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Aim: To develop and validate a radiomics nomogram on non-contrast-enhanced
computed tomography (NECT) for classifying hematoma entities in patients with acute
spontaneous intracerebral hemorrhage (ICH).

Materials and Methods: One hundred and thirty-five patients with acute
intraparenchymal hematomas and baseline NECT scans were retrospectively analyzed,
i.e., 52 patients with vascular malformation-related hemorrhage (VMH) and 83 patients
with primary intracerebral hemorrhage (PICH). The patients were divided into training
and validation cohorts in a 7:3 ratio with a random seed. After extracting the
radiomics features of hematomas from baseline NECT, the least absolute shrinkage
and selection operator (LASSO) regression was applied to select features and construct
the radiomics signature. Multivariate logistic regression analysis was used to determine
the independent clinical-radiological risk factors, and a clinical model was constructed.
A predictive radiomics nomogram was generated by incorporating radiomics signature
and clinical-radiological risk factors. Nomogram performance was assessed in the
training cohort and tested in the validation cohort. The capability of models was
compared by calibration, discrimination, and clinical benefit.

Results: Six features were selected to establish radiomics signature via LASSO
regression. The clinical model was constructed with the combination of age [odds ratio
(OR): 6.731; 95% confidence interval (CI): 2.209–20.508] and hemorrhage location (OR:
0.089; 95% CI: 0.028–0.281). Radiomics nomogram [area under the curve (AUC), 0.912
and 0.919] that incorporated age, location, and radiomics signature outperformed the
clinical model (AUC, 0.816 and 0.779) and signature (AUC, 0.857 and 0.810) in the
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training cohort and validation cohorts, respectively. Good calibration and clinical benefit
of nomogram were achieved in the training and validation cohorts.

Conclusion: Non-contrast-enhanced computed tomography-based radiomics
nomogram can predict the individualized risk of VMH in patients with acute ICH.

Keywords: radiomics, nomogram, non-contrast-enhanced computed tomography, intracerebral hemorrhage,
vascular malformations-related hemorrhage

INTRODUCTION

Spontaneous intracerebral hemorrhage (ICH) is defined as
intraparenchymal hemorrhage caused by vascular rupture,
which can be divided into primary hemorrhage and secondary
hemorrhage (Meretoja et al., 2012). Primary intracerebral
hemorrhage (PICH) is mainly due to spontaneous rupture
of blood vessels caused by hypertension, arteriosclerosis, or
amyloidosis, while secondary cerebral hemorrhage generally
refers to the existence of secondary cause, such as the
hemorrhagic transformation of ischemic stroke, cerebral
venous thrombosis, tumors, and vascular malformation-related
hemorrhage (VMH). For patients suspected of acute ICH, non-
contrast-enhanced computed tomography (NECT) scan remains
the first choice of imaging during a clinical emergency, which
can effectively reflect the location, volume, and surrounding
brain tissue structure of hemorrhage (Thabet et al., 2017).
Several studies have shown a major difference in treatment and
prognosis between VMH and PICH (Barone et al., 2017; Fukuda
et al., 2017). For PICH, the primary strategy is to monitor vital
signs and hemorrhage changes, stabilize blood pressure, and
prevent further bleeding. Unless the patient is suffering from
severe intracranial hypertension or cerebral hernia, surgical
treatment should not be considered. Ruptured VMH can
easily re-hemorrhage, so surgical resection or interventional
embolization has a positive effect on the prognosis of patients.

It is crucial to distinguish VMH from PICH in the early stage.
However, it is difficult and equivocal to distinguish hemorrhage
types by the naked eye on NECT images. As a quantitative
imaging research method, radiomics can non-invasively evaluate
regional tissue heterogeneity at the millimeter scale, which has
been confirmed in tumor imaging (Lambin et al., 2017). However,
the radiomics research in hemorrhagic diseases is limited, and
no study has reported a NECT-based radiomics nomogram to
differentiate VMH from PICH.

In this study, we hypothesized that VMH contains unique
NECT-based radiomics features, and we aimed to develop
and validate a radiomics nomogram for the classification
of VMH, to facilitate individualized treatment strategies for
patients with acute ICH.

MATERIALS AND METHODS

Subjects
This study was approved by the Ethics Committee of the
local institution, and informed consent was waived off. The
patients were retrospectively analyzed between October 2017 and

September 2020, i.e., 333 patients with acute ICH who received
baseline NECT scan after symptom onset. The inclusion criteria
were as follows: (1) acute, non-traumatic intraparenchymal
hemorrhage; (2) NECT scan within 6 h of the onset of ICH
symptoms; and (3) complete medical records. Patients with
the following conditions were excluded: (1) acute brain injury
(n = 56); (2) isolated intraventricular hemorrhage, subarachnoid
hemorrhage, epidural hemorrhage, or venous sinus embolism
(n = 43); (3) hemorrhage related to tumor, aneurysm, or ischemic
stroke (n = 36); (4) multiple hemorrhages (n = 9); (5) baseline
NECT scan after 6 h of the onset (n = 39); and (6) serious image
artifacts (n = 15).

A total of 135 consecutive patients (95 men and 40 women;
mean age, 54.22 ± 15.38 years) were enrolled, and their
demographic information was collected from medical records.
VMH was diagnosed according to post-digital subtraction
angiography (DSA) and/or surgery and repeated DSAs were
operated if considered necessary. Among them, 41 were
confirmed as arteriovenous malformations, 7 as cavernous
malformations, and 4 as arteriovenous fistula. The database was
divided into a training cohort (n = 95; 65 men and 30 women;
mean age, 54.06 ± 15.70 years) and a validation cohort (n = 40;
30 men and 10 women; mean age, 54.60 ± 14.61 years) in a 7:3
ratio with a random seed. Models were developed in the training
cohort and independently tested in the validation cohort.

CT Imaging
All patients underwent baseline head NECT scan using a GE
Gemstone Scanner. The scan protocol was as follows: (1) tube
voltage, 120 kV; (2) tube current, 360 mA; (3) field of view,
320 mm; (4) matrix, 512× 512; and (5) slice thickness, 5 mm.

Qualitative Analysis of
Non-contrast-Enhanced Computed
Tomography Images
All CT images were analyzed by two radiologists with one
having experience of 7 years and another with 5 years
independently. They were blinded to the clinical information.
The two radiologists evaluated the following image features of
hemorrhage: (1) location (deep/lobar) and (2) shape (regular or
irregular). A discussion was carried out to achieve consensus in
case of discrepancy.

Clinical-Radiological Risk Factors
The univariate analysis was used to assess the single clinical
and NECT features for discriminating VMH from PICH in the
training cohort, and a multivariate logistic regression analysis
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FIGURE 1 | Formulas of z-score (A), net benefit (B), net reclassification index (C), and integrated discrimination index (D). x, the feature value; µ, the average of the
feature values among all VOIs; σ, the corresponding standard deviation; NB, net benefit; TP, true positive; FP, false positive; N, total cases; Pt, probability threshold;
NRI, net reclassification index; C1, B1, the cases predicted by the new and old model in the event occurrence group; B2, C2, the cases predicted by the new and
old model in the event incurrence group; N1, N2, the cases in the event occurrence and incurrence group; IDI, integrated discrimination index; −Pnew,
events,−Pold, events, the mean of the probability of disease predicted by the new and old model for each individual in the event occurrence group; Pnew,
non-events,−Pold, non-events, the mean of the probability of disease predicted by the new and old model for each individual in the event incurrence group.

with significant variables was performed to determine the
potential risk factors of VMH.

Image Processing and Segmentation
The voxel-based segmentation of hemorrhage was performed
using 3D-Slicer software (version 3.6.01) by one radiologist.
Regions of interest (ROI) were semi-automatically delineated
on each slice of the CT image containing the entire lesion.
The segmentations were then validated by another radiologist
in a cohort of 30 randomly selected patients. All images were
resampled to 1 mm × 1 mm × 1 mm voxel and normalized by
histogram matching to eliminate the intensity difference.

Extraction of Radiomics Feature
Prior to extracting the features, image filtration was implemented
on the original image with wavelet (wavelet-LHL, wavelet-
LHH, wavelet-HLL, wavelet-LLH, wavelet-HLH, wavelet-HHH,
wavelet-HHL, and wavelet-LLL) and Laplacian of Gaussian
(LoG) transform. The log filtration was calculated with operator
values of 1 mm (fine), 3 mm (medium), and 5 mm (coarse),
respectively. A set of 1,130 radiomics features was extracted
from each original and filtered segmentation and divided
into five groups: (1) intensity (histogram-derived first-order
statistics (n = 18); (2) shape (n = 14); (3) textural matrix [i.e.,
the gray-level co-occurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size-zone matrix (GLSZM),
and the neighborhood gray-tone difference matrix (NGTDM),
n = 75]; (4) wavelet-based transform (n = 744), and (5) log-
based transform (n = 279). All features were automatically
extracted from the volumes of interest (VOIs), which contain 3D
information on hematoma using PyRadiomics, and the detailed
descriptions of radiomics features could be found on the https:
//pyradiomics.readthedocs.io/en/latest/index.html.

Selection of Radiomics Feature
Inter-class correlation (ICC) coefficient was calculated for each
radiomics feature, and a single-factor logistic regression analysis
was carried out to select highly significant and correlated features.
Only the features with ICC > 0.8 and p < 0.1 were considered
as high repeatability and correlated, which were included for

1http://www.slicer.org

subsequent analysis. Then, the feature values of all VOIs were
normalized with z-score normalization (Figure 1A) to eliminate
the unit limit for each feature. The least absolute contraction
and selection operator (LASSO) was applied to select features
to reduce the redundancy and overfitting in the training cohort.
The set of non-zero coefficient features was chosen with optimal
λ value, which was determined by the area under the curve
(AUC) of fivefold cross-validation. The radiomics score (Rad-
score) of each patient was calculated using the linear fitting of
selected features, and the radiomics signature was constructed.

The formula was as follows: Rad− score = α+
i∑
1

βiXi (α, the

intercept; βi, the value of radiomics feature selected by LASSO;
βi, the corresponding coefficients).

Construction and Evaluation of the
Prediction Model
After the selection of potential clinical-radiological risk factors
of VMH based on the multivariate logistic regression analysis,
the clinical model in the training cohort was built. Then,
the radiomics nomogram model incorporating the clinical-
radiological risk factors and radiomics signature were also
constructed. The calibration curves and the Hosmer–Lemeshow
test were performed to evaluate the goodness-of-fit of the
nomogram. Receiver operating characteristic (ROC) curve
analysis was used to evaluate the discrimination performance
of the models. Decision curve analysis (DCA) was performed
to determine the clinical benefit of the models by calculating
their net benefits (Figure 1B). The categorical net reclassification
index (NRI, three risk categories: <0.5, 0.5–0.8, and >0.8,
Figure 1C) and total integrated discrimination index (IDI,
Figure 1D) were calculated to evaluate the prediction
improvement of the radiomics nomogram when compared
to clinical-radiological factors.

Statistical Analysis
Student’s t-test, the Mann–Whitney U test, the Chi-square test,
and Fisher’s exact test were used for univariate analysis, as
appropriate. The ROC curves were compared using the DeLong
test. The statistical analysis was performed using R (version
3.6.2, Boston, MA, United States) and SPSS software (version 22,
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Chicago, IL, United States). Two-tailed values of p < 0.05 were
considered as statistically significant.

RESULTS

Patient Characteristics
There were significant differences in age, history of hypertension,
and location between the VMH group and the PICH group in
the training cohorts (p < 0.001), but there were no significant
differences in gender, history of smoking, diabetes, alcohol
consumption, and coagulopathy or shape (p > 0.05; Table 1).
No differences were found in clinical-radiological characteristics
between the training and validation cohorts (p = 0.137–0.922).

Clinical Model Construction
Multivariable analysis showed that age (subdivided into ≥50 and
<50 years old classes, p = 0.001) and location (p < 0.001) were
independent risk factors for clinical model construction. Patients
with younger age [odds ratio (OR): 6.731; 95% confidence
interval (CI): 2.209–20.508] or hemorrhages located in the lobar
(OR: 0.089; 95% CI: 0.028–0.281) were likely to be VMH.

Radiomics Signature Construction
Of the 1,130 radiomics features extracted from NECT images,
532 features were demonstrated with ICC > 0.8 and p < 0.1. Six
VMH-related features with non-zero coefficients were selected
using a LASSO logistic regression for Rad-score calculation,
and a radiomics signature was constructed (Figures 2A,B). The
selected radiomics features and the corresponding coefficients are
displayed in Table 2. The Rad-score differed significantly between
the VMH and PICH groups in both training (p < 0.001) and
validation (p< 0.05) cohorts (Figures 2C,D). Patients with VMH
generally had lower Rad-scores than those with PICH.

The Radiomics Nomogram Development
and Model Assessment
Age, location, and radiomics signature were incorporated into the
development of radiomics nomogram (Figure 3A). Patients with
younger age (<50 years) or hemorrhages located in lobes and

the negative radiomics signature were more likely to be VMH.
Figure 3B shows that the calibration curve of the nomogram
fitted well with the actual status. The Hosmer–Lemeshow test
showed good calibration in the training cohort (p = 0.914).

The diagnostic performance of each model is summarized in
Table 3, and the ROC curves are shown in Figure 4. Compared
with radiomics signature (AUC: 0.857; 95% CI: 0.771–0.921;
sensitivity, 0.763; and specificity, 0.889) and clinical model (AUC:
0.816; 95% CI: 0.723–0.888; sensitivity, 0.661; and specificity,
0.806), the radiomics nomogram (AUC: 0.912; 95% CI: 0.836–
0.960; sensitivity, 0.746; and specificity, 0.889) showed better
performance in differentiating VMH from PICH. The DeLong
test showed that the performance of the radiomics nomogram
had a statistically significant improvement (p < 0.05).

Model Validation
Figure 3C shows the calibration curve of the nomogram in
the validation cohort with a non-significant Hosmer–Lemeshow
test statistic (p = 0.720). The AUC of the radiomics nomogram
(AUC: 0.919; 95% CI: 0.788–0.982) was higher than that of
the clinical model (AUC: 0.779; 95% CI: 0.655–0.916) and
radiomics signature (AUC: 0.810; 95% CI: 0.788–0.982) in the
validation cohort.

The DCA for the three models is shown in Figure 5. The
curve showed that the radiomics nomogram had a higher
overall net benefit in differentiating VMH from PICH than the
clinical model and radiomics signature, within the threshold
probability <0.8.

The discrimination measures confirmed that adding
radiomics signature to clinical-radiological factors significantly
improved reclassification for predicting hemorrhage status, with
NRI and IDI of 0.435 (95% CI: 0.178–0.692, p < 0.001) and 0.170
(95% CI: 0.092–0.247, p < 0.001), 0.313 (95% CI: −0.049 to
0.674, p < 0.001), and 0.250 (95% CI: 0.103–0.3961, p < 0.001)
in the training and validation cohorts, respectively.

DISCUSSION

In this study, we constructed and evaluated three predictive
models to non-invasively distinguish VMH from PICH, such

TABLE 1 | Demographic data and NECT features.

Variables Training cohort (n = 95) Validation cohort (n = 40)

VMH PICH p VMH PICH p

Gender (male/female) 26/10 39/20 0.534 11/5 19/5 0.456

Age (years, mean ± SD) 42.36 ± 17.03 61.20 ± 14.89 <0.001 41.75 ± 15.70 63.17 ± 13.88 <0.001

Hypertension (P/N) 13/23 42/17 <0.001 2/14 16/8 0.001

Diabetes (P/N) 3/33 10/49 0.358 1/15 3/21 0.638

Smoking (P/N) 2/34 11/48 0.122 3/13 6/18 0.717

Alcohol consumption (P/N) 1/35 7/52 0.252 1/15 4/20 0.631

Coagulopathy (P/N) 0/36 3/56 0.286 0/16 3/21 0.262

Location (deep/lobar) 7/29 39/20 <0.001 5/11 14/10 0.093

Shape (regular/irregular) 20/16 36/23 0.600 5/11 13/11 0.154

NECT, non-contrast-enhanced CT; VMH, vascular malformations-related hemorrhage; PICH, primary intracerebral hemorrhage; P, positive; N, negative.
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FIGURE 2 | (A) Tuning parameter (λ) selection in the least absolute shrinkage and selection operator (LASSO) regression used fivefold cross-validation via one
standard error (SE) of the minimum criteria. The optimal λ value was 0.1212 with log(λ) = 2.1095. (B) LASSO regression coefficient of the 532 radiomics features
generated vs. the selected log(λ) value. (C,D) The violin plots for radiomics signature in the training and validation cohorts, categorized by the vascular
malformations-related hemorrhage (VMH) and PICH groups.

as the clinical model, radiomics signature, and radiomics
nomogram. The radiomics nomogram incorporated age,
hemorrhage location, and radiomics signature derived from
NECT and showed satisfactory performance for predicting
VMH. Thus, it provides a straightforward and safe auxiliary
approach for a clinical emergency.

Patients with VMH-related hemorrhage have lower
inpatient mortality and are more likely to have a favorable
discharge disposition as compared to patients with PICH

TABLE 2 | The selected radiomics features and coefficients.

Image Class Name Coefficients

Sigma-5 mm GLCM Lmc2 −0.1157

Sigma-5 mm GLCM Lmc1 0.4231

Wavelet-HLL GLCM Idn −0.2140

Wavelet-LHL GLCM Correlation 0.0068

Wavelet-LLL GLSZM GrayLevelNonUniformityNormalized 0.1238

Original GLSZM LowGrayLevelZoneEmphasis 0.0331

GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix.

(Murthy et al., 2017). The timely surgical or interventional
practice has a positive impact on the outcomes of patients with
VMH, otherwise, the effect worsens after 48 h of the onset of
symptoms. Therefore, patients with VMH should be screened
as soon as possible for further operation, instead of receiving
conservative treatment as the patients with PICH. The PICH is
diagnosed by excluding a thorough investigation for secondary
structural causes of ICH. Older age, deep location, and history of
hypertension are usually considered a diagnostic basis of PICH,
although cerebral angiography studies suggest that these imaging
and clinical features are not always reliable indicators in selecting
patients for further therapy, and patients with these features may
have coexisting vascular abnormalities (Josephson et al., 2014;
van Asch et al., 2015).

Prior to radiomics analysis, we evaluated the clinical-
radiological factors. In our study, age and hemorrhage location
were independent risk factors for distinguishing PICH and VMH,
similar to the findings of Murthy et al. (2017). Several studies
have shown that when compared with PICH, the VMH tended
to be more irregular, and the bottom of the lesion was usually
located on the cortex, with the tip of the lesion pointed to
the lateral ventricle (Wagle et al., 1984). Unexpectedly, in our
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FIGURE 3 | The radiomics nomogram for predicting the status of hemorrhage and calibration curves. (A) The radiomics nomogram, combining age, location, and
radiomics signature were developed in the training cohort. Patients with younger age (<50 years) or hemorrhages located in lobes and the negative radiomics
signature were more likely to be vascular malformations-related hemorrhage (VMH). (B,C) Calibration curves for the radiomics nomogram in the training and
validation cohorts. Calibration curves indicated the agreement of the nomogram between the predicted risk of VMH and actual status. The 45◦ gray dotted line
represents the ideal prediction and the black curve is the predictive performance of the nomogram. The closer the black curve is to the gray dotted line, the better is
the predictive efficacy of the nomogram.

TABLE 3 | Predictive performance of radiomics nomogram, radiomics signature, and clinical model.

Model Training cohort Validation cohort

AUC (95% CI) SEN SPE Youden index AUC (95% CI) SEN SPE Youden index

Clinical model 0.816 (0.723–0.888) 0.661 0.806 0.467 0.779 (0.620–0.894) 0.833 0.688 0.521

Radiomics signature 0.857 (0.771–0.921) 0.763 0.889 0.652 0.810 (0.655–0.916) 0.667 0.875 0.542

Radiomics nomogram 0.912 (0.836–0.960) 0.746 0.889 0.635 0.919 (0.788–0.982) 0.958 0.813 0.771

AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity.

study, the shape of the hemorrhage was failed to show enough
predictive strength based on univariable association with VMH.
This may be due to the evaluation of shape (regular/irregular)
being influenced by the reader’s academic background and
experience. Moreover, the descriptors of two-/three-dimensional
size and shape of lesions were included in radiomics features. For
example, sphericity is a measure of the roundness of the shape of
the region relative to a sphere (Lorensen et al., 2020). Hence, the
integration of shape described by radiomics features can decrease
bias when compared with visual evaluation in theory, which
makes the exclusion of this variable an appropriate strategy for
model development.

Radiomics, using different machine learning methods to
construct predictive models, can non-invasively reflect the
internal heterogeneity of lesions to achieve early diagnosis,
differential diagnosis, and treatment response monitoring. This
method has been widely studied in various tumor-related
research studies (Kocak et al., 2018; Artzi et al., 2019; Shu
et al., 2019). Compared with PICH, the internal composition and
morphology of VMH can be more complex and heterogeneous
due to the existence of malformed blood vessels, which can
be reflected by radiomics features. So far, radiomics analysis
of vascular diseases has mainly focused on the identification
and stratification of stability of vessel plaque (Shi et al., 2018;
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FIGURE 4 | The receiver operator characteristic (ROC) curves of the radiomics nomogram, clinical model, and radiomics signature in the training (A) and validation
(B) cohorts.

Kolossvary et al., 2019), the prediction of cerebral hemorrhage
expansion (Ma et al., 2019; Xie et al., 2020; Xu et al., 2020),
and discrimination of tumorous ICH from benign causes (Choi
et al., 2015; Nawabi et al., 2020). The current studies showed that
radiomics features may have the advantages of a higher resolution
and objectively quantify the heterogeneity of hematoma. In
our study, six radiomics features belonging to the GLSZM and
GLCM that described the heterogeneity of the hematoma may be
associated with VMH.

To the best of our knowledge, only one reported study
applied radiomics analysis to distinguish the hemorrhage caused

FIGURE 5 | Decision curve analysis for the three models. The y-axis indicates
the net benefit; the x-axis indicates the threshold probability. The red line,
green line, and blue line represent the net benefit of the radiomics nomogram,
clinical model, and radiomics signature, respectively. The radiomics
nomogram had the highest net benefit compared with the other two models
when the threshold probability was <0.8 at which a patient would be
diagnosed as vascular malformations-related hemorrhage (VMH).

by arteriovenous malformation and other etiologies (Zhang
et al., 2019). Zhang et al. (2019) constructed 88 predictive
models by the combination of 11 feature-selection methods
and 8 classifiers predictive models, and then the optimal one
was selected and evaluated. However, they included fewer
radiomics features. Moreover, CT imaging features and clinical
characteristics were excluded from their study. In our study,
we extracted and analyzed 1,130 radiomics features, which can
more comprehensively describe the internal heterogeneity of
hemorrhage. After processing, five of the six optimal features
were derived from LoG and wavelet filtration, which cannot
be obtained by conventional texture analysis. As a result, with
the aid ofmodeling NECT-based radiomics, the post-processing
and reporting time are limited to 5 min. More importantly, the
radiomics nomogram can generate an individual probability of
VMH with its visual scoring system, which meets the requirement
of personalized medicine. Additionally, DCA, NRI, and IDI
analyses were applied in the current study to assess the clinical
improvement of radiomics nomogram-assisted decisions on
patient outcomes. The DCA showed that using the radiomics
nomogram to predict VMH obtains more benefits than either
the treat-all-patients or the treat-none scheme. The NRI and IDI
analyses confirmed the reclassification improvement by adding
radiomics signature to clinical-radiological factors.

The ability of radiomics model to distinguish different
hematoma types in a reliable and reproducible manner represents
an attractive alternative in centers without ready access to
either advanced imaging modalities or stroke neurologists and/or
neuroradiologists for imaging interpretation. Additionally, this
approach offers other potential benefits that include (1) reduced
contrast and radiation exposure and (2) faster times to treatment,
which theoretically would lead to improved outcomes. Finally,
this tool might become complementary rather than competing
approaches. There were some limitations in this study. First was
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the retrospective nature and small sample size of this study.
Second, our analysis lacked independent external validation.
Hence, prospective studies are required with larger cohorts from
external multicenter validation. Last, the semiautomatic methods
to segment hemorrhage may be time-consuming. Future studies
could explore the role of artificial intelligence in providing a rapid
comprehensive segmentation (Zeng et al., 2018, 2021, 2022; Wu
et al., 2022).

In summary, the NECT-based radiomics nomogram was
developed and validated in this study, which provides a valuable
tool for the individualized risk prediction of VMH in patients
with ICH. As this information is not assessable by human
eyes, the proposed approach can be used as a supportive
tool to improve the radiologist’s diagnostic decision. Radiomics
nomogram, as a non-invasive and quantitative method, may
serve as a promising tool to complement the conventional
procedures for the clinical decision-making process in future
large-scale applications.
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