make mask images
rtp_app.make_masks(func_orig, anat_orig, template, ROI_template)

# € Dummy physio recording for a test
rtp_app.rtp_objs['PHYSIO'] = RTP_PHYSIO_DUMMY (

ecg f, resp_f, sample_freq, rtp_app.rtp_objs['/RETROTS’]
)

#D RTP parameters
rtp_params = {WATCH’: {'watch_dir": watch_dir, 'watch_file_pattern': r'nr_\d+.*\.nii’},
"TSHIFT’: {'slice_timing from_sample': testdata_f, 'method": 'cubic’, 'ignore_init": 3},
'VOLREG’: {'regmode": 'cubic’},
'SMOOTH’: {'blur_fwhm": 6.0},
‘REGRESS’: {mot_reg’: ‘mot12’, 'GS_reg": True, "WM_reg": True, 'Vent_reg": True,
'phys_reg': 'RICOR8’, # E Set ‘None’ if no physio is available
'wait_num': 40}}

#F RTP setup
rtp_app.RTP_setup(rtp_params=rtp_params)

# G Ready to run the pipeline
rtp_app.ready_to_run()

#H Start
scan_onset_time = rtp_app.manual_start()

#1 End
rtp_app.end_run()

FIGURE 6 | A snippet of an example script to run a real-time processing pipeline using RTP_APP interfaces. The comments with bold alphabet indicate a part of the
script explained in the main text. Instantiating the RTP_APP class (A) creates all processing modules inside it. If you use the “make_masks” method to create the
mask images, call the method of the rtp_app instance (B). This example uses dummy physiological signals (C). The module properties can be set directly by
accessing the “rtp_app . rtp_ob3” property (C) or by feeding a property dictionary to the “rtp_app.RTP_setup” method (D,F). If physiological signals are not
available, you can disable RETROICOR by setting the “phys_reg” property of “REGRESS” to “None” (E). Calling the “rtp_app.ready_to_run” initializes the
pipeline (G). The processing can be started by calling the “manual_start” method (H). To close the pipeline, call the “end_run” method (l).

Functional ‘
Anatomy scan for Neurofeedback
MRI scan . 1
scan areference image | scan
(resting-state) ‘ ‘
RTPS RTP_set Burnintime | g oal-time
i make_masks —Setup (‘wait_num’ in f K
operation ready_to_run RTP_REGRESS) neurofeedback ...

FIGURE 7 | Example of real-time fMRI session procedure with RTPSpy. This is an example session and not a requirement for library use.

neurofeedback signal calculation using previously obtained fMRI
data (Ramot and Gonzalez-Castillo, 2019; Misaki et al., 2020;
Misaki and Bodurka, 2021). Assuring the integrity of online
noise reduction is critical for neurofeedback training. If the noise
reduction is insufficient, other factors than brain activation could
confound the training effect (Weiss et al., 2020). Not only for

the online image processing, but the feedback signal calculation
also can be unique in the online analysis, for example, in the
connectivity neurofeedback. The online connectivity calculation
should use a short window width for a timely feedback signal
reflecting the current brain state, and the optimal window width
for the neurofeedback training would be specific to the target
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region and the task design (Misaki et al., 2020). In addition,
simulating the signal processing is useful to evaluate the level
of the actual feedback signal. For example, when the baseline
level of the neurofeedback signal is adjusted by a mean signal
in the preceding rest block (Zotev et al., 2011; Young et al,
2017), simulating such signal calculation could help to estimate
a possible signal range to adjust a feedback presentation.

The modular library design of the RTPSpy helps perform a
simulation with a simple script. While the simulation can be
done by copying the data volume-by-volume into the watched
directory, you can also inject the data directly into the pipeline
for faster simulation. An example simulation script is provided as
the “example/Simulation/rtpspy_simulation.py’
file in the package. Figure 8 shows a snippet of the example
simulation script. The pipeline creation is the same as shown
in Figure 6 except for disabling the RTP_WATCH module
(Figure 8A) and getting the pipeline object returned from the
“ready_to_run” method (Figure 8B). The simulation can
proceed with feeding the Nibabel NiftilImage object to the
“do_proc” method of the pipeline (Figure 8C). This method
receives a volume image, image index (optional), and the end
time of the previous process (optional). Calling the “end_run”
method closes the pipeline and returns the saved filenames
(Figure 8D). The output files include the parameter log (text file),

ROI signal time-series (csv file), and the denoised image saved as
a NIfTT file. You can modify the neurofeedback signal calculation
by overriding the do_proc method in the RTP_APP, as explained
in the next section, Figure 10.

AN EXAMPLE GRAPHICAL USER
INTERFACE APPLICATION
INTEGRATING THE RTPSpy MODULES

RTPSpy offers a graphical user interface (GUI) class (RTP_UI,
rtp_ui.py) for easy access to the module functions. The example
GUI application is provided in the “example/ROI-NE”
directory in the package. Figure 9 shows the initial window
of this example application. This application is presented for
demonstrating how the RTPSpy library can be used to build a
custom application and as a boilerplate for making a custom
application by a user. This section explains how these example
scripts can be modified to make a custom application. For a step-
by-step usage of this application other than scripting, please refer
to GitHub (see text footnote 1).

The application development can start with defining a user’s
own application class inheriting from the RTP_APP. Figure 10
shows the code snippet from the “roi_nf.py” script file. In

# --- Create RTP_APP instance ---
rtp_app = RTP_APP(work_dir=work_dir)

# --- Make mask images ----

rtp_app.make_masks(func_orig, anat_orig, template, ROI_template)

# --- RTP parameters ---
rtp_params = {'WATCH:
"TSHIFT’:

{'enabled": False}, #

'VOLREG’:
'SMOOTH’:
‘REGRESS’

{'regmode": 'cubic’},
{'blur_fwhm'": 6.0},

'wait_num': 40}}
# --- RTP setup ---
rtp_app.RTP_setup(rtp_params=rtp_params)

# B Ready to run the pipeline
proc_chain = rtp_app.ready_to_run()

# --- Simulate scan ---

img = nib.load(testdata_f)

fmri_data = np.asanyarray(img.dataobj)
N_vols = img.shape[-1]

for ii in range(N_vols):

fmri_img = nib.NiftilImage(fmri_data[, :, :, ii], affine=img.affine)
proc_chain.do_proc(fmri_img, ii, time.time()) # C

saved_fnames = rtp_app.end_run(scan_name="‘sim_test’) # D

FIGURE 8 | A snippet of an example script of running a real-time fMRI processing simulation with RTPSpy. The comments with bold alphabet indicate a part of the
script explained in the main text. The pipeline creation is the same as shown in Figure 6 except for disabling the RTP_WATCH module (A) and returning the pipeline
object from the “ready_to_run” method (B). The simulation can proceed with feeding the Nibabel Nifti1image object to the “do_proc” method of the pipeline
(C). Calling the “end_run” method closes the pipeline and returns the saved filenames (D).

A

{'slice_timing_from_sample": testdata_f,
'method": 'cubic’, 'ignore_init": 3},

: {‘mot_reg’: ‘mot12’, 'GS_reg": True, 'WM_reg": True, 'Vent_reg": True,
'phys_reg": 'RICOR8’, # set ‘None’ if no physio is available
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RTPSpy - 0O X
File
Watching directory Set
Working directory Set
GPU/Physio/Plot
v %‘;SF\)/U Recording Resp/ECG Show Motion ROI-NF:Show ROI signal
App | RTP  List parameters

ROI-NF setting

Check masks on AFNI
func-anat align = ROI on function

GSR mask RTP mask

i ROI-NF

v Enable RTP
Ext App | Maskcreation | Template  Processed images = Simulation
Create masks
Anatomy image : Set | Unset
Base function image : 7Set7\ Unset
Create masks (+shift=overwrite; +ctrl=edit command lines) [ ] No FastSeg

ROI on anatomy

RTP setup

WM on anatomy | | Vent on anatomy

=== Start application mm=

GitHub (see text footnote 1).

FIGURE 9 | A view of the example GUI application integrating the RTPSpy modules. The figure presents the “mask creation” tab to run the make_masks
process with GUI. The example application also offers graphical interfaces to almost all parameters in RTPSpy. Detailed usage of the application is presented in

this application, ROI_NF class is defined by inheriting RTP_APP
class (Figure 10A). Neurofeedback signal extraction is performed
in the “do_proc” method in the ROI_NF class (Figure 10B).
To customize the neurofeedback signal calculation, a user should
override this method. The example script calculates the mean
value within the ROI mask (Figure 10D). The ROI mask file is
defined in the “ROI_orig” property defined in the RTP_APP
class (Figure 10C). If an external application implements the
RTP_SERV module, the signal can be sent to it using the
“send_extApp” method (Figure 10F) by putting a signal value
in a specific format string (Figure 10E).

Figure 11 shows the code snippet of an example
external application script for neurofeedback presentation
(“example/ROI-NF/NF_psypy.py  file). This is an
independent PsychoPy" application from RTPspy but uses

Bhttps://www.psychopy.org

the RTP_SERVE module to communicate with an RTPSpy
application. Instantiating the RTP_SERVE class object starts
a TCP/IP server running in another thread (Figure 11A).
This class does all the data exchange in the background. The
RTP_SERVE object holds the received neurofeedback data in
the pandas data frame" (Figure 11B). While this example script
just displays the latest received value on the screen with text
(Figure 11C), users can modify this part to make a decent
feedback presentation.

In this example application, the GUI operation can be done
in parallel to the online image processing as the watchdog
in the RTP_WATCH module runs in a separate thread, on
which the processing runs. The anatomical image processing
tools and a neurofeedback presentation application run on
independent processes. Thus, they also run in parallel for a user

Yhttps://pandas.pydata.org/
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class ROINF(RTP_APP): # A

def do_proc(self, fmri_img, vol_idx=None, pre_proc_time=0): # B

if Path(self.ROI_orig).is_file() and self.ROI_mask is None:
self ROI_mask = np.asanarry(nib.load(self.ROI_orig).dataobj). # €

dataV = fmri_img.get_fdata()

# --- Extract and send the ROI mean signal
roimask = (selfROI_mask > 0) & (np.abs(dataV) > 0.0)
mean_sig = np.nanmean(dataV[roimask]). # D

# Send data to an external application via socket.

# Message format should be;

# "NF {time},{volume_index} {signal_value}(,{signal_value}..)” # E

try:

scan_onset = self.rtp_objs['SCANONSET'].scan_onset
val_str = f'{time.time()-scan_onset:.4f},”
val_str += f'{vol_idx},{mean_sig:.6f}”

msg = f"NF {val_str};”

self.send_extApp(msg.encode()) # F

FIGURE 10 | A snippet of an example script of customized neurofeedback signal extraction and sending the signal to an external application in the
“example/ROI-NF/roi_nf.py” file. The comments with bold alphabet indicate a part of the script explained in the main text. ROI_NF class is defined by
inheriting RTP_APP class (A). Neurofeedback signal extraction is performed in the “do_proc” method (B). The example script calculates the mean value within the
ROI mask (D). The ROI mask file is defined in the “ROI_orig” property (C). The signal can be sent to an external application in real-time using the “send_extApp”

method (F) by putting it in a specific format string (E).

to operate RTPSpy while an experiment is running. Using these
example scripts, a user can develop an easy-to-use and highly
customized rtfMRI application with minimum scripting labor.
We also provide a full-fledged application of the left-amygdala
neurofeedback session (Zotev et al.,, 2011; Young et al., 2017)
in the “example/LA-NF” directory, which is explained in
the Supplementary Material, “LA-NF application”andin
GitHub (see text footnote 1).

LIMITATIONS AND
ENVIRONMENT-SPECIFIC ISSUES

While the RTPSpy provides general-use libraries for rtfMRI data
processing, it is not a complete toolset for all environments.
There could be several site-specific settings that a general library
cannot support. One of the first critical settings is to obtain
a reconstructed MRI image in real-time. The image format,
the saved directory, and how to access the data (e.g., network
mount or copying to the processing PC) could differ across
manufacturers and sites. The RTP_WATCH detects a new file
in the watched directory, but setting up the environment to
put an fMRI file to an accessible place in real-time is not
covered by the library. Specifically, our site uses AFNI's Dimon

command” running on the scanner console computer and
receives the data sent by Dimon with AFNT’s realtime plugin on
a rtfMRI operation computer. This is not a part of the RTPSpy
library and may not be possible for all if one cannot install
additional software on the scanner console. Users may have to
set up real-time access to the reconstructed image according to
their environment.

Another caveat of environment-specific implementation is
physiological signal recording. One of the advantages of the
RTPSpy is its ability to run a physiological noise regression with
RETROICOR in real-time. However, the equipment for cardiac
and respiration signal recording could vary across the sites and
manufacturer. In our site, we measure a cardiac signal using a
photoplethysmography with an infrared emitter placed under the
pad of a participants finger and respiration using a pneumatic
respiration belt. These are equipped with the MRI scanner, GE
MR750, and the signal is bypassed to the processing PC via serial
port. Although we developed an interface class for these signals
as RTP_PHYSIO, its implementation is highly optimized for our
environment. A user may need to develop a custom script to
replace the RTP_PHYSIO module adjusting to the individual
environment. Similarly, detection of the TTL signal of a scan

Lhttps://afni.nimh.nih.gov/pub/dist/doc/program_help/Dimon.html

Frontiers in Neuroscience | www.frontiersin.org

March 2022 | Volume 16 | Article 834827


https://afni.nimh.nih.gov/pub/dist/doc/program_help/Dimon.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Misaki et al.

RTPSpy: A Real-Time fMRI Library

class NFApp():

def _init__(self, ...):

selfrtp_srv = RTP_SERVE (allow_remote_access=allow_remote_access,
request_host=request_host) #A

def run(self):

while core.getTime()-self.scan_onset < timeEND:
if len(self.rtp_srv.NF_signal) > last_NF_idx:

< B

self.rtp_srv.NF_signal is a pandas DataFrame with
columns=("Time', 'TR’, 'Signal'), keeping the NF
signals received from RTPSpy RTP_APP.
self.rtp_srv.NF_signal.Signal is a list of NF signals.

(2]

TR = selfrtp_srv.NF_signal. TR.values[-1]
signal = selfrtp_srv.NF_signal.Signal.values[-1]
selfmsg_txt.setText(f"{signal}") # C

selfmsg_txt.draw()
self.win.flip()

FIGURE 11 | A snippet of an example script of neurofeedback presentation application in the “example/ROI-NF/NF_psypy.py” file. The comments with bold
alphabet indicate a part of the script explained in the main text. Instantiating the RTP_SERV class object starts a TCP/IP server running in another thread (A). The
RTP_SERVE object holds the received neurofeedback data in the pandas data frame (B). This example script displays the latest received value on the screen with

text (C).

start, which is defined in the custom RTP_SCANONSET class,
is device-dependent and needs to be implemented by a user
according to the user’s device.

RTPSpy depends on several external tools for its anatomical
image processing stream. Indeed, the package does not intend
to provide an all-around solution by itself. Rather, RTPSpy is
supposed to be used as a part of the user’s own application project.
A required function specific to each application or environment
should be implemented by an external tool or developed by users.
We assume that the RTPSpy is used not as a complete package by
itself but as a part of a custom application.

CONCLUSION

RTPSpy is a library for real-time fMRI processing, including
comprehensive online fMRI processing, fast and accurate
anatomical image processing, and a simulation system for
optimizing neurofeedback signals. RTPSpy focuses on providing
the building blocks to make a highly customized rtfMRI
system. It also provides an example GUI application wrapped

around RTPSpy modules. Although a library package requiring
scripting skills may not be easy to use for everyone, we
believe that RTPSpy’s modular architecture and easy-to-script
interface will benefit developers who want to create customized
rtfMRI applications. With its rich toolset and highly modular
architecture, RTPSpy must be an attractive choice for developing
optimized rtfMRI applications.
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