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Spiking Neural Network Training
Sen Lu and Abhronil Sengupta*

School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, United States

Neuromorphic computing algorithms based on Spiking Neural Networks (SNNs) are

evolving to be a disruptive technology driving machine learning research. The overarching

goal of this work is to develop a structured algorithmic framework for SNN training

that optimizes unique SNN-specific properties like neuron spiking threshold using

neuroevolution as a feedback strategy. We provide extensive results for this hybrid

bio-inspired training strategy and show that such a feedback-based learning approach

leads to explainable neuromorphic systems that adapt to the specific underlying

application. Our analysis reveals 53.8, 28.8, and 28.2% latency improvement for the

neuroevolution-based SNN training strategy on CIFAR-10, CIFAR-100, and ImageNet

datasets, respectively in contrast to state-of-the-art conversion based approaches.

The proposed algorithm can be easily extended to other application domains like

image classification in presence of adversarial attacks where 43.2 and 27.9% latency

improvements were observed on CIFAR-10 and CIFAR-100 datasets, respectively.

Keywords: Spiking Neural Networks, neuroevolution, adversarial attack, neuromorphic computing, hybrid training

1. INTRODUCTION

Spiking Neural Network (SNN) based next-generation brain-inspired computational paradigms
are emerging to be a disruptive technology driving machine learning research due to its unique
temporal, event-driven behavior. SNN computing models are driven by the fact that biological
neurons process information temporally and the computation is triggered by sparse events or
spikes transmitted from fan-in neurons. Recent work has demonstrated that event-driven SNNs can
result in a significant reduction of power consumption and communication overhead in hardware
implementations of Artificial Intelligence (AI) platforms by exploiting “dynamic” sparsity in neural
activations (Merolla et al., 2014; Davies et al., 2018). In addition to event-driven computing in the
network itself, such a computing framework is an ideal fit for the emerging market of low-power,
low-latency event-driven sensors (Gallego et al., 2019) that capture spatio-temporal information in
the spiking domain. Such an end-to-end pipeline across the stack from sensors to the hardware and
computational primitives enables us to truly leverage advantages from event-driven computation
and communication.

While the true potential of SNNs is expected to be demonstrated on spatio-temporal
application drivers triggered by sparse events (Gallego et al., 2019; Mahapatra et al., 2020)
by leveraging its temporal processing capability (Shrestha and Orchard, 2018; Neftci et al.,
2019), significant research has been also performed to establish its near-term efficacy on
standard static recognition tasks (Rueckauer et al., 2017; Sengupta et al., 2019; Wu et al.,
2019; Lu and Sengupta, 2020; Rathi and Roy, 2020; Rathi et al., 2020; Deng and Gu,
2021), routinely performed by conventional deep learning methods [referred to as Analog
Neural Networks (ANNs) (Diehl et al., 2015), hereafter]. The vast majority of works in this
domain have focused on rate encoding frameworks (Diehl et al., 2015) where the operation
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of the ANN is distributed as binary information over time in
the SNN, resulting in a significant reduction of peak power
consumption (Singh et al., 2020). To achieve supervised SNN
training, two competing approaches are usually adopted:
(i) ANN-SNN conversion: In this scenario, an ANN is trained
with specific constraints (Diehl et al., 2015; Rueckauer et al.,
2017; Sengupta et al., 2019; Lu and Sengupta, 2020) and
subsequently converted to an SNN for event-driven inference
on neuromorphic hardware. The conversion process is enabled
by the equivalence of Rectified Linear Unit (ReLU) functionality
of ANN neurons to the operation of an Integrate-Fire (IF)
spiking neuron. The method takes advantage of standard ANN
backpropagation techniques like stochastic gradient descent but
is limited by the baseline ANN accuracy. Recent works have been
directed at minimizing the accuracy loss during the conversion
process (Lu and Sengupta, 2020; Deng and Gu, 2021) and
have reported competitive accuracies in large-scale machine
learning tasks.
(ii) Direct SNN training: Direct SNN training by adopting
backpropagation through time (BPTT) has also proven successful
recently, albeit in simpler image classification tasks. Gradient
descent is usually performed in SNNs by approximating the
spiking neuron operation by surrogate gradients to avoid the
discontinuity in the neuron transfer function due to discrete
spiking behavior (Shrestha andOrchard, 2018; Neftci et al., 2019).
While SNN training from scratch would probably benefit from
temporal processing in neuromorphic chips, current near-term
GPU-enabled training suffers from limited scalability due to
exploding memory requirements for BPTT.

Relative advantages and disadvantages of the two approaches
are still being explored. Initial work has suggested that direct
SNN training from scratch (Lee et al., 2020) or a hybrid method
of fine-tuning an ANN-SNN converted network for a few epochs
through BPTT (Rathi et al., 2020) can significantly reduce the
SNN inference latency. However, recent approaches have shown
that significant latency reduction can be also achieved through
simple design-time and run-time optimizations in the ANN-
SNN conversion process as well (Lu and Sengupta, 2020). This is
also intuitive since the application drivers for image classification
tasks are static and do not involve temporal information.
Also, gradient descent is utilized to minimize the classification
error in the rate encoding framework for both scenarios and
not the inference latency. The ANN-SNN conversion process
essentially abstracts the SNN operation in a time-averaged
fashion during the training process without exploiting precise
timing information for gradient descent.

This article is an attempt to develop a structured algorithmic
framework for the ANN-SNN conversion process. The key
parameter driving the event-driven temporal behavior of neurons
in the SNN is the neuron threshold. A higher neuron threshold
is useful for distinguishability of temporal evidence integration
(Sengupta et al., 2019) and therefore translates to higher
accuracy. A higher threshold also causes the neurons to
spike less frequently thereby increasing the spiking sparsity
at the cost of increased latency. Inference latency (impacting
delay) and sparsity of the spike train (impacting power)
are key metrics governing the energy efficiency (delay ×
power) of SNNs implemented on neuromorphic hardware.

Hence, we can abstract the SNN network performance
(accuracy/latency/power/energy) to be a function of the neuron
thresholds in each layer of the network. It is worth mentioning
here that all neurons in a particular layer have the same threshold
to ensure consistent rate encoded information in each layer.
Previous works have mainly optimized neuron thresholds to
maximize accuracy (Sengupta et al., 2019) or adopt a sub-optimal
heuristic choice for all thresholds in the network to reduce
inference latency with minimal accuracy drop (Lu and Sengupta,
2020). However, different layers’ thresholds of a network may
have varying non-linear impact on the SNN efficiency metric
and a holistic singular choice for the entire network may not be
optimal. Further, the thresholds may also need to be re-tuned for
different efficiency metrics of choice. Driven by this observation,
we propose a hybrid training framework where a converted SNN
is optimized in tandem with a neuroevolutionary algorithm.
Once an ANN with appropriate constraints for conversion
has been trained, we optimize the layerwise threshold using a
neuroevolutionary algorithm. Neuroevolution optimized neural
networks is a growing topic of interest (Stanley et al., 2019)
guided by the notion that biological brains are an outcome of
natural evolution. It is worth mentioning here that our proposal
is not specific to the optimizer.We chose evolutionary algorithms
due to their simple gradient-free operation, parallelizability, and
ability to outperform reinforcement learning algorithms at scale
(Such et al., 2017; Stanley et al., 2019). The neuroevolution
process considers a space of possible candidate solutions (defined
by a set of layerwise neuron thresholds) and evaluates a cost
function (latency, accuracy, among others) by evaluating the
candidate SNN on a subset of the training set through the
evolution generations. The additional computing overhead due
to the hybrid approach is therefore driven by relatively cheaper
SNN inference runs. The main contributions of the article can be
summarized as:

(i) We present a simple automated framework to optimize
an SNN by a hybrid training process that does not suffer from
computationally expensive operations like BPTT.

(ii) We evaluate our approach with regards to SNN
inference latency improvements on static image classification
tasks and adversarial attack scenarios (CIFAR-10, CIFAR-100,
and ImageNet datasets). The framework can be easily extended
to involve hardware aware constraints as well like peak power or
energy consumption in specific layers.

(iii) We present design insights to interpret the optimized
SNN thresholds. For image classification and adversarial attack
scenarios, we obtain an interpretable understanding of the need
for layerwise SNN optimization.

2. RELATED WORKS

Hybrid SNN training: Prior work has considered hybrid
SNN training approaches (Lee et al., 2018, 2020; Rathi and
Roy, 2020; Rathi et al., 2020). Relevant to our approach,
Rathi and Roy (2020) considered training an ANN-SNN
converted spiking network through BPTT for a few epochs
to improve on inference latency. However, during the second
stage of BPTT training, gradient descent was performed not
only on the weights, but also on the neuron thresholds
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and additional leak parameters that were introduced in this
second training stage. The requirement of joint optimization
of weights and thresholds may not be necessary since
the ratio of the two governs the spiking neuron behavior
(Sengupta et al., 2019). Further, optimization of additional
leak parameters adds to the computational burden of SNN
BPTT. It is also unclear whether the superior SNN performance
is attributed primarily to a fine-tuned optimized threshold
or whether time-based information in training also plays
a role.

In contrast, our algorithm adopts a simplistic approach of
fine-tuning only the SNN thresholds to optimize the metric of
choice using neuroevolutionary algorithms. Neuroevolutionary
algorithms are easily parallelizable and the search parameter
space in our scenario is bounded by the number of network
layers and hence is not computationally expensive. The
search process also involves evaluation of the cost function
which is equivalent to the relatively cheaper SNN inference
simulations and does not suffer from the explosive computational
requirements of BPTT. The work also aims to serve as a
benchmark for static image classification tasks to address the
question of whether BPTT training from scratch or fine-
tuning adds significantly to the training process. We provide
results to substantiate that conversion techniques might produce
competitive SNNs in application drivers not exploiting temporal
information.
Neuroevolution in SNN training: Evolutionary algorithms
have been used for training SNNs (Schuman et al., 2016,
2020; Elbrecht and Schuman, 2020) where the computational
unit (neuron/synapse) parameters and network architectures
have been optimized. A variety of techniques like EONS
(Schuman et al., 2020) and HyperNEAT (Elbrecht and Schuman,
2020) algorithms have been used to train the networks from
scratch. However, the techniques have been primarily evaluated
on simple machine learning tasks. Hence, the scalability
of the approaches remains unclear. Our work considers
a hybridized approach where a supervised conventional
SNN is optimized with a neuroevolutionary algorithm
depending on the cost function of choice (accuracy, latency,
among others), thereby leveraging the scalability of gradient
descent approaches.
Significance driven layerwise optimizations: There have been
a plethora of works recently in the deep learning community
on layerwise optimizations of different parameters based on
their significance to a relevant cost function. For instance,
bit widths of weights and activations per layer have been
optimized from computation requirement perspective (Garg
et al., 2019; Wang et al., 2019; Chakraborty et al., 2020a; Khan
et al., 2020; Panda, 2020). Distinct from prior methods, this
work explores significance-driven layerwise optimizations for
SNN training.

3. PRELIMINARIES

3.1. Spiking Neural Networks
Let us first consider the algorithmic formulation underpinning
ANN-SNN conversion (Rueckauer et al., 2017; Deng and Gu,

2021). In T timesteps, for an N-layer SNN converted by copying
the weights Wn from an ANN (where n ∈ N), suppose
that a particular neuron in the n-th layer at the t-th timestep
has membrane potential denoted by V t

n. When the membrane
potential is greater than the threshold Vthn, the neuron is reset
by subtracting Vthn from the potential. The membrane potential
dynamics of the subtractive IF neurons in response to the input
signal xtn for the n-th layer can be expressed as the following:

V t+1
n = V t

n +Wn ∗ x
t
n − Vthn ∗ 1V t

n>Vthn (1)

where, 1V t
n>Vthn is an indicator function defined as:

1V t
n>Vthn → {0, 1} =

{

1 if V t
n > Vthn

0 otherwise
(2)

As the neuron accumulates spikes over time, assuming V0
n = 0,

the membrane potential for a particular neuron of the n-th layer
can be expressed as:

VT
n =Wn ∗

T
∑

t=0

xtn − Vthn ∗

T
∑

t=0

1V t
n>Vthn (3)

In the rate encoding framework, the average magnitude of the

input spikes over T timesteps, x̂n =
∑T

t=0 x
t
n/T, represents the

equivalent SNN input activation for the n-th layer. Simplifying
Equation (3),

VT
n

T
=Wn ∗ x̂n −

Vthn

T
∗

T
∑

t=0

1V t
n>Vthn (4)

The average input spikes to the (n + 1)-th layer, x̂n+1, is the

summed indicator function
∑T

t=0 1V t
n>Vthn . Hence Equation (4)

can be rearranged as:

x̂n+1 =
Wn ∗ x̂n

Vthn/T
−

VT
n

Vthn
(5)

Assuming that the remaining VT
n will be less than the threshold

Vthn and will not result in a spike, the neuron transfer function
can be formulated with a clipping function as the following (Deng
and Gu, 2021):

x̂n+1 =
1

T
∗ clip

(⌊

Wn ∗ x̂n

Vthn/T

⌋

, 0,T

)

(6)

where, a clipping function clip(a, b, c) restricts the value a to
be minimally b or maximally c, and does not affect a’s value
when b ≤ a ≤ c. As shown in Equation (6), the output
of a layer is critically dependent on the threshold Vth of the
layer and is a bit discretized version of the ReLU functionality,
thereby enabling ANN-SNN conversion. It is worth mentioning
that this simplification of neuron transfer function may differ
slightly from the actual network simulation due to positive and
negative membrane potential cancelations (Deng and Gu, 2021)
or multiple neuron fan-in (Sengupta et al., 2019).
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3.2. Differential Evolution Algorithm
Differential Evolution (DE) is a parallel direct search method
that optimizes a solution iteratively through evolving candidate
solutions. Unlike other optimization techniques such as gradient
descent that requires the problem to be differentiable, DE can
be applied to noisy and discrete problems. DE starts with a
population P of initial candidate solutions (randomly initialized
or normally distributed around the preliminary solution). In each
iteration, the existing candidates are mutated and evaluated by
a cost function, and the best ones become members of the next
generation. The evolution of new solutions is achieved by two
operations, namely “mutation” and “crossover.”
(i) Mutation in DE algorithm refers to adding the weighted
difference between two candidates to the third. The mutation
process to obtain the i-th vector Evg+1 at generation g + 1 is
given by:

Evi,g+1 = Exr1,g +M × (Exr2,g − Exr3,g) (7)

where, Exr1,g is the r1-th vector of generation g, r1, r2, r3 ∈
{1, 2, .., P} are random indices in the population. M ∈ [0, 2] is
a real-valued hyper-parameter controlling the extent of mutation
in differential variation.
(ii) Crossover adds diversity by creating a trial vector Eui,g+1 with
problem dimension D at generation g + 1:

Eui,g+1 = [ui,g+1(1), ui,g+1(2), . . . , ui,g+1(D)] (8)

in which,

ui,g+1(j) =

{

vi,g+1(j) if [rand(j) ≤ C] or j = randInd(Evi,g+1)

xi,g(j) otherwise

(9)

where, j ∈ 1, 2, ...,D, ui,g+1(j) is the j-th element of the trial
vector Eui,g+1, rand(j) is a real-valued uniform random number
generator (RNG) outcome with the range [0, 1] evaluated at j-th
time; C is another real-valued hyper-parameter that controls the
extent of inheritance from the mutant vector Evi in the trial vector
Eui. randInd(Evi,g+1) randomly selects an index from the given
vector’s dimension 1, 2, ...,D and the condition after “or” enforces
that there is at least one element from Evi. The candidate solution
Eui,g+1 will be evaluated against Exi,g on the same cost function and
the one with the lower cost will be selected as the member of
(g + 1)-th generation. Considering that the DE solution takes G
generations to converge, the total number of function evaluations
(nfe) during the optimization process is therefore given by:

nfe = G× P (10)

In this work, we used the DE implementation by a Python-based
toolkit “SciPy” (Virtanen et al., 2020), which is based on the
algorithm outlined in Storn and Price (1997).

4. NEUROEVOLUTION GUIDED HYBRID
SNN TRAINING ALGORITHM

As discussed previously, our proposed neuroevolution optimized
SNN models are trained using a hybrid approach—(i) standard

ANN-SNN conversion (Lu and Sengupta, 2020) followed by
(ii) DE optimization of SNN neuron thresholds. The DE
optimization is driven by a cost-function evaluated on randomly
chosen subsets from the training set. The random shuffling of the
sub-dataset adds a regularization effect to the training process.
Next, we discuss our cost-function formulation for handling the
accuracy-latency tradeoff in standard image classification tasks.
We utilize a similar approach for adversarial attack scenarios on
the same dataset and show that the thresholds adapt to the new
cost-function, thereby showing the flexibility of the approach.
Finally, we also provide insights to explain the optimal threshold
choice. A detailed implementation of our proposed method is
shown in Algorithm 1.

4.1. Latency-Accuracy Tradeoff Driven
Optimization and Interpretibility
Our multi-objective DE cost-function consists of weighted
factors to optimize the latency of the SNN along with
the final accuracy. In particular, the latency is abstracted
by the timestep at which it reaches the highest gradient
in the accuracy-time variation function. The resulting costs
are scaled by hyperparameters (α,β , and γ ) and then
linearly summed up. To summarize, the cost function is
as follows:

Cost = α × J + β × [1−max(∇)]+ γ × (1− Acc[T]) (11)

where, J is argmax
t
{∇Acc(t)}, the timestep at which the

SNN reaches the highest gradient in accuracy max(∇) with
respect to time. The maximal gradient magnitude is also
added to the cost function to guide solutions toward models
with sharper accuracy-timestep transitions such that latency
required to reach a specific accuracy is minimized. We
observed that this was critical to achieving the latency-accuracy
tradeoff. Finally, the cost function also includes Acc[T], the
final accuracy of the model at timestep T (a sufficiently
long time window for inference) where Acc[] is a function
of accuracy against time. It is worth reiterating here that
the accuracy is evaluated over randomly chosen subsets of
the training set for each candidate solution. The impact of
each individual component in the cost function is depicted
in Figure 1.

Figure 2A depicts the optimized threshold [expressed as a
percentile of the maximum ANN activation (Lu and Sengupta,
2020): higher percentile values translate to higher threshold]
as a function of layer number for a typical run. In order
to attain an understanding for the importance of layerwise
neuron threshold optimization, we hypothesized that this might
be correlated to the significance of a particular layer toward
its prediction capability. For this purpose, we used Principal
Component Analysis (PCA)—one of the prominent tools that
can be used to quantify a neural network layer’s significance
(Chakraborty et al., 2020b). In short, PCA can be thought of as
an orthogonal transformation that maps uncorrelated variables
in the input data points and forms a basis vector set that
maximizes the variance in different directions. Generally, neural
network models project the input into higher dimensions as
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Algorithm 1:DE guided hybrid SNN training algorithm.

1 Function CalculateCost(Acc[],α,β , γ):
Data:

Acc[t]: A list of size T, where t = {1, 2, ..., T}
α,β , γ ∈ R

Result: cost
33 ∇[]← ∂(Acc)

∂t // Gradient of accuracy function

55 cost← α × argmax
t
{∇[t]} + β × (1−max{∇})+

γ × (1− Acc[T])
77 return cost

8 Function

DE(SNN,Thresholds[],TH, std, P,M,C,G,α,β , γ):
Data:

SNN: Base SNN model
Thresholds[]: A 2D array of shape P ∗ N, where N is
the number of layers, P is the population size
TH: Base threshold values at 99.7 percentile
std: Desired standard deviation of the initial
population
M: Mutation factor
C: Crossover factor
G: Number of maximum generations
α,β , γ ∈ R: Scaling factors of the cost function
Result: bestThr: The thresholds with lowest evaluation

score
1010 Thresholds[]← Initialize(TH, P, std) s.t.

Thresholds[, n]← X ∼ N(TH[n], std2)
1212 Randomly select B samples from the training set and

create mini-dataset S
1414 Acc[]← 0 // length of T

1616 bestCost← 0, bestThr← φ

// Variables for tracking

17 for g ← 1 to G do

18 for p← 1 to P do
/* Generates new candidate thresholds

after applying Eqn. 7 - 9 */

19 NewThreshold[]←
Evolution(Thresholds[], p,M,C)
/* Initialize SNN with the new thresholds

for evaluation */

20 SNN.Update (Threshold)
21 for samplebatch in S do

/* SNN inference */

2323 Acc[]←SNN(samplebatch,T)

24 end

/* Apply Eqn. 11 */

2626 cost← CalculateCost(Acc[],α,β , γ )
27 if bestCost>cost then
28 bestCost← cost
29 bestThr← NewThreshold[]

30 end

31 end

32 return bestThr

FIGURE 1 | Impact of various components of the cost function on the

accuracy-latency tradeoff for VGG-15 model on CIFAR-100 dataset.

FIGURE 2 | The thresholds are expressed as the percentile of the maximum

ANN activations. Both the figures are plotting one of the best solutions in their

respective scenarios. (A) The optimized threshold shows a similar general

trend as the principal components. (B) Blue and red: layerwise ANS value (left

vertical axis) of the ANN and the converted + optimized SNN, respectively.

ANS is significantly reduced after optimization. Green: The optimized threshold

(right vertical axis) shows drastic reduction after layer 10 corresponding to the

layers where the ANS metric is significantly reduced.

layers get deeper with the goal of achieving linear separability
at the final output layer. Therefore, the calculation of the
Principal Components (PCs) of each layer’s feature map is
able to quantify the projective ability of each layer and thus
its significance.

We performed PCA on the feature maps before the non-
linear activation to examine the redundancy in every layer as the
dimension increases. To explain the first, say R%, of the variance
in the feature map of the layer, only a number of the PCs, denoted
by k, are needed. Given an activation map P with dimension
B × H × W × F, where B is the mini-batch size, H and W are
height and width of the filter, respectively, and F is the number of
filters, it is first flattened to 1D in the first three dimensions. This
makes the activationQ a 2D matrix with dimension K× F where
K = B×H×W. Singular value decomposition is applied toQTQ

to obtain L eigenvectors vi and eigenvalues λi. The total variance
Pvar is given by:

Pvar =

L
∑

i=1

σ 2
ii (12)
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The significance of component λi would be simply λi
Pvar

. The
first k principal components explain variance of a threshold
value R:

R =

∑k
i=1 λ2i

∑L
i=1 λ2i

(13)

The ratioR is used as a threshold for the algorithm to calculate the
first k PCs and k suggests the number of significant components
required after removing the redundancy in Q. After obtaining k
PCs for every layer in the SNN to explain a fixed threshold of R%
variance (99.9% in our case), we interpreted a layer’s significance
to be proportional to the percentage increase in the number of
PCs in comparison to the previous layer, i.e., the layer contributes
significantly to the transformation of the input data provided
to it by the previous layer. The percentage layerwise changes
in PCs are plotted in Figure 2A, and interestingly the general
trend matches with the variation of layerwise optimized neuronal
thresholds. This is explainable since a higher spiking threshold
allows more time for evidence integration, thereby improving
SNN accuracy by ensuring more significant layers perform more
accurate computations.

4.2. Adversarial Attack Driven Optimization
and Interpretability
Next, we show that neuron threshold optimization is not
application agnostic, thereby requiring the need for a cross-
stack optimization. To substantiate our motivation, we consider
SNN adversarial attack scenarios. Adversarial attack in neural
networks refers to malicious attempts to mislead the model
prediction. Since neural networks are proven to be vulnerable in
such attacks (Madry et al., 2017), it becomes a non-trivial task
to optimize the model for adversarial scenarios. While there are
a plethora of adversarial attack algorithms (Chakraborty et al.,
2018), we used the vanilla version of the Fast Gradient Sign
Method (FGSM) attack as a proof of concept for our optimization
method’s adversarial robustness. Details in the adversarial setup
and implementation will be discussed in the next section.

We applied our neuroevolutionary guided SNN training
strategy in this case but optimized for adversarial accuracy-
latency tradeoff. Figure 2B depicts the optimized threshold
(expressed as a percentile of the maximum ANN activation) as
a function of layer number for a typical run. However, the trend
shows a slightly different distribution of thresholds as compared
to the normal accuracy scenario. We observe that the deeper
layers exhibit a similar downward trend of thresholds but this
occurs only after layer 10 in the adversarial scenario whereas
the network optimized for normal accuracy shows this trend
much before (explained by % changes in PCs, as discussed in the
previous subsection).

To explain this trend, we used Adversarial Noise Sensitivity
(ANS), Aδ , as a metric for measuring layerwise perturbation in
neural networks (Panda, 2020). It is defined as the error ratio
between a particular layer’s perturbed adversarial activation and
the unperturbed original activation and can be expressed by the

following equation:

Aδ,n =
||an

adv
− an||2

||an||2
(14)

where, an is the activation map of the n-th layer and the
subscript adv denotes the same activation with adversarial input.
In summary, the higher the ANS value of a particular layer, the
higher is the sensitivity to noise of that layer. In other words, the
layers with high ANS values will perform worse than the layers
with low ANS values under the same degree of adversarial attack.
In the SNN case, we use the cumulative spikes as the activation:

Aδ,n =
||

∑T
t=1 x

n
adv,t
−

∑T
t=1 x

n
t ||2

||
∑T

t=1 x
n
t ||2

(15)

where, xnt is the n-th layer’s spike at timestep t and adv still
denotes the adversarial version; T is the total duration of
inference. We can observe from Figure 2B that the highest ANS
values start from layer 10, which incidentally correlates with the
trend of layerwise optimized neural thresholds.

To understand the relationship between neuron threshold
and noise sensitivity, one needs to consider the activation
discretization caused by the firing threshold. As shown in
Equation (6), the output of a layer is critically dependent
on the threshold Vth of the layer and is a bit discretized
version of the ReLU functionality. Thus, the SNN neuron
activation representation can be considered to be discretized
due to the spiking behavior. When the threshold is lower in
the denominator of Equation (6), there will be more discrete
states and vice versa. Therefore lower firing threshold should
relate to layers with higher noise sensitivity since reduced
precision/discretization results in minimizing the adversarial
perturbation (Rakin et al., 2018; Sen et al., 2020). To summarize,
in adversarial scenarios, the optimal set of thresholds attributes
low thresholds to high ANS layers to increase discretization to
resist the effect of adversarial noise.

5. EXPERIMENTS AND RESULTS

5.1. Datasets and Implementation
We evaluated our proposal on the CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and the large-scale ImageNet (Deng
et al., 2009) dataset. CIFAR-10 and CIFAR-100 datasets consist
of 10 and 100 classes, respectively. They include 60,000 32 ×
32 colored images partitioned into 50,000 and 10,000 training
and testing images respectively. ImageNet 2012 is a much more
challenging dataset with 1,000 object categories that include 1.28
million images for training and 50,000 images for validation. The
ImageNet images are randomly cropped into 224 × 224 pixels
before being fed into the network. All images are normalized
with zero mean and unit variance and shuffled during the
training and DE optimization phase. The ANN models are
pretrained VGG15 architectures based on constraints described
in our prior work (Lu and Sengupta, 2020). All experiments are
conducted in “PyTorch” framework using “BindsNet” toolbox
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TABLE 1 | Algorithm hyperparameters for various datasets.

Dataset α β γ Initial Perc. std Population Size P No. of Generations G nfe Training Cost*

Image classification

CIFAR-10 1 10 500 99.7 0.15 25 25.9 647.5 38.85

CIFAR-100(VGG15) 1 40 20 99.7 0.15 25 26.55 663.75 39.825

CIFAR-100(VGG11) 0.7 60 200 99.7 0.13 35 7.8 312 16.38

ImageNet 1 70 110 99.8 0.13 20 6.08 121.66 0.475

Image classification with adversarial attack

CIFAR-10 1 2 60 99.7 0.25 25 21.94 548.5 13.2

CIFAR-100 1 2 60 99.7 0.25 25 24.22 605.5 14.5

*Training cost computed using Eqn. 17.

(Hazan et al., 2018) with the “SciPy” toolbox providing efficient
DE algorithm implementation.

For the adversarial attack scenario, we used FGSM as a white
box attack where the model parameters and network structure
are fully available to the attacker. It utilizes the gradient of
the original input and then perturbs it to create an adversarial
version that maximizes the loss. This perturbation process can be
summarized as:

X̂ = X + ǫ × sign[∇XL(w,X, y)] (16)

where, X̂ is the perturbed image, X is the original input image,
ǫ is the hyper-parameter to adjust the extent of perturbation,
∇XL(w,X, y) is the gradient of the loss L given model parameter
w, input X and label y, sign() operation provides the direction of
the gradient (in terms of “1”s and “−1”s). In our case, we adopted
ǫ = 8/255, commonly used in other works. Further details can
be found in Goodfellow et al. (2015).

5.2. Results
The specific hyperparameter settings for our algorithm are
specified in Table 1 for the various datasets and applications. For
the DE algorithm, we used a typical setting of the mutation rate
(M is a random number between 0.5 and 1.5) and crossover rate
(C = 0.7). It is worth reiterating here that only the training set
is utilized during the neuroevolutionary optimization process.
Considering that the DE algorithm is initialized with P particles
and takesG generations to converge (measured by averaging over
20 runs), the excess overhead of running our hybrid training
technique is tabulated as “Training Cost” in Table 1 and is
computed in terms of the training set size by:

Training Cost = (E× G× P)/Dtrain (17)

where, E is the total number of images used for cost function
evaluation per particle per generation and Dtrain is the total
number of images in the training set. Table 1 illustrates the
advantage of our proposed algorithm in terms of scalability.
The number of evaluation images required for the optimization
process is primarily determined by the dimensionality of the
optimization space rather than the size of the training set of
the dataset. Hence, the “Training Cost” reduces significantly for
complex datasets like ImageNet. This is in stark contrast to BPTT

guided hybrid training approaches where backpropagation based
gradient updates will require significantly large training datasets.

The performance of our proposed hybrid SNN training
technique for CIFAR-10, CIFAR-100, and ImageNet datasets
are depicted in Figure 3 including adversarial attack scenarios.
Significant latency improvement is consistently observed
in all cases in contrast to a uniform percentile-based
threshold optimization scheme. Iso-accuracy and iso-latency
improvements for latency and accuracy, respectively are also
provided. A detailed comparison of the performance of our
algorithm against prior work is provided in Tables 2, 3.

5.3. Comparison Against Backpropagation
Through Time (BPTT) Fine-Tuning
As mentioned before, our work is most relevant to hybrid SNN
training approaches where the network is fine-tuned using BPTT
after conversion (Rathi and Roy, 2020; Rathi et al., 2020). While
the computational overhead is significantly higher in BPTT
based approaches, another important difference between the two
approaches lies in the absence of any temporal information in our
neuroevolutionary optimization process. In order to benchmark
the performance of the two hybrid training techniques, we
performed BPTT fine-tuning from the same initialized converted
SNN model as used in our neuroevolutionary algorithm. For
BPTT, the network layers are unfolded at each timestep for IF
operations. The BPTT method uses surrogate gradient for IF
neurons (Bellec et al., 2018):

∂pti
∂V t

i

= γmax{0, 1− |Vi(t)|} (18)

where, p is the output spike train, Vi(t) is the normalized
membrane potential voltage of neuron i at timestep t. γ is a
hyper-parameter to dampen the error which is set to 0.15 in
our case. For our experiments, we used a pre-trained VGG15
model on CIFAR-10 dataset, initialized with 99.7 percentile
thresholds for the IF neuron layers. The BPTT algorithm was
run for 25 epochs and the network was unrolled over 70
timesteps. However, as shown in Figure 4, while the hybrid BPTT
training performed better than a simple conversion approach,
it was outperformed by our proposed hybrid neuroevolutionary
approach. While recent versions of hybrid BPTT training (Rathi
and Roy, 2020) have reported only 5 timesteps as SNN latency,
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FIGURE 3 | Accuracy vs. timesteps for neuroevolutionary optimized SNN against homogeneously normalized (using 99.7 percentile of maximum activation; Lu and

Sengupta, 2020) SNN on CIFAR-10 dataset. Iso-time and iso-accuracy comparison are denoted by dotted-red line and textboxes. (A) CIFAR-10, (B) CIFAR-10

Zoomed, (C) CIFAR-100, (D) CIFAR-100 Zoomed, (E) CIFAR-10 Adversarial, (F) CIFAR-100 Adversarial, (G) ImageNet, (H) ImageNet Zoomed.

TABLE 2 | Performance benchmarking of our proposal against prior works.

References Method Architecture SNN accuracy (%) Timesteps

CIFAR10

Hunsberger and Eliasmith (2015) ANN-SNN 2C, 2L 82.95 6, 000

Sengupta et al. (2019) ANN-SNN VGG16 91.55 2, 500

Kim et al. (2018) Phase-coding VGG16 91.2 1, 500

Park et al. (2019) Burst-coding VGG16 91.4 1, 125

Park et al. (2020) Time-Till-First-Spike VGG16 91.40 680

Rueckauer et al. (2017) ANN-SNN 4 Conv, 2 FC 90.85 400

Cao et al. (2015) ANN-SNN 3C,2L 77.43 400

Rathi et al. (2020) Hybrid VGG16 92.02 200

Lee et al. (2020) Backprop VGG9 90.45 100

Lu and Sengupta (2020) ANN-SNN VGG15 91.03 91

This work Neuroevolutionary SNNs VGG15 91.05 42

CIFAR100

Kim et al. (2018) Phase-coding VGG16 68.6 8, 950

Park et al. (2019) Burst-coding VGG16 68.77 3, 100

Han et al. (2020) ANN-SNN VGG16 70.09 768

Park et al. (2020) Time-Till-First-Spike VGG16 68.8 680

Rathi et al. (2020) Hybrid VGG11 67.87 125

Lu and Sengupta (2020) ANN-SNN VGG11 67.00 125

This work Neuroevolutionary SNNs VGG11 67.00 89

ImageNet

Sengupta et al. (2019) ANN-SNN VGG16 69.96 2, 500

Han et al. (2020) ANN-SNN VGG16 71.34 768

Rueckauer et al. (2017) ANN-SNN VGG16 49.61 400

Rathi et al. (2020) Hybrid VGG16 65.19 250

Lu and Sengupta (2020) ANN-SNN VGG15 67.40 103

This work Neuroevolutionary SNNs VGG15 67.40 74

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 838523

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lu and Sengupta Neuroevolution Guided Hybrid SNN Training

TABLE 3 | Performance benchmarking of our proposal against prior works for SNN adversarial attacks. All FGSM are white-box attacks and use ǫ = 8/255.

References Attack Method Architecture ANN (%) SNN (%) Timesteps

CIFAR10

Sharmin et al. (2020) FGSM Backprop ResNet20 1.8 3.8 200

Sharmin et al. (2020) FGSM Backprop VGG5 10.4 15.0 100

Sharmin et al. (2019) FGSM Backprop VGG9 61.7 51.6 70

Lu and Sengupta (2020) FGSM ANN-SNN VGG15 67.42 67.40 74

This work FGSM Neuroevolutionary SNNs VGG15 67.42 68.9 42

CIFAR100

Sharmin et al. (2020) FGSM Backprop VGG11 17.1 15.5 200

Lu and Sengupta (2020) FGSM ANN-SNN VGG15 30.54 31.11 61

This work FGSM Neuroevolutionary SNNs VGG15 30.54 33.1 44

FIGURE 4 | Performance of VGG15 model on the CIFAR-10 dataset based on

various training techniques—(blue) ANN-SNN conversion: 99.7 Percentile,

(orange) Hybrid neuroevolutionary approach: Optimized Thr., and (green)

BPTT: Hybrid training with backpropagation through time.

it is probably attributed to performing gradient descent on
additional introduced parameters like neuron leak. Further,
latency is re-defined to exclude intrinsic delay of an SNN where
the neuron in each layer spikes at the current timestep instead
of the next, and therefore eliminates the intrinsic layerwise SNN
delay. While this is a simple method to reduce SNN latency, it
may potentially have limitations in neuromorphic chip designs
in terms of spike routing or parallel spike processing capability.
It is worth mentioning here that additional optimizations like
learnable membrane time constants (Rathi and Roy, 2020; Fang
et al., 2021b), network architectures like Residual networks
(Fang et al., 2021a), conversion error calibration techniques
(Deng and Gu, 2021; Li et al., 2021), hybrid spike encoding
(Datta et al., 2021) are complementary to the current proposal
and can be augmented in the algorithm to further minimize
the inference latency. Tables 2, 3 therefore includes primarily
basic SNN architectures based on IF nodes without any
additional optimizations to substantiate the importance and
interpretability of the need for layerwise threshold optimization.
The dimensionality of the optimization algorithm can be easily
expanded to incorporate additional optimization parameters
like membrane potential leak, spike encoding rate, among
others.

To quantitatively substantiate the computational benefit
of our proposed hybrid neuroevolutionary training approach

FIGURE 5 | Memory usage and running time comparison of hybrid

neuroevolutionary and BPTT based approaches of VGG-15 model on

ImageNet dataset, with maximum batch-size (21, 2, 2, 1) for (5, 25, 50, 75)

timesteps, respectively. (A) Memory usage, (B) Expected running time.

against BPTT based methods, we also report the memory usage
and running time of the two methodologies on the ImageNet
dataset in Figure 5. The memory usage was profiled and the
extrapolated running time for our proposed neuroevolutionary
algorithm is calculated as:

Total Running Time = τ̄ × Training Cost ×
Dtrain

B
(19)

where, τ̄ is the average running time per batch (averaged over
20 batches), “Training Cost” is calculated from Equation (17)
and B is the batch-size. The average running time τ̄ is used
to minimize the fluctuations caused by external processes. The
“Training Cost” of BPTT was considered to be 20 epochs as
reported in prior literature (Rathi et al., 2020). It is worth
mentioning here that unlike our proposed algorithm, BPTT
is heavily memory-constrained for large scale datasets like
ImageNet even for 5 timesteps, as shown in Figure 5. Our
algorithms were run on Nvidia Tesla V100 16 GB GPUs where
we had to limit the batch-size for the BPTT based hybrid
training approach due to memory limit. The batch-sizes of
Figure 5 are chosen based on the maximum memory capacity
of the BPTT based approach and iso-batch-size comparison is
performed with the neuroevolutionary method. As illustrated
in the plot, the situation worsens significantly with increasing
timesteps due to drastic increase in gradient trace information.
As shown in Figure 5, our proposed neuroevolutionary method
requires 2.9× less memory and 42× less running time than
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BPTT based framework even for five timesteps used for SNN
simulation. It is worth mentioning here that iso-timestep based
comparison may not be valid for further optimized SNN
algorithms like BPTT with membrane potential leak (Rathi and
Roy, 2020; Fang et al., 2021b) and therefore require further
benchmarking.

6. CONCLUSIONS

In conclusion, the work explores a neuroevolution-based hybrid
SNN training strategy that optimizes SNN specific parameters
like neuron spiking threshold after the conversion process.
While significantly outperforming state-of-the-art approaches
in terms of accuracy-latency tradeoffs in image classification
tasks including adversarial attack scenarios, the work highlights
the need for significance-driven layerwise SNN optimization
schemes leading to explainable SNNs. We also highlight that
the work outperforms computationally expensive BPTT based
fine-tuning approaches since temporal information may not be
relevant in static image classification tasks. Future exploration
into application drivers with temporal information (Mahapatra
et al., 2020; Singh et al., 2021) or temporal spike encoding

schemes (Petro et al., 2020; Yang and Sengupta, 2020) is
expected to truly leverage the full potential of BPTT based SNN
training strategies.
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