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Quantitative susceptibility mapping (QSM) aims to evaluate the distribution of

magnetic susceptibility from magnetic resonance phase measurements by solving the

ill-conditioned dipole inversion problem. Removing the artifacts and preserving the

anisotropy of tissue susceptibility simultaneously is still a challenge in QSM. To deal

with this issue, a novel k-QSM network is proposed to resolve dipole inversion issues

in QSM reconstruction. The k-QSM network converts the results obtained by truncated

k-space division (TKD) into the Fourier domain as inputs. After passing through several

convolutional and residual blocks, the ill-posed signals of TKD are corrected by making

the network output close to the calculation of susceptibility through multiple orientation

sampling (COSMOS)-labeled QSM. To evaluate the superiority of k-QSM, comparisons

with several state-of-the-art methods are performed in terms of QSM artifacts removing,

anisotropy preserving, generalization ability, and clinical applications. Compared to

existing methods, the k-QSM achieves a 22.31% lower normalized root mean square

error, 10.30% higher peak signal-to-noise ratio (PSNR), 33.10% lower high-frequency

error norm, and 1.06% higher structural similarity. In addition, the orientation-dependent

susceptibility variation obtained by k-QSM is significant, verifying that k-QSM has the

ability to preserve susceptibility anisotropy. When the trained models are tested on the

dataset from different centers, our k-QSM shows a strong generalization ability with

the highest PSNR. Moreover, by comparing the susceptibility maps between healthy

controls and drug addicts with different methods, we found the proposed k-QSM is more

sensitive to the susceptibility abnormality in the patients. The proposed k-QSM method

learns less—only to fix the ill-posed signals of TKD, but infers more—both COSMOS-like

and anisotropy-preserving QSM results. Its generalization ability and great sensitivity to

susceptibility changes can make it a potential method for distinguishing some diseases.
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drug addiction
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1. INTRODUCTION

Quantitative susceptibility mapping (QSM) is a magnetic
resonance imaging (MRI) technique that measures magnetic
susceptibility values in tissue from MRI phase measurements
(Wang and Liu, 2014; Haacke et al., 2015). Phase values can
reveal the sensitivity of tissues to a static magnetic field.
The sensitivity is determined by magnetic susceptibility, whose
contributors include biometals and molecules, for example,
calcium, iron, myelin, and lipids (Feng et al., 2021). Tissue
susceptibility is also a significant biomarker in pathological
analysis. QSM has shown great potential for studying a number
of neurodegenerative diseases, such as multiple sclerosis (MS)
(Langkammer et al., 2013; Chen et al., 2014), Alzheimer’s
disease (AD) (Acosta-Cabronero et al., 2013; Ayton et al.,
2017), intracranial hemorrhage (IH) (Ayton et al., 2017), and
Parkinson’s disease (PD) (van Bergen et al., 2015). However, QSM
reconstruction is non-trivial and requires several processing
steps involving phase unwrapping (Abdul-Rahman et al., 2007),
background field removal (Schweser et al., 2011; Zhou et al.,
2014), and dipole inversion, which is an ill-conditioned problem
and a source of streaking artifacts (Salomir et al., 2003) due to
the singularity in the dipole kernel and the limitation of phase
measurements in multiple orientations (Deistung et al., 2016).

Different strategies have been proposed to process dipole
inversion using additional measurements or numerical strategies.
Truncated k-space division (TKD) (Shmueli et al., 2009)
calculates susceptibility directly in k-space. It is uncomplicated,
but finding an appropriate truncate value is challenging due to
the susceptibility values and artifact reduction. The calculation of
susceptibility through multiple orientation sampling (COSMOS)
(Liu et al., 2008) is a high-fidelity approach to generate
susceptibility maps and is regarded as the gold standard
for QSM reconstruction. COSMOS, however, is not patient-
friendly for clinical implementation because of the acquisition
of at least three different orientations. It assumes isotropic
magnetic susceptibility and contains little information regarding
anisotropic tissue properties (Lee et al., 2010; Li W. et al., 2012;
Wharton and Bowtell, 2012). Additionally, the dipole inversion
problem can be solved in a spatial domain by virtue of priori
information and optimum solutions, such as MEDI (Liu et al.,
2011), iLSQR (Li et al., 2015), and STAR-QSM (Wei et al., 2015),
which only obtain the numerical solution of the susceptibility
value, require fine-tuned parameters, and suffer from artifacts or
oversmoothing.

In recent years, deep-learning-based QSM algorithms have
shown the ability to approximate dipole inversion and generate
high-quality QSM reconstructions with less time consumption
(Jin et al., 2017). Yoon et al. (2018) proposed QSMnet
to train a 3D U-Net Ronneberger et al. (2015) to infer
high-quality COSMOS QSM from single orientation scanning
tissue phase data. Its successor QSMnet+ improved the
generalization performance by data augmentation to surmount
the underestimation of high susceptibility values in the brain
(Jung et al., 2020). Instead of training in vivo data, it can be
trained on synthetic data, as indicated by DeepQSM (Bollmann
et al., 2019). Chen et al. (2020) advocated QSMGAN, a

generative adversarial network, utilizing the power of adversarial
learning for QSM reconstruction. Lai et al. (2020) presented
a learned proximal convolutional neural network (LP-CNN)
to perform dipole inversion in an iterative proximal gradient
descent fashion. Gao et al. (2020) proposed an improved U-Net
framework, namely xQSM, for dipole inversion by incorporating
octave convolution (OctConv) (Chen et al., 2019) layers. Feng
et al. (2021) proposed an STI-based deep learning architecture for
single-orientation QSM, referred to as MoDL-QSM, which can
preserve the nature of anisotropicmagnetic susceptibility in brain
white matter (WM). All of these deep-learning-based methods
are either anisotropy free because of being COSMOS-labeled or
lack of accurate susceptibility values for being numerical QSM-
labeled, for example, STAR-QSM. In addition, all these models
trained for dipole inversion are in spatial space instead of k-space
directly, which means they have to learn the entire field-magnetic
relationship and, thus, may result in more error accumulation.

In this study, a deep convolutional neural network (DCNN)
(Jin et al., 2017) network, called k-QSM, is proposed to resolve
the QSM dipole inversion problem learned in the Fourier domain
(or k-space), with the aim to reconstruct COSMOS-like QSM
while maintaining magnetic susceptibility anisotropy in WM.
The k-QSM intended to fix the ill-posed signals of TKD and
retained numerous correct signals simultaneously, which allows
us to learn less—only to fix the ill-posed signals of TKD, but
to infer more—both COSMOS-like and anisotropy-preserving
QSM results.

2. MATERIALS AND METHODS

2.1. Theory of QSM Dipole Inversion
Under the effect of an external main magnetic field, the varying
susceptibility distribution(χ) influences the local magnetic field
due to the whirling electrons in MRI. As shown from Maxwell
magnetostatic equations and the Lorentz correction for media
effects, the susceptibility distribution alters the local field along
the uniform magnetic field (Marques and Bowtell, 2005),
conforming to the following equation:

δB (Er) =
1

4π

∫∫∫

χ
(

Er ′
) 3 cos2 α − 1

|Er ′ − Er|3
d3Er ′ =

3 cos2 α − 1

4π |Er|3
⊗ χ (Er)

(1)
where Er is the spatial coordinate, α is the angle between the
applied field and Er ′ − Er, δB(Er) = [B(Er) − B0]/B0 represents the
relative difference of the magnetic field, B is the local magnetic
field component along the main magnetic field (Li and Leigh,
2004), and⊗ denotes the 3D convolution operator.

In the Fourier domain, this convolution relationship can be
simplified as a point-wise multiplication with a dipole kernel
(Salomir et al., 2003):

1B
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where 1B and X are the Fourier transforms of δB and χ ,
respectively, Ek is the k-space coordinate of Er, k is the magnitude

of Ek, D(Ek) =1/3 − k2p/k
2 is the dipole kernel, and kp = Ek · EB0 is
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the projection of Ek onto the direction of the main magnetic field.
EB0 is the main magnetic field orientation (B0 vector).
To calculate X, a direct point-wise division has been proposed

(Marques and Bowtell, 2005) but is challenging in practice,
requiring calculation of (1/3−k2p/k

2)−1, which is ill-conditioned
around the zeros on two conical surfaces at approximately 54.7◦

from the main magnetic field (Liu et al., 2008). Numerous
traditional methods have been proposed to solve this ill-
conditioned problem, among which only TKD and COSMOS
are analytical solutions and have been evaluated in k-space. TKD
measures QSM by:

XTKDthr

(
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)

=
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D
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where thr is the truncated value chosen to achieve a reasonable
artifact level (Shmueli et al., 2009). COSMOS determines the
susceptibility value using multiple measurements from multiple
sampling orientations at a given location in the Fourier domain

X(Ek) (Liu et al., 2008):
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When n ≥ 3, the above criterion can be fulfilled for every point
in the Fourier domain, which has been proven (Liu et al., 2008).
In this study, the following equation is used to calculate the
COSMOS QSM:

XCOSMOS(Ek) =

∑n
i=1 1Bi · Di(Ek)
∑n

i=1 D
2
i (
Ek)

. (5)

Figure 1 illustrates the difference between TKD and COSMOS
in k-space, which shows extremely high signals of XTKD (blue

arrows) around D(Ek) ≈ 0 (green arrows). This causes
the streaking artifacts in the TKD QSM. The original paper
suggested thr = 0.2 to reduce noise amplification and streaking
artifacts (Shmueli et al., 2009) but resulted in underestimating
susceptibility values (red arrows in Figure 3). Inspired by
the difference between TKD and COSMOS, the existence of
problematic values around D(Ek) ≈ 0, a deep-learning method
is proposed to restore the ill-posed values.

2.2. k-QSM Deep Learning Architecture
The architecture of the k-QSM is illustrated in Figure 2. The
model takes the B0 vector and magnetic field maps as input.
The B0 vector is used to generate the dipole kernel as a forward
operator using Equation (2). The field map is first converted
into QSM using the TKD method. A fast Fourier transform
(FFT) is then applied to the TKD QSM, resulting in real and
imaginary parts as two features, concatenated with a dipole kernel
as the input of the DCNN. The output of the DCNN consists of
two features—the real and imaginary parts—which are used to
calculate the QSM through inverse fast Fourier transform (iFFT).
The entire process can be expressed as follows:

{

c = iFFT (DCNNθ (D, XTKD))

QSM = abs (c) × sign(real(c))
(6)

where θ represents the learned parameters of the DCNN, in
which a ConvBlock (3D convolutional layer + LeakyReLU layer)
is first used to extract local features among adjacent signals in
the k-space map of TKD QSM, and eight ResBlocks (Kim et al.,
2016), composed of ConvBlock, Dropout layer, Convolutional
layer, and residual connection, are then used to extract global
features and avoid the vanishing gradient issue (He et al., 2016).
Finally, two consecutive ConvBlocks and a convolutional layer

FIGURE 1 | Comparison of the k-space data of Field Map, TKD QSM, calculation of susceptibility through multiple orientation sampling (COSMOS) QSM, and dipole

kernel in Y-Z and X-Y plane views (the X-Z plane is almost the same as the Y-Z plane) with green arrows indicating zeros in dipole kernel and blue arrows marking the

ill-posed signals due to the truncation.
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FIGURE 2 | The proposed k-QSM network architecture. The input of the model is B0 vector and the field map, and the output is quantitative susceptibility mapping

(QSM). The input and output of the deep convolutional neural network (DCNN) are both k-space data.

are implemented for fusing the feature maps to form the real
and imaginary parts of k-space map of reconstructed QSM.
Note that, in all the convolutional layers, the kernel size = 3,
stride = 1, and padding = 1. In the LeakyReLU layers, we
set negative slope = 0.1. In the ResBlocks, the introduction of
Dropout layer can prevent overfitting (Srivastava et al., 2014)
and enhance the generalization ability (Dahl et al., 2013) of our
network; therefore, we set drop rate = 0.2.

To train the k-QSM model, two loss functions were designed
to optimize the network over the training dataset. The first was
the mean squared error (MSE) to fix the ill-signals in TKD
compared to COSMOS as defined by:

lossMSE =
1

N

N
∑

i=1

∥

∥

∥
Xlabeli − X̂i

∥

∥

∥

2

2
(7)

where N is the size of the training set, Xlabeli is COSMOS in

k-space, ‖· ‖22 is the squared L2 norm, and X̂i is the output of
the DCNN. The second was the mean absolute error (MAE) or
L1 loss served as a consistency loss to maintain the consistency
between the output X̂i and the input XTKDi :

lossL1 =
1

N

N
∑

i=1

∣

∣

∣
XTKDi |cond − X̂i|cond

∣

∣

∣
(8)

where cond = abs(D) ≥ thr indicates the non-ill-posed regions
in a dipole kernel. The total loss was designed as the weighted
sum of the two losses:

lossT = ω1 · lossMSE + ω2 · lossL1 (9)

where the weights were determined as ω1 = 1 and ω2 = 1
empirically.

The k-QSM model parameters were optimized using the
Adam optimizer (Kingma and Ba, 2014) with an initial learning

rate of 10−4, which dropped to 90% every 25 epochs. The training
data were cropped patches of size 643 in the Fourier domain with
an overlap 50% between adjacent patches owing to the limitation
of GPU memory. The proposed network was implemented using
Python 3.7 and Pytorch 1.8.1, and trained onNVIDIATesla A100
GPU. The source codes have been published at https://github.
com/TyrionJ/k-QSM.

2.3. Data Acquisition and Processing
The proposed k-QSMmodel was trained and tested on data from
the F. M. Kirby Research Center for Functional Brain Imaging,
which provides 36 MR phase measurements at 7T Scanner
(Philips Achieva) with a voxel size of 1 × 1 × 1mm3 on eight
healthy subjects, including five orientations for four subjects with
FOV = 224 × 224 × 100mm3, TR = 28ms, TE1/1TE =
5/5ms, and 5 echoes; four orientations for three subjects with
FOV = 224 × 224 × 100mm3, TR = 45ms, TE1/1TE =
2/5ms, and 9 echoes; and four orientations for one subject with
FOV=224× 224× 100mm3, TR=45ms, TE1/1TE=2/5ms, and
16 echoes. Six subjects were used for training, and the training
dataset was also augmented by exerting different dipole kernels
on convolution with COSMOS QSM to obtain local field maps.
The remaining one subject was used for validation to prevent
overfitting, and the other one subject was used for performance
testing and measurement of magnetic susceptibility anisotropy.

To verify the robustness and generalization ability of the
trained k-QSMmodel, multiple healthy and pathological datasets
from different centers were used. Data on healthy subjects were
in vivo brain data provided for the 2016 QSM Reconstruction
Challenge (Langkammer et al., 2018), including 12 orientation
measurements at 3T scanner (Siemens) on one healthy subject
with voxel size = 1.06 × 1.06 × 1.06mm3, FOV = 170 × 170 ×
170mm3, TR = 25ms and TE = 35ms. Patient data were cited
from the study of Feng et al. (2021), including data of patients
with multiple sclerosis and intracranial hemorrhage.

Frontiers in Neuroscience | www.frontiersin.org 4 February 2022 | Volume 16 | Article 837721

https://github.com/TyrionJ/k-QSM
https://github.com/TyrionJ/k-QSM
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


He et al. k-QSM

To further evaluate our proposed method in practical
applications, we tested it on in-house dataset acquired from 15
patients with heroin addiction and 15 age- and sex-matched
healthy volunteers using a 3T GE scanner with voxel size =
1.06 × 1.06 × 1.06mm3, FOV = 256 × 256 × 136mm3,
TR = 28ms, TE1/1TE = 3.276/2.352ms and 16 echoes. Signed
informed consent was obtained from all the participants. This
dataset was used to verify the variation in susceptibility among
different gray matter regions between heroin addicts and healthy
individuals. Multiple steps were required to preprocess phase
images, including Laplacian-based phase unwrapping (Schofield
and Zhu, 2003), brain extraction with FSL BET (Smith, 2002),
V-SHARP for background field removal (Özbay et al., 2017),
echo averaging, and conventional QSM reconstruction using the
STAR-QSM (Wei et al., 2015) pipeline. For region of interest
(ROI) analysis, registration was applied to all subjects according
to the automated anatomical labeling (AAL) template (Tzourio-
Mazoyer et al., 2002). Registration was first conducted on
magnitude images, generating transforms to move from moving
(QSM) to fixed (Atlas) images.

3. RESULTS

3.1. Performance of the k-QSM
Figure 3 displays the results and a comparison of the three
orthogonal planes with residual error maps. QSMnet+, LP-
CNN, and MoDL-QSM presented here were all retrained using
labels calculated from our training data. We denote k-QSMT

as training and testing with truncated value of T. The figure
shows that k-QSM0.1 and k-QSM0.2 share similar results even
though took different truncated values. Cyan arrows indicate
that the results of k-QSM show more high-frequency details of
the thalamus than those of QSMnet+, LP-CNN, and MoDL-
QSM, which are too smooth to reveal textures. In the occipital
lobe regions, outlined by cyan boxes, the results of k-QSM and
QSMnet+ illustrate more COSMOS-like folds in detail than LP-
CNN and MoDL-QSM. Although TKD and STAR-QSM can also
measure the details to some degree, the results are accompanied
by numerous unacceptable streak artifacts, marked by yellow
arrows. Briefly, k-QSM shows the least residual errors regarding
COSMOS among the QSM reconstruction methods. It achieves a
balance of artifact reduction and detail measurement, and more
COSMOS-like details and susceptibility contrasts than other
methods.

Table 1 gives the results of the proposed k-QSM and other
methods in terms of quantitative metrics of peak signal-to-noise
ratio (PSNR), normalized root mean square error (NRMSE),
high-frequency error norm (HFEN), and structural similarity
(SSIM). For all criteria, k-QSM0.1 shows better performance than
the other methods with the lowest NRMSE (38.65%), the highest
PSNR (42.08 dB), the second lowest HFEN (29.53%), and the
highest SSIM (99.40%). Compared to the best previous method—
MoDL-QSM—the k-QSM achieves a 22.31% lower NRMSE,
10.30% higher PSNR, 33.10% lower HFEN, and 1.06% higher
SSIM. Besides, the performances of k-QSM0.1 and k-QSM0.2 stay
close.

FIGURE 3 | Three orthogonal views of quantitative susceptibility mapping (QSM) reconstruction (average of five orientation samplings) using different methods on data

from the FM Kirby Research Center. The k-QSM result shows more details and textures (cyan arrows and boxes) than other deep learning methods. Truncated

k-space division (TKD) (thr = 0.2) and STAR-QSM can reconstruct the details but with insufferable streak artifacts (yellow arrows). Red arrows mark lower

susceptibility of TKD than COSMOS. Green arrows indicate artifacts in residual error maps.
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To verify the effect of consistency loss, we conducted
experiment on TKD and k-QSM in the non-ill-posed regions of
dipole kernel and the results are shown in Figure 4. There are
a majority of signals (cyan arrows) of k-QSM results closer to

TABLE 1 | Comparison of quantitative performance metrics on results from

different quantitative susceptibility mapping (QSM) reconstruction methods

referenced to calculation of susceptibility through multiple orientation sampling

(COSMOS) on data from the FM Kirby Research Center.

Methods NRMSE (%) PSNR (dB) HFEN (%) SSIM (%)

TKD 70.26 34.11 111.70 96.00

STAR-QSM 48.62 36.95 63.07 97.64

QSMnet+ 48.37 39.41 49.97 96.94

LP-CNN 54.17 38.22 50.25 98.32

MoDL-QSM 49.75 38.15 44.14 98.36

k-QSM0.1 38.65 42.08 29.53 99.40

k-QSM0.2 39.35 41.92 29.29 99.38

Bold values indicate the best performance metrics.

those of TKD in the non-ill-posed areas as shown in Figure 4A,
whereas some differences exist on the boundaries (red arrows).
Figure 4B displays TKD and k-QSM results in the spatial domain
from non-ill-posed signals. The results of k-QSM show less streak
artifacts than TKD.

3.2. Magnetic Susceptibility Anisotropy in
White Matter
QSMoriginates fromMRI phasemeasurements, which have been
found to depend on the orientation of fibers with respect to
the main magnetic field (Denk et al., 2011). These effects can
be ascribed to the orientation-dependent magnetic susceptibility
anisotropy (MSA) (Wisnieff et al., 2013). Thus, it is appropriate
for a QSM reconstruction method to preserve the MSA of brain
tissues in theWM. Following Li X. et al. (2012), deepWM regions
including the posterior limb of the internal capsule (PLIC) and
posterior thalamic radiation (PTR) were selected to verify that
the proposed k-QSM has the ability to preserve the MSA inWM.

Figure 5 illustrates the comparison of the reconstructed QSM
in five head orientations using the TKD, QSMnet+, MoDL-QSM,

FIGURE 4 | Comparison on signals of k-QSM output and truncated k-space division (TKD) in non-ill-posed regions with error residual views. (A) The signals in the

Fourier domain, with cyan arrows indicating the similarity between TKD and k-QSM, and red arrows marking the differences around the boundaries. (B) The spatial

domain data of (A).
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FIGURE 5 | Axial views of quantitative susceptibility mapping (QSM) reconstructed from the same subject in five head orientations. Posterior limb of the internal

capsule (PLIC) (red) and posterior thalamic radiation (PTR) (blue) are marked in calculation of susceptibility through multiple orientation sampling (COSMOS). Green,

red, and blue arrows indicate the susceptibility anisotropy in white matter, and yellow arrows reveal the anisotropy free regions. Truncated k-space division (TKD)

truncated value is 0.2.

and k-QSM methods. QSMnet+ and MoDL-QSM were tested
using the pre-trained model provided by the authors to evaluate
the ability to preserve theMSA of PLIC and PTR regions (marked
in red and blue, respectively, in the COSMOS result outlined by
the cyan box). The results of TKD, MoDL-QSM, and k-QSM0.1

show susceptibility variation in five orientations in PLIC and
PTR, and the results of k-QSM0.2 show those only in PLIC. Red
arrows indicate lower susceptibility values for PLIC and PTR
than those marked by green arrows. Blue arrows indicate lower
susceptibility values for PLIC than green arrows. Yellow arrows
reveal the visually indistinguishable consistent susceptibility of
PLIC and PTR in five orientations reconstructed by QSMnet+.

Table 2 shows the p-values obtained with various statistical
tests, Levene (Brown and Forsythe, 1974), ANOVA (Sthle
and Wold, 1989), and Kruskal–Wallis (KW) test (McKight
and Najab, 2010), which are used to verify significantly
different susceptibility variations of QSM reconstruction in five
orientations by each method in regions of PLIC and PTR, as
marked in Figure 5. The Levene test verifies the null hypothesis
that all input samples are from populations with equal variances,
which is required by ANOVA. The ANOVA test is valid if the
result of Levene test is not significantly different (p > 0.05);
otherwise, the KW test is valid, and the valid p-values are shown
in bold. It can be summarized that the results of QSMnet+ were
significantly the same in the five orientations tested by ANOVA

TABLE 2 | Comparison of p-values of Leven, ANOVA, and Kruskal–Wallis (KW)

tests on the results of five orientations using several methods in regions of

posterior limb of the internal capsule (PLIC) and posterior thalamic radiation (PTR)

of white matter.

PLIC PTR

Methods Levene ANOVA KW Levene ANOVA KW

TKD 0.016 6.7× 10-32 6.8 × 10−21 6.5× 10-5 4.5× 10-6 2.5 × 10−6

QSMnet+ 0.011 0.211 0.233 0.81 0.22 0.21

MoDL-QSM 0.0015 6.3× 10-4 2.8 × 10−5 0.61 0.0053 0.0064

k-QSM0.1 0.0075 2.6× 10-6 5.4 × 10−6 0.51 0.012 0.034

k-QSM0.2 0.028 0.0018 0.0049 0.81 0.14 0.19

Bold numbers indicate valid p-values.

in PLIC (p = 0.23) and KW in PTR (p = 0.21), and those
of TKD, MoDL-QSM, and k-QSM0.1 were significantly different
(p < 0.05) in PLIC and PTR. The results of k-QSM0.2 were only
significantly different (p = 0.0049) in PLIC.

All these results show that the proposed k-QSM0.1 can
preserve the MSA as well as TKD and MoDL-QSM, as the results
of these methods display orientation-dependent susceptibility
variation in the PLIC and PTR regions of WM, whereas
QSMnet+ loses the MSA during QSM reconstruction and k-
QSM0.2 loses parts of the MSA.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2022 | Volume 16 | Article 837721

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


He et al. k-QSM

3.3. Generalization of the k-QSM
The generalization ability of a deep learning model on different
datasets is crucial to its practical application. The trained k-
QSM model was tested for the generalization ability on the data
of healthy subjects (2016 QSM Reconstruction Challenge) and
patients with MS and hemorrhage (cited from the study of Feng
et al., 2021), which were not used for training.

Figure 6 displays the results of different deep-learning-based
QSM reconstruction methods tested on the data of healthy
individuals from three orthogonal views. The k-QSM0.1 achieves
better results than k-QSM0.2. The proposed k-QSM outperforms

the others in visualizing zoomed-in details (cyan boxes) and error
maps (red boxes) related to COSMOS, with red arrows indicating
lower errors of the k-QSM0.1 result and cyan arrows marking
stronger contrast and richer details, which are more COSMOS
like. Besides, the k-QSM0.1 achieves almost the best performance
metrics with PSNR = 42.51 dB and SSIM = 98.06%, which are
14.0% better than those of MoDL-QSM, 1.4% better than those
of LP-CNN, and 4.7% better than those of QSMnet+ on average.

Figure 7 shows that k-QSM0.1 and k-QSM0.2 produce a
similar variation tendency of susceptibility values along the
line profiles crossing the external capsule (EC), putamen (Put),

FIGURE 6 | Three orthogonal views of reconstructed quantitative susceptibility mapping (QSM) (average of 12 orientation samplings) using different deep-learning

methods, with zoomed-in details (cyan boxes) and errors (red boxes), and global peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) with respect to

calculation of susceptibility through multiple orientation sampling (COSMOS) reported below. Red arrows mark the lower error of k-QSM and cyan arrows indicate

richer details.

FIGURE 7 | The profiles of susceptibility values calculated along the lines outlined in Figure 5 crossing external capsule (EC), putamen (Put), globus pallidus (GP), and

anterior limb of internal capsule (ALIC) are plotted in the chart with color regions enclosed by calculation of susceptibility through multiple orientation sampling

(COSMOS) and the axis.
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globus pallidus (GP), and anterior limb of internal capsule
(ALIC) compared to COSMOS, but k-QSM0.2 underestimates
susceptibility in putamen and globus pallidus (24.6% lower
than COSMOS on average). Meanwhile, QSMnet+ underrates
susceptibility values (34.0% lower) in the four regions and
MoDL-QSM undervalues that in Put (67.6% lower) and GP
(47.5% lower). In contrast, the LP-CNN overestimates the
susceptibility with values 26.4% higher than that of COSMOS.

Statistical metrics are shown in Table 3 of the MAE (Willmott
andMatsuura, 2005), RMSE, and Pearson’s correlation coefficient
(PCC) between a deep-learning method and COSMOS. Our k-
QSM0.1 achieves the best performance with MAE and RMSE
values 75.68% better than MoDL-QSM, 50.74% better than LP-
CNN, and 62.27% better than QSMnet+ on average, and with
PCC values 28.57% better than MoDL-QSM, 2.06% better than
LP-CNN, and 1.02% better than QSMnet+.

Figure 8 shows the results of TKD, STAR-QSM, QSMnet+,
MoDL-QSM, and k-QSM on the data of patients with MS and

TABLE 3 | Mean absolute error (MAE), root mean square error (RMSE), and

Pearson’s correlation coefficient (PCC) of line profiles outlined in Figure 6 with

respect to calculation of susceptibility through multiple orientation sampling

(COSMOS).

Methods QSMnet+ LP-CNN MoDL-QSM k-QSM0.1 k-QSM0.2

MAE 0.022 0.017 0.033 0.0078 0.015

RMSE 0.025 0.019 0.040 0.010 0.018

PCC 0.98 0.97 0.77 0.99 0.99

Bold values indicate the best performance metrics.

hemorrhage. All these QSM reconstruction methods showed
the ability to detect the lesion regions of MS (red boxes) and
hemorrhage (blue boxes). In addition, the k-QSM (both 0.1
and 0.2) and STAR-QSM can reconstruct a larger range of
susceptibility value variations and richer details (marked by
cyan arrows) than QSMnet+ and MoDL-QSM, whose results
are too smooth to capture high-frequency information, which
can be verified by the relatively small standard deviation
values. Suffering from artifacts, the results of TKD showed a
much higher standard deviation. By holding a moderate level
of standard deviation (17.94 ± 4.72% lower than TKD and
15.25 ± 12.73% higher than MoDL-QSM), the proposed k-QSM
achieves a balance betweenmeasuring high-frequency details and
suppressing artifacts effectively.

3.4. Practical Application of the k-QSM
To further evaluate our proposed method for clinical
applications, we compare different QSM reconstruction
methods on in-house dataset to explore whether the QSM
reconstructed by different methods can distinguish drug addicts
(DA) and healthy normal controls (NC). Figure 9A displays
six selected regions in 3D views, and Figure 9B illustrates
the mean±standard deviation susceptibility values of each
region calculated using k-QSM0.1, STAR-QSM, and MoDL-
QSM methods, and p-values of the t-test for the means of two
independent samples.

The results of k-QSM0.1 showed significant differences
between the NC and DA in all six ROIs with 56.93% deficit
(p = 0.0075) in the insular, 36.25% decline (p = 0.029) in
the hippocampus, 77.60% reduction (p = 0.0075) in the STC,

FIGURE 8 | Axial views of quantitative susceptibility mapping (QSM) reconstructed using truncated k-space division (TKD) (thr = 0.2), STAR-QSM, QSMnet+,

MoDL-QSM, and k-QSM on patients with MS (red boxes) and hemorrhage (blue boxes), and standard deviation (STD) values of the corresponding boxes are reported

below. Cyan arrows mark richer details in the results of k-QSM and STAR-QSM.
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FIGURE 9 | ROI analysis of the results of 15 healthy normal controls (NC) and 15 drug addicts (DA) using the k-QSM, STAR-QSM, and MoDL-QSM methods. (A) The

selected quantitative susceptibility mapping (QSM) segmented region of interests (ROIs). (B) Susceptibility values of the ROIs, presented as mean ± standard

deviation with ⋆⋆ denoting extremely significant (p < 0.01) and ⋆ sufficiently significant (0.01 ≤ p < 0.05) difference between mean values of the groups.

51.62% shrinkage (p = 0.0014) in the ACC, 52.62% decrease
(p = 0.0059) in the CN, and 119.54% increase (p = 0.025)
in the putamen. Meanwhile, the results of STAR-QSM showed
significant differences in insular (p = 0.00039), STC (p = 0.020),
ACC (p = 0.00070), and CN (p = 0.0095), while the results
of MoDL-QSM showed significant differences in insular (p =
0.021), hippocampus (p = 0.0058), ACC (p = 0.012), and CN
(p = 0.018). Note that the magnetic susceptibility level should be
compared with the absolute value.

There are differences among the results of different methods
on the same data in one brain region. For the NC group, the
results of k-QSM0.1 were significantly different from those of
STAR-QSM only in the ACC (p = 0.017). For the DA group,
only in the hippocampus dose k-QSM0.1 showed no significant
difference (p = 0.66) with STAR-QSM, which means that the
above methods show different performances on the data of drug
addicts. As previously mentioned, the results of MoDL-QSM are
too smooth to reveal richer details, with the standard deviation
10.52% less than the results of k-QSM0.1 and STAR-QSM on
average.

According to previous studies (Franklin et al., 2002; Matochik
et al., 2003; Thompson et al., 2004; Avants et al., 2007; Groman
et al., 2013), the proposed k-QSM can detect the expected
magnetic susceptibility changes between healthy subjects and
drug addicts in specific brain regions. This is discussed in the next
section.

4. DISCUSSION

In this study, a deep-learning method, k-QSM, was developed to
perform ill-conditioned dipole inversion of QSM reconstruction.
The proposed k-QSMmeasures high-quality COSMOS-like QSM
(Figure 3 and Table 1) and shows the ability to preserve the
anisotropy of tissue susceptibility in WM (Figure 5). It achieves
better performance with truncated value of 0.1 than 0.2 regarding
the ability of generalization and anisotropy preserving. The
trained models of k-QSM and other deep-learning methods were
tested on the datasets acquired from different centers, and the
trained k-QSM shows the potential of generalization, achieving a
balance between reconstructing richer high-frequency details and
suppressing artifacts. The k-QSM can also detect the expected
variation in susceptibility from healthy to drug addicts in specific
regions of the brain.

The results of k-QSM (both 0.1 and 0.2) are the most
COSMOS-like with the lowest residual error, benefitting from the
following: (a) in the function of MSE loss, the k-QSM mainly
learns to fix ill-posed signals of TKD and retains a majority of
correct signals of TKD with the action of L1 loss in non-ill-posed
regions; (b) considering that the field-susceptibility relationship
is intimate in the Fourier domain, learning in the Fourier domain
can directly prevent correct signals from being confused, because
a value in the space domain is superposed from all signals
in the Fourier domain. Thus, if learned in the space domain,
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all signals in the Fourier domain are involved and a correct
signal can turn out to be improper. In addition, the methods
(QSMnet+, LP-CNN, and MoDL-QSM) trained in the space
domain have to calculate the model loss in the Fourier domain,
which may result in error accumulation. Thus, the proposed k-
QSM needs less to learn than previous deep-learning methods
and maintains numerous correct signals in TKD, so that the
k-QSM can reconstruct QSM with less residual errors.

The proposed k-QSM can preserve the MSA from MRI
phase measurements in WM as well as TKD, which calculates
QSM directly from phase measurements so that the MSA
is preserved (Figure 5). As mentioned above, the k-QSM
retains many correct signals from TKD, which comprise tissue
anisotropy information. Therefore, k-QSM can also preserve
the MSA, although the training process takes COSMOS as a
label. As shown in Table 2, k-QSM0.1 preserves more MSA
than k-QSM0.2, because k-QSM0.1 keeps more signals from
TKD than k-QSM0.2. The previous COSMOS-labeled deep-
learning methods, for example, QSMnet+, cannot retain the
MSA information because COSMOS assumes isotropic magnetic
susceptibility (Lee et al., 2010; Li W. et al., 2012; Wharton and
Bowtell, 2012) and they learn to reconstruct COSMOS-like QSM
completely. The tissue MSA is reflected in different sampling
orientations. Meanwhile, MoDL-QSM takes susceptibility tensor
terms (χ13, χ23 and χ33) as labels to follow the susceptibility
tensor imaging (STI) physical model, and as a result the
MSA was preserved (Feng et al., 2021). Dmitriy et al. inferred
that the biological tissue structure anisotropy influenced the
calculation of susceptibility and the MSA of tissue in WM,
and the MSA provided a quantitative interpretation of data
from MR phase imaging of WM diseases (Yablonskiy and
Sukstanskii, 2017). Thus, the ability to maintain the MSA
of k-QSM is important for the clinicopathologic diagnosis of
WM diseases. Learn Less means that the k-QSM only learns
to fix the ill-posed signals in TKD around zero values of
the dipole kernel and Infer More indicates that the results
of k-QSM are both COSMOS-like and anisotropic in tissue
susceptibility.

Additionally, the proposed k-QSM demonstrates strong
generalization ability on datasets not used in training, including
healthy and patient datasets from different acquisition sites. The
healthy dataset was measured by 3T scanner (Siemens) and the
patient dataset included data of patients with multiple sclerosis
and hemorrhage acquired with a 3T GE HDxt MR scanner.
Even though the k-QSM model is trained on the 7T dataset,
it still works well on these 3T datasets. The utilization of the
dropout layer in the deep neural network makes it possible
for k-QSM to prevent overfitting (Srivastava et al., 2014) and
enhance the ability of generalization (Dahl et al., 2013). Besides,
as mentioned above, k-QSM keeps the correct signals in the
Fourier domain from TKD. In the meanwhile, k-QSM inherits
generalization ability from TKD, which works well for all datasets
as an analytical solution with numerous correct signals, and, thus,
k-QSM0.1 shows stronger generalization ability than k-QSM0.2.
What is more, the k-QSM method is trained in k-space directly,
and expresses the field–susceptibility relationship as Equation
(2) described, thus, the trained k-QSM model can be applied to
almost arbitrary dataset to process QSM dipole inversion.

Furthermore, the proposed k-QSM can also reconstruct QSM
on dataset of drug addiction and reveal the impairment of
drug administration through susceptibility changes in brain
tissues between DA and healthy NC groups. Consistent with
the reported decreases in gray matter concentration in the
anterior cingulate, superior temporal cortices and anteroventral
insular of cocaine abusers (Franklin et al., 2002; Matochik et al.,
2003), smaller hippocampal volumes of MA abusers (Thompson
et al., 2004), and smaller caudate volumes of cocaine abusers
(Avants et al., 2007), the k-QSM detected the debilitation of
susceptibility in the insular, hippocampus, STC, ACC, and CN,
as shown in Figure 9. One potential interpretation is that a
reduction in gray matter concentration or volume can decrease
the level of magnetic susceptibility. Besides, the k-QSM can
observe the increase of susceptibility in putamen in accord with
the research of methamphetamine-induced increases in putamen
gray matter (Groman et al., 2013). Thus, k-QSM is more sensitive
to the susceptibility change caused by drug addiction, which can
provide a potential biomarker for evaluating different treatment
strategies for drug addicts.

Although the proposed k-QSM can measure COSMOS-like
susceptibility distribution with rich high-frequency details and
immensely suppress artifacts compared to TKD, there are still
a few artifacts left. One potential interpretation is that because
trained in the Fourier domain, the k-QSM cannot remove the
artifacts explicitly in the spatial domain. In addition, the training
of COSMOS labels still suffers from artifacts because sub-optimal
orientations cannot provide sufficient conditions to stabilize the
inversion problem. Further studies could design more elaborate
loss functions, such as gradient loss in the spatial domain, to
improve the k-QSM, but that would be concerning because the
utilization of gradient loss function might smoothen the results
and lead to loss of anisotropy of tissue susceptibility. Besides,
we only conducted two truncated values to verify the learning
performance of k-QSM, more thresholds should be tested to seek
for the optimal truncated value in k-QSMmethod.
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