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Stroke is an acute cerebrovascular disease with high incidence, high mortality, and
high disability rate. Determining the location and volume of the disease in MR images
promotes accurate stroke diagnosis and surgical planning. Therefore, the automatic
recognition and segmentation of stroke lesions has important clinical significance for
large-scale stroke imaging analysis. There are some problems in the segmentation of
stroke lesions, such as imbalance of the front and back scenes, uncertainty of position,
and unclear boundary. To meet this challenge, this paper proposes a cross-attention
and deep supervision UNet (CADS-UNet) to segment chronic stroke lesions from T1-
weighted MR images. Specifically, we propose a cross-spatial attention module, which
is different from the usual self-attention module. The location information interactively
selects encode features and decode features to enrich the lost spatial focus. At the same
time, the channel attention mechanism is used to screen the channel characteristics.
Finally, combined with deep supervision and mixed loss, the model is supervised more
accurately. We compared and verified the model on the authoritative open dataset
"Anatomical Tracings of Lesions After Stroke" (Atlas), which fully proved the effectiveness
of our model.

Keywords: lesion segmentation, chronic stroke, deep learning, MRI, ATLAS

INTRODUCTION

According to the definition of the World Health Organization, stroke is a sudden condition caused
by blood vessels in the brain. The brain is the overall control center of various activities of the
human body so stroke can lead to disability or death. The incidence rate of stroke has been
increasing in recent years. Therefore, the study of cerebral apoplexy has become a popular direction
of clinical medicine. In the past, stroke has become a leading cause of death and the second leading
cause of disability after ischemic heart disease (Feigin, 2019). With the development of society, due
to the changes in the living environment and corresponding lifestyle changes, the number of stroke
patients is increasing daily. Hypertension, poor diet, poor physical activity habits, diabetes, obesity,
dyslipidemia, as well as psychosocial stress, economic status, air pollution, and other factors, are
risk factors for stroke (Pandian et al., 2018). These more common factors have made stroke a
common disease with an increasing number of patients. The study of Feigin, VL (Feigin, 2019)
showed that the morbidity and mortality of stroke victims had increased significantly since 2010,
and the number of strokes in 2016 was twice that in the 1990s.

Stroke is mainly divided into ischemic stroke and hemorrhagic stroke, which are caused by
vascular obstruction and vascular rupture, respectively. Once cerebral apoplexy occurs, it may
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cause permanent damage to the brain and lead to a variety
of complications, which can easily lead to disability or even
death of patients. Patients who recover are also prone to
relapse, therefore, stroke not only affects the normal life of
patients, but even endangers the life and health of patients.
In addition, the occurrence of stroke will also bring a certain
burden to the family and society. Therefore, timely and effective
detection and identification of the location of the disease is the
basis of minimizing injury. With the development of medical
imaging technology, the clinical treatment and intervention of
stroke patients has become convenient, accurate, and efficient
through the assistance of medical imaging. The identification
and analysis of disease location of cerebral apoplexy by medical
imaging are now the main diagnostic method in clinical
practice. There are three imaging methods for damaged brain
tissue of stroke patients: CT angiography (CTA), magnetic
resonance imaging (MRI), and digital subtraction angiography
(DSA). CT imaging performed well in the diagnosis of tumor-
induced stroke patients, but the imaging results of brain regions
other than the brain and early lesions were weak. Meanwhile,
angiography requires the injection of a contrast agent into
the patient, which has implications for the patient’s body.
Non-invasive brain MRI results, by contrast, are not only for
ischemic stroke imaging but is more sensitive, and can accurately
analyze the lesions. In addition, for hemorrhagic stroke in the
different periods of the hemorrhage of magnetic resonance
imaging results, through multiple check sequences, it can realize
direct imaging of multidimensional no dead angle, which
provides favorable conditions for the doctor’s clinical diagnosis
and treatment. Therefore, this paper focuses on T1-Weighted
Magnetic Resonance Images of cerebral apoplexy patients to
study the location segmentation of lesions in the images.

At present, the number of studies on the segmentation of acute
stroke is much larger than that on the segmentation of chronic
stroke, and the study of chronic stroke is of great significance
for early intervention treatment and prevention of serious
consequences. According to whether manual participation is
needed in the algorithm, the segmentation methods of stroke
lesions can be divided into semi-automatic and automatic
categories at present. Clustering is the most widely used semi-
automatic segmentation method. Haan et al. (2015) segmented
through the iterative region growing based on local intensity
maximum. However, this method not only requires a certain
amount of manpower because of the need for artificial selection
of clusters, but also its effect is greatly influenced by human
experience. In automatic segmentation, machine learning is
also a mainstream method. For example, Seghier et al. (2008)
used fuzzy means clustering to identify the location of brain
lesions. However, the application scope of this method is
limited, and it is only applicable to single types of images.
The sensitivity of this method is limited by parameters and
other factors. Griffis et al. (2016) classified voxels by Gaussian
Naive Bayes, but this method is prone to miss detection for
small lesion areas. Pustina et al. (2016) used the random
forest algorithm and combined it with adjacent voxels for
analysis, but this method had the defect of high computational
cost. Meanwhile, Ito et al. (2019) conducted an experimental

comparison of the above three methods, and the results showed
that these methods had limitations in the segmentation of lesions
in the cerebellum and brain stem.

In addition, the experiment of Maier et al. (2015) also
showed that machine learning had a good performance in
the segmentation task of stroke lesions. In machine learning
methods, in addition to model-based Gaussian Naive Bayes,
random forest, and k-neighborhood algorithm, there are
also deep learning methods taking convolutional neural
network (CNN) as an example. Deep learning methods have
many mature and robust methods in the field of medical
image classification (Lyu et al., 2021; Zhu et al., 2021a,b).
At the same time, there has been much development in
the field of medical image segmentation. Among them,
CNN and full convolutional neural network (FCN) show
obvious advantages in the segmentation of lesions in brain
images (Karthik et al., 2020). Lucas et al. (2017) applied the
classical fully connected neural network to the segmentation
of stroke lesions. In addition, U-Net architecture also
shows a good effect in image segmentation, so there are
many applications of FCN, U-Net, and their variants in the
segmentation task of stroke lesions. Liu et al. (2018) proposed
a fully convolutional network with a residual structure (Res-
FCN). Hui et al. (2020) combined the attention mechanism
with U-Net and improved it to increase the segmentation
accuracy by suppressing the irrelevant regions of lesions
through the attention generated by multi-scale features.
Dolz et al., 2019) obtained more modal information through
individual processing of the input image and extended the
convolution block of InceptionNet to obtain more context
information to improve performance. However, U-Net
architecture is limited by the size of convolutional features,
and the simple stacking of features during decoding limits
the diversity of information. Therefore, Qi et al. (2019)
proposed an X-Net based on deep separable convolution,
which designed a non-local operation, namely feature
similarity module (FSM), to capture remote dependencies.
Using deep convolution can reduce the scale of the network,
and the developed FSM can provide more effective and
dense context information extraction, which is conducive to
better segmentation.

Unfortunately, these methods often ignore the size
and location information of lesions, do not make full
use of the extracted feature information, and lose the
early useful features. Therefore, we propose an end-to-
end model named cross-attention and deep supervision
UNet (CADS-UNet), which refers to the classical UNet
structure, designs the cross-space attention module
(CSAM) and the channel attention module (CAM), filters
the features of each layer, and extracts more valuable
features. In summary, the contributions of this paper are
summarized as follows.

(1) We propose CADS-UNet to effectively segment the lesion
region of stroke. Through the cross-spatial attention
module and CAM, important information is enhanced and
the effectiveness of features is improved.
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(2) We use a mixed loss function and deep supervision to
improve the efficiency of network training and provide
strong normalization through supervising the middle layer.

(3) We conducted comparative experiments and ablation
experiments on the Atlas dataset and compared with
advanced methods to show the advantages.

MATERIALS AND METHODS

Figure 1 shows the overall architecture of our proposed
CADS-UNet. On the general encoder-decoder architecture, we
add the cross spatial attention module and CAM to effectively
select features, fully mix features from different levels, and guide
segmentation. We utilize ResNet34 (He et al., 2016) as the
encoder, which contains a total of five blocks. Each decoder
block consists of two Conv-BN-ReLU combinations. At the same
time, the deep supervision algorithm is combined to improve the
directness and transparency of the hidden layer learning process.
In this section, each module of our network will be analyzed in
detail. In section “Cross-Spatial Attention Module,” we introduce
the cross spatial attention module (CSAM), the CAM in section
“Channel Attention Module,” and finally, in section “Deep
Supervision and Mixing Loss Function,” we introduce the deep
supervision and mixing loss function.

Cross-Spatial Attention Module
Convolutional neural network extracts the features of the target
by layer abstraction and one of the important concepts is a
receptive field. The receptive field of a low-level network is
relatively small and the representational ability of geometric
detail information is strong. It tends to extract low-level features
such as the edgy texture of an image. Although the resolution of
low-level features is high, the representational ability of semantic
information is weak. With the increase of neural network layers,
the receptive field increases, and the representational ability
of semantic information is strong, but the resolution of the
feature map is low and the representational ability of geometric
information is weak. The classical U-Net performs up-sampling
four times and uses skip connection in the same stage to combine
the encoded feature map with the decoded feature map so that the
feature map integrates more low-level features and the features of
different scales. Due to the spatial uncertainty of stroke lesions,
to obtain more effective spatial features, we propose a CSAM to
replace the skip connection in U-Net. This module extracts a wide
range of location-sensitive information at encoding and decoding
layers, respectively, and cross-encodes them into feature map.

CSAM is a soft spatial attention strategy (Tao et al., 2018)
that selects fine-grained important pixels which are pixel level.
The purpose is to combine features with spatial location
strategy, so that the obtained features pay more attention to
uncertain and complex regions, to realize hierarchical feature

FIGURE 1 | Overview of our proposed cross-attention and deep supervision UNet (CADS-UNet).
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complimentary and prediction refinement. Different from the
common self-attention module (Park et al., 2018), we select
features by cross-weighting the spatial features of the encoding
layer and decoding layer. The features of the coding layer include
unique edge space features, while the features of the decoding
layer include high-level abstract space features. Both sides focus
on the features of different levels and lose the spatial focus
of the other layer. Directly connecting encoding and decoding
features cannot efficiently select spatial information. Therefore,
we use the soft attention mechanism to cross weight the features,
so that the features are concentrated in different key parts of
space to prevent the loss of effective information and strengthen
important information.

As shown in Figure 2, the attention diagram of each
CSAM module is generated by the decoder and encoder of the
corresponding layer. The input feature maps of CSAM are the
encoding feature Fe ∈ RC×H×W and the decoding feature Fd ∈
RC×H×W , in which C is the number of channels and H, W are
the height and width of the feature map, respectively. To compute
the spatial attention, first applying max pooling and avg pooling
operations along the channel axis to obtain two 2D maps, then
concatenate them according and send the concatenated feature
descriptor to a standard convolution layer. After activating
function, the spatial attention map is obtained, and its formula
is expressed as:

M (F) = σ
(
f 3× 3 ([AvgPool (F) ;MaxPool (F)

]))
Where σ represents the sigmoid function and f 3×3 denotes a

convolution operation with the filter size of 3× 3.
The spatial attention maps of Fe and Fd are extracted,

respectively, and the original features are weighted by cross-
multiplication to obtain a hybrid spatial selection feature map.
Finally, the original features are summed as residual blocks to
avoid overfitting. The specific formula is as follows:

SS (Fe, Fd) = [(M Fe ⊗ Fd + Fd) ; (M Fd ⊗ Fe + Fe)]

Where ⊗ denotes element-wise multiplication, it can be
inferred from the formula that the final result map is the sum of
relational features and original features. Therefore, Ss has a wide
range of contextual perspectives, effectively aggregates spatial
information through the cross-spatial attention module, provides
local context enhancement of different receptive fields for each
position feature column of each decoding layer, and skillfully uses
the prediction confidence of the decoding layer as a guide to force
the current layer to focus on difficult.

Channel Attention Module
Figure 3 shows the CAM. In a sense, the channel of a neural
network is the feature, and the number of channels is the feature
number. In addition to spatial location information, channel
information is also an important information source for selecting
effective feature maps. The mixed attention mechanism is better
than the single attention mechanism (Woo et al., 2018). So, we
use the CAM serially after the CSAM to select the combined
multi-feature channels. We hope to improve the representation
ability of the network modeling the dependence of each channel

FIGURE 2 | Cross space attention module (CSAM).

FIGURE 3 | Channel attention module (CAM).

and adjusting the features channel by channel, in this way,
the network can learn to selectively strengthen the features
containing useful information and suppress useless channel
features globally.

Specifically, CAM takes the connected mixed features
Ss Fe, Fd as inputs to suppress or enhance the channel strength
by modeling the importance of each channel. Firstly, max pooling
and avg pooling are used to summarize the spatial information
about the feature graph. We obtain two descriptors and then
forward them to a shared multi-layer perceptron (MLP) that
contains two layers of FC, respectively. Finally, the pixels are
added and fused, and the channel attention map is obtained
through an activation function. The formula is:

M (Ss) = σ
(
MLP

(
AvgPool (Ss)

)
+MLP (MaxPool (Ss))

)
By multiplying the original feature mapping with the attention

value, we can identify some informative contextual features and
suppress those features that are not conducive to improving the
discrimination.

Sc (Ss) = M Ss ⊗ Ss
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Deep Supervision and Mixing Loss
Function
We add cross-space and channel dual attention modules in each
decoding layer. In addition, we use deep supervision (Lee et al.,
2014) to introduce intermediate loss supervision functions for
each hidden layer to improve the directness and transparency
of the hidden layer learning process. These intermediate loss
functions can be regarded as additional (soft) constraints on the
learning process. At the same time, it can solve the problems such
as the disappearance of training gradient and slow convergence
speed of deep neural networks.

In the training process, deep supervision may lead to lazy
convergence of the deep network. Therefore, we propose a new
loss function, which adopts different loss functions according to
the output of each layer and combines them.

Binary Cross Entropy Loss
For the segmentation problem of front and back scene pixel-
level classification, the most widely used objective function is the
binary cross-entropy (BCE) loss, which is defined as follows:

LBCE =
1
N

N∑
i=1

yilogŷi +
(
1− yi

)
log

(
1− ŷi

)
Where N is the total number of pixels, yi is the real label of

pixel i, and ŷi represents the prediction probability that pixel i
is classified as "1." This loss function ignores class imbalance, so
the importance of all pixels is the same. In this case, the larger
background has more influence on the training process.

Dice Coefficient Loss
In 3D medical data, including our MRI stroke data, the number
of lesion slices only accounts for a small part of the total number
of 3D slices, and the size of lesions is uncertain. In the training
process, the number of negative pixels and slices (excluding
lesions) is much more than the number of positive pixels, and a
large number of negative regions may dominate the loss function.
Therefore, using BCE loss alone cannot meet our task. Dice
coefficient loss (DL) (Milletari et al., 2016) does not take into
account the real negative pixels, alleviates the imbalance between
background and foreground pixels, and can achieve better results
in unbalanced segmentation. Sim ilar to Dice score, dice loss is
defined as follows:

LDice = 1−
2
∑

i yîyi + ε∑
i ŷi +

∑
i yi + ε

Where ε ∈ [0, 1] is a tunable parameter to prevent a
divide-by-zero error and make negative samples also have
gradient propagation.

Mixed Loss
Based on the above two losses, we propose a mixed loss (ML) to
improve the convergence. Combined with the deep supervision
strategy, we use the dice coefficient loss function for the coarser
step 3 and 4 outputs, and LBCE + LDice loss function for the
finer step 1 and 2 outputs. For different strides, different loss

functions are used, because the coarse output only focuses on the
global structure and ignores the local details, while the fine output
achieves pixel-level accuracy by relying on local clues, and we use
α, β to add weights for different layers. Finally, the mixed loss is
as follows:

L =
(
L1
Dice + L1

BCE
)
+ α

(
L2
Dice + L2

BCE
)
+ β

(
L3
Dice + L4

Dice
)

EXPERIMENTS AND RESULTS

Datasets
To evaluate the performance of the proposed method in the
segmentation of stroke lesions, we used a subset of the open
data set "Anatomical Tracings of Lesions After Stroke" (Atlas)
(Liew et al., 2018). Atlas dataset consists of 304 MRI images
from 11 cohorts around the world. A total of 11 experts who
had received standardized training in lesion recognition and
segmentation manually drew lesion masks for the data set.
Due to the difference in technical difficulty and scanner image
quality, 229 brain data were converted into standard MNI
space. Therefore, experiments are only carried out on these
229-subset data.

All T1 weighted MRI data are collected on a 3T MRI
scanner with a resolution of 1mm3(isotropic). The mean
lesion volume of all cohorts is 2.128± 3.898× 104 mm3. The
minimum lesion size is 10 mm3 and the maximum lesion size
is 2.838× 105 mm3. On average, a single patient is more
likely to have only one lesion (58%). In the left hemisphere,
right hemisphere, and other parts (such as the brain stem),
the probability of identifying lesions is roughly the same
(48.4, 43.8, and 7.7%, respectively). Overall, the number of
subcortical lesions (70.7%) is higher than that of cortical lesions
( 21.5%).

The experimental data consists of 229 T1 weighted
standardized 3D MR images, in which each 3D MR image
consists of 189 2D slices, and the size of each slice is 233 × 197.
The 2D segmentation method was used in this experiment, so the
slices are standardized. The data set contains 43281 slices. We
randomly selected 137 cases for training, 36 cases for verification,
and 56 cases for testing.

Implementation Details
In data preprocessing, each case was cut into a cross-sectional
image. Each image was cropped using diagonal coordinates
(10,40) and (190,220). The cropped region removed irrelevant
information and expanded the proportion of stroke lesions in the
whole image. Next, the size of the cropped image was adjusted
to 192 × 192 using bilinear interpolation, and saved each slice
in.npy format for later use. The training data were shuffled
randomly and all slice masks were cut to the same size.

In this experiment, Adam (Kingma and Ba, 2014) optimizer
was used to adjust the initial learning rate and the initial learning
rate was set to init_lr = 1e−3. We adjusted the initial learning rate
by using multi learning rate strategy, which was lr = init_lr ×(

1− epoch
nEpoch

)power
, where power = 0.9, nEpoch = 100. Due to

the memory limitation of GPU, the batch size was set to 24.
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Our model was implemented using the PyTorch (Paszke et al.,
2019) framework.

We selected a series of evaluation indicators to quantify the
performance of the proposed model. We calculated evaluation
scores for each patient in the test set on 3D MRI (189 2D
slices) and reported the mean Dice Similarity Coefficient (DSC),
Precision, and Recall. In addition, we also tested the global DSC
of all data. DSC is the main indicator to evaluate the difference
between the model prediction and the ground truth, which is used
to quantify the overlap ratio between the two masks. Precision,
also known as the positive predictive value, is the ratio of true
positive to the overall predictive result. The recall is an integrity
measure defined as the ratio of true positive to the entire basic
fact. They are defined as:

DSC =
2TP

2TP + FP + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

We threshold all predicted results. We set it to 0 when the
probability of a pixel being predicted to be foreground is less than
0.5, and 1 otherwise. It is positive when the pixel predicted value
is the same as the true value, otherwise it is negative. Where true
positive (TP) indicates that the model correctly predicted pixel.
False-positive (FP) indicates the pixel that the model misclassifies
to be positive. False-negative (FN) indicates that the positive pixel
is mistakenly classified to be negative by the model.

Comparison of Different Methods
To evaluate the performance of our algorithm, we selected
four models for experimental comparison (Table 1), namely
FCN-8s (Long et al., 2015), U-Net (Ronneberger et al., 2015),
ResUNet (Zhang et al., 2018), and Attention-UNet (Oktay
et al., 2018). As the baseline of the segmentation network,
the U-Net network has a simple and clear structure and has
a good effect. Subsequent networks, including our network,
are improved based on U-Net. ResUNet combines the idea of
ResNet and adds a residual module to each block. Attention-
UNet monitors the features of the upper level through the
features of the lower level to realize the attention mechanism.
All network parameters are configured according to section

TABLE 1 | Comparison with state-of-the-art methods on the ATLAS dataset.

Method DSC DSC (global) Recall Precision

FCN-8s 0.4274 0.6720 0.4531 0.4883

U-Net 0.4944 0.6933 0.5030 0.6419

ResUNet 0.5081 0.7373 0.5081 0.5921

Attention-UNet 0.5162 0.7383 0.5321 0.6518

CADS-UNet (ours) 0.5564 0.7451 0.5817 0.6368

Bold value shows the best performance.

“Implementation Details.” These networks are also implemented
on a unified platform. The training set and verification sets
are strictly consistent (including data preprocessing). During
training, the batch size is set to 24 and the loss is set to LDice +
LBCE.

By analyzing the results in Table 1, we can see that
the effect of classical FCN-8s is the worst, only 0.4274
(DSC). Taking the result of U-Net 0.4944 (DSC) as the
dividing line, the results of ResUNet and Attention-UNet are
improved. The best result of Attention-UNet is 0.5162 (DSC),
which also proves the usefulness of the attention mechanism.
Our model obtained a DSC of 0.5564, which scored the
highest among all models, and several other indicators [DSC
(global), Recall, Precision] were 0.7451, 0.5817, and 0.6368,
respectively. Therefore, from the experimental point of view, our
model is optimal.

Figure 4 shows some of our cases. We arrange the images
from small to large according to the size of the lesion. Where
the second column is the ground truth and our resulting
graph is in the third column. In the first row, we can see
that for very small lesion areas, U-Net and ResUNet cannot
segment the lesion, the predicted mask is empty, and the
segmentation result of FCN-8s is not good. In contrast, our
model and Attention-UNet can accurately segment the lesion
area. Therefore, compared with other models, our method
has advantages in identifying and segmenting small lesion
samples. In addition, take the result in line 5 as an example,
U-Net, ResUNet, and Attention-UNet mistakenly recognized
the tissue with the low-intensity signal as the lesion area of
stroke and the segmentation is not accurate enough. Our model
does not segment the non-lesion area and the segmentation
shape is most similar to the ground truth. Other results also
show that our model obtains smoother edge results and a
more accurate segmentation rate. The experimental results
show that the proposed CADS-UNet has strong robustness
and effectiveness.

Comparison With Other Methods and
Ablation Experiments
Table 2 compares our model (CADS-UNet) with other
existing methods on the same data set. All comparison
results were obtained directly from the paper. We did not
reproduce the experiment because we believe in the best
results reported by other authors. We selected five methods
based on deep learning (X-Net, 2D MI-UNet, 2.5D CNN,
D-UNet, and 3D-UNet). The results of X-Net and D-UNet
were obtained from Qi et al. (2019) and Zhou et al. (2019).
The results of 2.5D CNN were obtained from Xue et al.
(2020) and the results of 3D-UNet and 2D MI-UNet were
reported by Zhang et al. (2020). As can be seen from the
Table, compared with other methods, our model also has
certain advantages.

In order to verify the necessity and effectiveness of each
module (CSAM, CAM, DL), we conducted ablation experiments
between different modules. Specifically, the baseline model refers
to the encode-decode network, the feature connection adopts
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FIGURE 4 | Comparisons of our method, baseline, FCN-8s, U-Net, ResUNet, and attention-UNet.

connection instead of direct addition to double the number
of channels. Before adding the deep supervision module, our
loss adopts LDice + LBCE. We gradually add CSAM, CAM and
DL modules to the base model, which are expressed in the
table as baseline, BL + CSAM, BL + CSAM + CAM, and ours
(BL + CSAM + CAM + DL). From the results, we can see
that with the introduction of the module, the effect of our
algorithm has been gradually improved, boosting dice by 2.37,
0.46, and 1.57%, respectively. The addition of the CSAM module
greatly improves the accuracy, which also proves that the model
does capture the corresponding spatial location information,
and the joint use of CAM and CSAM also improves the
model. Finally, a specific loss function constrains the output
of each layer, making the focus of the attention mechanism
more accurate, so that the whole model reaches the optimum.
The experimental results show that our added module is
indeed effective.

CONCLUSION

We propose a new method to realize the automatic segmentation
of stroke lesions. The network strengthens the feature space
information through the cross-spatial attention module
so that the model pays more attention to uncertain and
complex regions. At the same time, the channel information

TABLE 2 | Comparison with other state-of-the-art methods and ablation studies
on the ATLAS dataset.

Method DSC Recall Precision Train/Test

X-Net 0.4867 0.4752 0.6000 All/Fivefold cross-validation

2D MI-UNet 0.4945 0.5237 0.5669 All/Fivefold cross-validation

3D UNet 0.5296 0.5497 0.6090 All/Fivefold cross-validation

D-UNet 0.5349 0.5243 0.6331 183/46

2.5D CNN 0.54 – – 99/Fivefold cross-validation

CADS-UNet (ours) 0.5564 0.5817 0.6368 137/56

BaseLine (BL) 0.5124 0.5291 0.6111 137/56

BL + CSAM 0.5361 0.5455 0.6451 137/56

BL + CSAM + CAM 0.5407 0.5654 0.6218 137/56

Bold value shows the best performance.

is filtered through the CAM, the effective channel information
is strengthened, and more accurate feature information is
captured. Finally, the deep supervision strategy combined
with the mixed loss function solves the problems of the
disappearance of the training gradient and the slow convergence
speed of the deep neural network. The model is evaluated
on the famous open data set ATLAS, which proves the
superiority of our model. The proposed model has a
clear structure and robustness. In the future, we plan to
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validate our method on more clinical datasets and improve the
model in combination with 3D convolutions to further improve
the performance of the model. Due to the continuity of the
lesion block, 3D convolution can add spatial information to the
model, which can theoretically further improve our segmentation
accuracy, but 3D convolution has higher requirements for
computing performance. The 2.5D network that combines 2D
and 3D is also our future research direction.
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