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Congenital genetic disorders often present with neurological manifestations such
as neurodevelopmental disorders, motor developmental retardation, epilepsy, and
involuntary movement. Through qualitative morphometric evaluation of neuroimaging
studies, remarkable structural abnormalities, such as lissencephaly, polymicrogyria,
white matter lesions, and cortical tubers, have been identified in these disorders, while
no structural abnormalities were identified in clinical settings in a large population.
Recent advances in data analysis programs have led to significant progress in
the quantitative analysis of anatomical structural magnetic resonance imaging (MRI)
and diffusion-weighted MRI tractography, and these approaches have been used to
investigate psychological and congenital genetic disorders. Evaluation of morphometric
brain characteristics may contribute to the identification of neuroimaging biomarkers for
early diagnosis and response evaluation in patients with congenital genetic diseases.
This mini-review focuses on the methodologies and attempts employed to study Rett
syndrome using quantitative structural brain MRI analyses, including voxel- and surface-
based morphometry and diffusion-weighted MRI tractography. The mini-review aims to
deepen our understanding of how neuroimaging studies are used to examine congenital
genetic disorders.

Keywords: quantitative analysis, voxel based morphometry, surface based morphometry, diffusion-weighted MRI
tractography, rett syndrome (RTT)

INTRODUCTION

Congenital genetic disorders often present with neurological manifestations. Such as
neurodevelopmental disorders, motor developmental retardation, epilepsy, and involuntary
movement. In both clinical practice and research, multiple neuroimaging modalities are used
to identify the lesions responsible for each symptom or syndrome. Magnetic resonance imaging
(MRI) is widely recognized as the most helpful modality for examining human brain structures
in vivo because of its high reproducibility, high spatial resolution, and low invasiveness.

Approaches for evaluating MRI can be divided into qualitative and quantitative analyses.
Through qualitative morphometric evaluation, remarkable structural abnormalities, such as
lissencephaly, polymicrogyria, agenesis of the corpus callosum, and lesions with abnormal

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 835964

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.835964
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.835964
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.835964&domain=pdf&date_stamp=2022-04-05
https://www.frontiersin.org/articles/10.3389/fnins.2022.835964/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-835964 April 4, 2022 Time: 10:26 # 2

Shiohama and Tsujimura Quantitative Structural Brain MRI

signal intensities, can be identified in some patients; however,
in clinical settings, no structural abnormalities are identified
in a large population of patients with congenital genetic
disorders, even in patients with definitive neurological sequelae.
Additionally, the interobserver reproducibility of qualitative
assessments of cerebral atrophy is less than 50% (Pasquier et al.,
1996; Scheltens et al., 1997); therefore, there are potential benefits
to attempting automatic quantitative analyses of MRI, even in
cases with visually identified cerebral atrophy.

Recent advances in data analysis programs have led to
significant progress in the quantitative analyses of structural
MRI images, such as three-dimensional T1-weighted images
(Frackowiak et al., 1997; Zijdenbos et al., 2002; Fischl, 2012;
Jenkinson et al., 2012; Djamanakova et al., 2014; Manjón and
Coupé, 2016) and diffusion-weighted MRI tractography (Wang
et al., 2007; Berman, 2009; Webster and Descoteaux, 2015;
Norton et al., 2017; Yeh, 2020), as well as MR spectroscopy
(Takanashi, 2015), arterial spin labeling (Parkes and Tofts, 2002),
and functional MRI (Biswal, 2012). These approaches have been
used to investigate healthy volunteers, psychological disorders,
and congenital genetic disorders such as Down syndrome
(Hamner et al., 2018; Levman et al., 2019; Brown et al., 2021),
Turner syndrome (Zhao and Gong, 2017), and Rett syndrome
(Casanova et al., 1991; Murakami et al., 1992; Reiss et al., 1993;
Subramaniam et al., 1997; Carter et al., 2008; Mahmood et al.,
2010; Oishi et al., 2013; Shiohama et al., 2019).

Approximately 6,000 single-gene disorders are listed in
public databases, such as Online Mendelian Inheritance in Man
(OMIM),1 which also covers neuroradiographic findings in most
congenital genetic diseases. Both qualitative and quantitative
evaluation of the morphometric characteristics of the brain in
congenital genetic disorders leads to basic and clinical benefits.
From a clinical perspective, brain phenotyping may contribute
to identifying neuroimaging biomarkers for early diagnosis
and response evaluation in patients with congenital diseases.
Fundamentally, brain phenotyping contributes to revealing
the function of single genes in the human brain structure
at an individual level. Because there are several differences
in gyral and sulcal structures and transcriptional expression
between the human and mouse brain (Hodge et al., 2019),
neuroimaging studies in patients with pathogenic variants
could provide important information beyond that provided by
transgenic mouse models.

Since the late 2000s, expanded indications for next-generation
sequencing has led to a paradigm shift in the leading diagnostic
approach in undiagnosed congenital disorders from clinical
physiological findings to comprehensive genetic testing. The
genetic variants leading to diagnosis expanded the previously
known clinical spectrum of congenital disorders. Subsequently,
deep phenotyping using automatic program analyses has
attracted the attention of many morphologists in the redefinition
of the clinical spectrum of previously known congenital
disorders, which was referred to as next-generation phenotyping
(van der Donk et al., 2019). This mini-review focuses on
methodologies and attempts employed to understand Rett

1https://www.omim.org/statistics/geneMap

syndrome using quantitative structural brain MRI analyses,
including voxel- and surface-based morphometry and diffusion-
weighted MRI tractography. The mini-review aims to deepen our
understanding of how neuroimaging studies are used to examine
congenital genetic disorders.

QUANTITATIVE BRAIN MAGNETIC
RESONANCE IMAGING ANALYSIS

Brain Morphological Development
In typical human brain development, uniformity of cortical
thickness, myelination, dendritic arborization, and remodeling
and pruning of synapses progress over time from the fetal
period, leading to the maturation of cortical sulcal/gyral patterns
between gestational age of 16 weeks and 1 month after birth
(Armstrong et al., 1995; de Graaf-Peters and Hadders-Algra,
2006; Gilmore et al., 2018; Barkovich and Raybaud, 2019;
Ouyang et al., 2019). The overall brain size increases, reaching
approximately 90% of the adult volume from birth to 2 years
of age (Giedd and Rapoport, 2010). The volume of the cortical
gray matter (CGM) and white matter (WM) has been shown
to increase by 4.6 and 1.9 times, respectively, from gestational
ages of 30 to 40 weeks (Moeskops et al., 2015). The volume
of the CGM and WM increases 108–149 and 11%, and 14–
19 and 19% from birth to age 1 year, and from age 1 year
to age 2 years, respectively (Gilmore et al., 2018). The volume
of the CGM slightly increases during childhood and decreases
during adolescence, while the WM continuously increases in
size until approximately age 30 years (Courchesne et al., 2000;
Matsuzawa et al., 2001; Gilmore et al., 2018). In contrast, cortical
thickness and the CGM surface area exhibit negative and positive
correlations with participant age, respectively (Levman et al.,
2017). Surface area expansion is regionally heterogeneous across
the brain, with dominance of the lateral frontal, lateral parietal,
and occipital cortex (Gilmore et al., 2018). Most commissural,
projection, limbic, and associative bundles can be identified
by diffusion-weighted MRI tractography, even in early infants
(Dubois et al., 2014).

Anatomical structures have been recognized to be tightly
associated with brain functions, which serves as the scientific
foundation for brain morphological studies in human disorders.
In a meta-analysis, the intelligence quotient in adults was
positively associated with cortical volumes (Pietschnig et al.,
2015). Cortical thickness of the prefrontal and posterior temporal
cortex (Narr et al., 2007) in a study with healthy adults and the
volume of the orbitofrontal cortex and cingulate gyrus in a study
with young participants (Frangou et al., 2004) was also reported
to be associated with intelligence quotient.

Anatomical Structural Morphometry
Three-dimensional T1-weighted gradient-echo images (3D
T1WI) as the sole or combination with 3D fluid-attenuated
inversion recovery images (FLAIR) are commonly employed for
anatomical structural brain morphometric studies. The sequence
varied between MRI scanner manufacturers as follows: IR-SPGR
for GE, MP-RAGE for Siemens, and IR-TFE and MP-RAGE for
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Philips. When adapting any sequences, sagittal acquisition has the
advantage of saving acquisition time, and voxel sizes smaller than
1 mm are required for notable resolution.

The regions of interest (ROIs) approach using manual tracing
and distance measurements between anatomical landmarks was
the classical method for brain morphometry analysis. This
manual method has an advantage in that measurements are
simply acquired, even without analytic programs or 3D structural
MRI; however, it has many disadvantages, such as requiring
substantial work to plot the ROIs, intra- and inter-observer bias,
and limited detection capability limited to the ROIs. Therefore,
most brain morphologic studies use automatic analytic programs.

Frequently used programs to evaluate brain anatomical
structures include FreeSurfer2 (Fischl, 2012), CIVET3 (Zijdenbos
et al., 2002), FMRIB Software Library (FSL)4 (Jenkinson et al.,
2012), Statistical Parametric Mapping (SPM)5 (Frackowiak
et al., 1997), VolBrain6 (Manjón and Coupé, 2016), and
MRIcloud7 (Djamanakova et al., 2014). These programs
comprehensively evaluate multiple measurements over the
whole brain with extremely high reproducibility, according to
mathematical algorithms.

Most programs calculate both voxel-based morphometry
(VBM) (Ashburner and Friston, 2000) and surfaced-based
morphometry (SBM) (Fischl and Dale, 2000). Using VBM,
the regional volumes of the CGM, WM, GM, subcortical
GM, cerebrum, brainstem, and cerebral ventricles are obtained;
however, measurements of cortical areas and thicknesses, and
cortical sulcal/gyral patterns cannot be obtained.

Cortical surfaces can be modeled using cortical thickness,
area, volume, and curvature measurements (Toro et al., 2008;
Schaer et al., 2012) in each brain region using SBM (Fischl
and Dale, 2000). SBM has a disadvantage in that regions other
than the CGM are not covered at all. The measurements of
each anatomical region are calculated from surface data by
being parcellated into anatomical standard atlases including
Brodmann’s brain map (Zilles and Amunts, 2010), Desikan–
Killiany atlas (aparc atlas) (Fischl et al., 2004), Destrieux atlas
(aparc.a2009s atlas) (Desikan et al., 2006), and Desikan–Killiany–
Tourville atlas (aparc.DKT40 atlas) (Klein and Tourville, 2012).
Because the priority among these atlases for parcelation in human
brains is controversial, the parcelation atlas employed varies
between studies. The values of the cortical thickness of over
40,000 vertices were also obtained from the surface data of
each hemisphere and could be utilized for visualizing statistical
analyses on the cortical map.

Several curvature measurements have been proposed for
quantifying local gyral and sulcal structures including the local
gyrification index (Schaer et al., 2012), folding index (Toro
et al., 2008), intrinsic curvature index (Pienaar et al., 2008),
mean curvature (Pienaar et al., 2008), and Gaussian curvature

2https://surfer.nmr.mgh.harvard.edu/fswiki/
3http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
5https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
6https://volbrain.upv.es/
7https://braingps.mricloud.org/home/

(Pienaar et al., 2008). Shallow gyri and sulci pattern have been
associated with dysfunction of the cortical area and its projection
neural fibers (Im and Grant, 2019); however, physiological
interpretation of the profiling data of the local curvature
measurements is puzzling because multiple covariates, such as
age, sex, perinatal events, and comorbidities, contribute to the
fine cortical curvature.

Cortical thickness, surface area, cortical volume, and
curvature of each region are statistically evaluated as a raw
value, the laterality index (Springer et al., 1999), the laterality
score (Kelley et al., 2005) or the asymmetry index (Fischl, 2012;
Levman et al., 2017).

Some programs, such as FreeSurfer, have an optional tool to
add manual interventions to correct the pial surface or voxel
segmentation after automatic segmentation. Manual intervention
could be attempted for automatic analysis procedures with minor
errors instead of removing them from subsequent statistical
analyses. However, even when manual edits are performed
according to a strictly defined protocol, the improvement in the
quality of regional segmentation is limited (Beelen et al., 2020;
Monereo-Sánchez et al., 2021).

Diffusion-Weighted Magnetic Resonance
Imaging Tractography
Diffusion-weighted imaging (DWI) is an MRI sequence with
signal contrast based on the micrometric movement of water
molecules within a voxel of tissue. DWI techniques can be
employed for fiber tractography and simple 2D mapping, which is
clinically used to detect cellular edema in the acute phase of brain
ischemia edema or acute encephalopathy. Fiber tractography
is useful for visually identifying communication fibers and
association fibers both in living patients and postmortem brains
(Vasung et al., 2019). The neuronal fibrillar structure consists
of coherently aligned axons surrounded by glial cells. Among
these components, the cell membrane leads to the anisotropy of
molecular diffusion predominantly in MR tractography-derived
fibers rather than myelin, axonal transport, microtubules, or
neurofilaments (Hagmann et al., 2006).

Several tractography algorithms, such as fiber assignment by
continuous tracking (FACT) (Mori et al., 1999), probabilistic
diffusion tractography (Behrens et al., 2007), diffusion spectrum
imaging tracking (Wedeen et al., 2008), constrained spherical
deconvolution (CSD) (Tournier et al., 2012), diffusion tensor
imaging (DTI) (Pajevic and Pierpaoli, 1999; Berman, 2009), and
high angular resolution diffusion imaging (HARDI) (Webster
and Descoteaux, 2015) have been proposed to distinguish fiber
tractography from diffusion MRI. In particular, DTI and HARDI
are utilized for ROI-oriented tractography, and TrackVis8 (Wang
et al., 2007), DSI studio9 (Yeh, 2020), and slicerDMRI10 (Norton
et al., 2017) are frequently employed.

On the DTI (Pajevic and Pierpaoli, 1999; Berman, 2009),
the principal direction and fractional anisotropy (FA) in the
diffusion of water molecules are shown as an ellipsoid for

8http://www.trackvis.org/
9http://dsi-studio.labsolver.org/
10http://dmri.slicer.org/
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each voxel according to the diffusion tensor model. On the
HARDI (Webster and Descoteaux, 2015), fiber tractography is
reconstructed according to the spherical function model (e.g., an
orientation distribution function or ensemble average propagator
field). Unlike DTI, HARDI can account for multiple crossing
fibers within complex fiber architecture such as the centrum
semiovale, pons, and cerebellum (Hagmann et al., 2006; Re
et al., 2016). The HARDI requires a longer acquisition time
than traditional DTI imaging, which has fewer diffusion-
weighted volumes.

Specific fibers of interest can be identified by manually
guiding regions of interest (ROIs) on non-diffusion-weighted
(b0) images or color FA maps according to anatomic and
tractography atlases (Catani and Thiebaut de Schotten, 2008;
Mori and Tournier, 2013). In our pipeline, we quantitatively
analyzed the mean length, volumes, fractional anisotropy (FA)
value, and apparent diffusion coefficient (ADC) value in 13 fibers,
including the callosal pathway (CP), bilateral association fibers
(arcuate fasciculus [AF], uncinate fasciculus [UF], cingulum
fasciculus [CF], fornix [Fx], inferior longitudinal fasciculus
(ILF), and inferior fronto-occipital fasciculus (IFOF) (Figure 1;
Shiohama et al., 2020).

The FA value is positively related to the degree of directivity
of the axon, myelin sheath, and microtubules. Water molecules
in brain tissue will move in multiple directions, regardless of
whether they are in the white matter, gray matter, or CSF
(Campbell and Pike, 2014; Ouyang et al., 2019). Lower FA values
indicate that water molecules are more isotropically diffused in
the given environment. FA values are close to one in locations
where water molecules move disproportionally in one direction
(e.g., white matter) (Pecheva et al., 2018). After birth, the
FA value in fibers sharply increases prior to the myelination
period, which is associated with the maturation of the axonal
membrane and increased axonal diameter, microtubule-related
protein, and oligodendrocyte (Pecheva et al., 2018). The ADC
is higher in locations where water molecules freely diffuse (e.g.,
CSF), depending on anisotropy, unlike the FA value. The ADC
value in fibers drops rapidly during infancy and toddlerhood,
which is associated with myelination and axonal pruning, and
subsequently plateaus until adulthood (Pasternak et al., 2009;
Pecheva et al., 2018). The combination of low FA and high ADC
values appears in vasogenic edema, glial scarring, demyelination,
and the neonatal brain (Sagar and Grant, 2006; Löbel et al.,
2009; Roosendaal et al., 2009; Pecheva et al., 2018). In contrast,
a combination of high FA and low ADC values is observed in
the white matter of macrocephalic syndrome, which is associated
with reduced free water in the intercellular space due to increased
axonal density (Oikawa et al., 2015; Shiohama et al., 2020).

Regarding approaches other than ROI-orientated fiber
tractography, tract-based spatial statistics (TBSS) (Smith
et al., 2006) and tracts constrained by underlying anatomy
(TRACULA) (Yendiki et al., 2011) have been attempted to
comprehensively evaluate white matter pathways. TBSS (Smith
et al., 2006) is a VBM-style method that visualizes FA values over
the whole brain without pre-specification of the tracts of interest.
After tuning non-linear registration and creating the group mean
FA map, each subject’s FA data were projected onto the mean FA
skeleton, and subsequently, voxel-wise statistic al analysis was

performed across subjects on skeleton-space FA (Smith et al.,
2006). TRACULA (Yendiki et al., 2011) is a program provided
as a tool for FreeSurfer to automatically identify long association
fibers from DWI and T1-weighted images.

Attempting of Quantitative Structural
Brain Magnetic Resonance Imaging for
Rett Syndrome
Rett syndrome (RTT; OMIM #312750) is a neurodevelopmental
disorder characterized by autistic features, acquired
microcephaly, loss of purposeful hand skills, habitual hand
clapping, and autonomic dysfunction (Neul et al., 2010; Singh
and Santosh, 2018). Typical RTT patients present with a severe
decline in global development, decreased head circumference,
and the emergence of epilepsy after normal development during
infantile periods (Neul et al., 2010; Krishnaraj et al., 2017). This
regressive pattern of neurodevelopment in RTT has motivated
many studies to search for biomarkers for early diagnosis and
intervention of RTT (Singh and Santosh, 2018). To identify
specific biomarkers, quantitative structural MRI studies have
been carried out (Casanova et al., 1991; Murakami et al., 1992;
Reiss et al., 1993; Subramaniam et al., 1997; Carter et al., 2008;
Mahmood et al., 2010; Oishi et al., 2013; Shiohama et al., 2019;
Table 1).

Based on anatomical structural morphometry using T1-
weighted images, decreased volumes in the cerebrum (Casanova
et al., 1991; Murakami et al., 1992; Reiss et al., 1993; Subramaniam
et al., 1997; Carter et al., 2008), basal ganglia (Casanova et al.,
1991; Murakami et al., 1992; Reiss et al., 1993), cerebellum
(Casanova et al., 1991; Murakami et al., 1992; Shiohama et al.,
2019), corpus callosum (Murakami et al., 1992), and brainstem
(Murakami et al., 1992; Reiss et al., 1993) have been identified
in cases of RTT. Some reports have also noted the dominance
of the gray matter in cerebral atrophy (Reiss et al., 1993; Carter
et al., 2008) and a decrease in the volume of the cerebellum with
age-dependent disease advancement and progression (Murakami
et al., 1992; Shiohama et al., 2019). In diffusion-weighted MRI
tractography studies, reduced FA in parts of white matter regions
(Oishi et al., 2013), the corpus callosum (Mahmood et al., 2010),
cingulum (Oishi et al., 2013), and external capsule (Mahmood
et al., 2010) has been reported. Although the cerebellar volume
may be a potential neuroimaging biomarker of RTT in early
infant atrophy, specific brain morphological characteristics of
RTT have not been identified, except for non-specific atrophic
findings in structural MRI measurements.

DISCUSSION

Relevant Issues on Quantitative Brain
Magnetic Resonance Imaging Studies to
Be Addressed for Evaluating Congenital
Genetic Disorders
Most brain morphometric studies of congenital genetic
disorders employ two-group comparisons of values calculated
from MRI images in multiple patients in a single institution
and age- and sex-matched neurotypical controls. Although
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FIGURE 1 | HARDI-based tractography showing the callosal pathway and long association fibers in a 2.5-year-old neurotypical girl [reproduced with permission to
reuse after minor revisions (Shiohama et al., 2020)]. AF, arcuate fasciculus; CF, cingulum fasciculus; CP, callosal pathway; Fx, fornix; IFOF, inferior fronto-occipital
fasciculus; ILF inferior longitudinal fasciculus; UF, uncinate fasciculus.

TABLE 1 | Quantitative structural brain magnetic resonance imaging studies in Rett syndrome.

Authors Subjects,
N

Age, average
(years)

Methods Findings

T1-weighted images

Casanova et al. (1991) 8 5.3 Manual segmentation Decreased area of the whole brain hemisphere and bilateral caudate nucleus

Murakami et al. (1992) 13 12.0 Manual segmentation Decreased area of the cerebrum, basal ganglia, cerebellum, corpus callosum,
and brainstem

Reiss et al. (1993) 11 10.1 Manual segmentation Decreased volume in the cerebrum (dominantly in the GM and frontal lobe),
caudate nucleus, and midbrain

Subramaniam et al. (1997) 20 9.7 Manual segmentation Global reduction in GM and WM volumes except for the pons

Carter et al. (2008) 23 8.6 ABM, VBM Global reduction in GM and WM volumes with a dominance of the dorsal
parietal GM

Shiohama et al. (2019) 7 5.2 VBM, SBM Decreased volumes in the cerebellum

Diffusion-weighted images

Mahmood et al. (2010) 32 5.5 DTI Reduced FA in the corpus callosum and external capsule

Oishi et al. (2013) 9 Not described TBSS Reduced FA in the left peripheral WM area and tract and the bilateral cingulum

ABM, atlas-based morphometry; DTI, diffusion tensor imaging; FA, fractional anisotropy; GM, gray matter; SBM, surface-based morphometry; TBSS, tract-based spatial
statistics; VBM, voxel-based morphometry; WM, white matter.

automatic programs successfully work with MRI images scanned
in the clinical setting, attempting brain morphometry for
each patient in daily medical care has significant hurdles.
For example, automatic brain morphometry analysis
requires a long time (e.g., the recon-all program takes
4–5 h per image on the latest version of FreeSurfer),
which limits the addition of brain morphometric analyses
to routine work.

Approaches using anatomical structural MRI and diffusion-
weighted MRI tractography also have limitations themselves.
Brain measurements have multiple covariates, such as sex, age
at scan, gestational age, comorbidities, and the presence of
specific diseases. In addition, there is a critical measurement
bias due to differences in MRI scanners (Fortin et al., 2018;
Vogelbacher et al., 2018) and analysis software (Lindquist,
2020). Several methods, including visualization of inter-scanner
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effects on cortical maps (Pardoe et al., 2008), phantom-
based scaling correction (Gunter et al., 2009), traveler subjects
(Shinohara et al., 2017), and statistical approaches such as
ComBat harmonization methods (Maikusa et al., 2021) have been
used to control for inter-scanner bias in anatomical structural
MRI, while there is no established method to control for the
inter-scanner effect in diffusion-weighted MRI tractography.

Concerning anatomical structural MRI, most programs were
optimized for brain images in participants over 6 years of
age. The rate of segmentation failure is substantially higher for
participants aged <8 months, and its reliability is reasonable for
participants aged ≥8 months (Levman et al., 2017), at which
point myelination contrast patterns have inverted into the mature
pattern. We also need to pay attention to the fact that regions on
atlases of these anatomical structural and functional regions do
not correspond exactly to each other. The left middle and inferior
occipital cortices are involved in functions of the secondary
visual area identified histologically and, at the same time, overlap
with several functionally identified areas, including the human
motion-sensitive middle temporal area (hMT/V5) (Thiebaut de
Schotten et al., 2014), lateral occipital area (LO) (Thiebaut de
Schotten et al., 2014; Bona et al., 2015), occipital face area (OFA)
(Gauthier et al., 1999; Bona et al., 2015), and cortical area V8
(color center) (Logothetis, 1999).

Regarding diffusion-weighted MRI tractography, we must
consider that reconstructed fibers are very sensitive to
the details of tractography algorithms, which can lead to
significant false positive and false negative tracking results
(Campbell and Pike, 2014).

Novel Approaches on Quantitative Brain
Magnetic Resonance Imaging Studies
for the Infant Population
As mentioned above, the widely recognized programs such as
FreeSufer, CIVET, and SPM have a common limitation that they
are not optimized for MRI imaging of infants, primarily because
myelination contrast patterns invert the general pattern from
the infant to the toddler period. The reduced tissue contrast,
large within-tissue variation, and regional heterogeneity in the
infantile brain MRI disturbed a typical pipeline for the adult
brain MRI (Li et al., 2019). For this issue, Infant FreeSurfer (de
Macedo Rodrigues et al., 2015; Zöllei et al., 2020) [a modified
pipeline of FreeSurfer (Fischl, 2012)], a modified pipeline of
CIVET (Kim et al., 2016), iBEAT (Dai et al., 2013), and other
infant-specific pipelines (Gousias et al., 2008; Leroy et al., 2011;
Li et al., 2014, 2015; Makropoulos et al., 2018) have been
proposed as optimized programs for infantile participants of 0–
2 years old. Based on the steps optimized for the infantile brain

MRI (such as image preprocessing, tissue segmentation, image
reregistration, regions of interest labeling, topology correction,
and surface reconstruction), spatiotemporal cortical surface atlas
(Li et al., 2015), and longitudinal volumetric atlas (Zhang et al.,
2016) was generated.

Furthermore, challenging attempts using artificial
intelligence-based analysis tools have recently been introduced
to analyze the MRI images in the infant population (reviewed
by Li et al., 2019; Mostapha and Styner, 2019). For example,
artificial intelligence-based approaches have been carried out to
extract the intracranial volume (Khalili et al., 2019), tissue brain
segmentation (Zhang et al., 2015; Moeskops et al., 2016; Nie et al.,
2016; Wang et al., 2018; Ding et al., 2020), topology correction
(Hao et al., 2016), and FA map analysis (Saha et al., 2020) in the
infant population, including early preterm infants.

CONCLUSION

This mini-review focused on anatomical structural MRI and
diffusion-weighted MRI tractography. These approaches have
revealed characteristic findings in patients with congenital
genetic diseases through comparisons with neurotypical controls;
however, there are significant hurdles (e.g., long time for
quantitative analysis, and variety of MRI scanners, acquisition
sequences, and analysis pipelines) to overcome in attempting
them individually in the clinical setting.
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