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Background: Currently, more than one-third of patients with drug-resistant temporal
lobe epilepsy (TLE) continue to develop seizures after resection surgery. Dynamic
functional network connectivity (DFNC) analyses, capturing temporal properties of
functional connectivity during MRI acquisition, may help us identify unfavorable surgical
outcomes. The purpose of this work was to explore the association of DFNC variations
of preoperative resting-state MRI and surgical outcomes in patients with drug-resistant
TLE.

Methods: We evaluated 61 patients with TLE matched for age and gender with 51
healthy controls (HC). Patients with TLE were classified as seizure-free (n = 39) and not
seizure-free (n = 16) based on the Engel surgical outcome scale. Six patients were
unable to confirm the postoperative status and were not included in the subgroup
analysis. The DFNC was calculated using group spatial independent component
analysis and the sliding window approach.

Results: Dynamic functional network connectivity analyses suggested two distinct
connectivity “States.” The dynamic connectivity state of patients with TLE was different
from HC. TLE subgroup analyses showed not seizure-free (NSF) patients spent
significantly more time in State Il compared to seizure-free (SF) patients and HC.
Further, the number of transitions from State Il to State | was significantly lower in
NSF patients. SF patients had compensatory enhancement of DFNC strengths between
default and dorsal attention network, as well as within the default network. While
reduced DFNC strengths of within-network and inter-network were both observed in
NSF patients, patients with abnormally temporal properties and more extension DFNC
strength alterations were less likely to receive seizure freedom.
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Conclusions: Our study indicates that DFNC could offer a better understanding of
dynamic neural impairment mechanisms of drug-resistant TLE functional network,
epileptic brain network reorganization, and provide an additional preoperative evaluation
support for surgical treatment of drug-resistant TLE.

Keywords: functional dynamics, surgical outcomes, temporal lobe epilepsy, temporal properties, epilepsy surgery

INTRODUCTION

Temporal lobe epilepsy (TLE) is a form of focal epilepsy which
the function as well as seizures are extremely complicated
(Englot et al., 2015). While anti-epileptic drugs can help most
patients with TLE become seizure-free, some patients remain
with seizures and seek benefit from surgery. In theory, removal
or disruption of the ictal onset zone could reduce the abnormal
electrical activity and control seizures. Unfortunately, ~40% of
the patients with drug-resistant TLE still suffered seizures after
surgery, and the cause remains unclear (Engel et al, 2012).
Even the most modern preoperative multidisciplinary clinical
evaluations, including seizure semiology, electrophysiology,
neuropsychiatric, and imaging assessment, could not virtually
distinguish the patients who did not achieve seizure-free after
operation from those who completely benefitted from resection
surgery.

Several factors are related to favorable post-surgical outcomes
for drug-resistant TLE, such as younger age at surgery, shorter
disease course, shorter seizure duration, lower seizure frequency,
absence of generalized seizures, and the existence of unilateral
mesial temporal lobe sclerosis (Specht et al., 1997; Radhakrishnan
et al., 1998; Foldvary et al.,, 2000; Janszky et al., 2005; Ozkara
et al., 2008; Muhlhofer et al., 2017). Despite these studies, those
factors only had ~80% chance of predicting surgical outcomes.
Therefore, in addition to these clinical and demographic
variables, we speculate that there may be other factors that can
help distinguish which patient with TLE will obtain favorable
surgical outcomes.

Brain network abnormalities are key constituents of TLE
disease neuropathology. Functional imaging studies have
demonstrated that network reorganization predominantly
affects the ipsilateral medial temporal structures as well as
the limbic network in TLE (Bonilha et al., 2004, 2010). With
a longer disease duration, patients with TLE will experience
progressive widespread functional and structural lesions
(Galovic et al., 2019). Moreover, decreased functional coupling of
the whole-brain network, including the default-mode network,
ventral and dorsal attention networks, cognitive networks, as
well as increased thalamic “hubness” measured by resting-
states functional MRI have been reported in patients with
TLE (Fox et al., 2006; Buckner et al., 2008; He et al., 2017).
Previous researches indicated that lower network integration
globally, whole-network, and within-network connectivity
variability had a high prediction accuracy in post-surgical
outcomes of patients with TLE, and these studies demonstrated
the ability of using resting-state functional MRI network
connectivity as a potential clinical tool for surgical result
prediction (Morgan et al., 2017; DeSalvo et al., 2020). However,

the unfavorable spatial-temporal of functional MRI does
not largely consider the presence and potential of temporal
variability in understanding the brain functional dynamics.
Magnetoencephalography and electroencephalography (EEG)
can provide the necessary spatial-temporal information
for human brain information processing, but their poor
spatial resolution cannot identify the underlying neural
degenerative changes.

Dynamic functional network connectivity (DFNC) introduces
time-varying characteristics on the basis of functional
connectivity (Hutchison et al, 2013). Recent research have
explored and identified that capturing these variabilities may
engender a new understanding of neuropsychiatric diseases, in
particular epilepsy, schizophrenia, autism, Alzheimer’s dementia,
and Parkinson’s disease. Overall, the study of dynamic changes
can reveal the functional harmony and flexibility of the central
nervous system, and the investigation of these transformations
could strengthen our understanding of functional diversification
and adaptability.

Nonetheless, the whole brain transformation of functional
connectivity strength and temporal properties against the
background of DFNC remain largely unknown in TLE.
The relationship among network reconfiguration, network
epileptogenic potential, and clinical phenotype has not been
adequately evaluated in drug-resistant TLE. In particular,
whether the network configuration is relevant to the surgical
outcome remains to be detected. Therefore, the main
aim of the present study was to use group independent
component analysis, sliding time window approach, and
clustering analysis to (i) assess discrepancies in DENC
between patients with TLE and HC and (ii) demonstrate
whether surgical outcomes in TLE are associated with altered
DFNC temporal properties as well as connectivity strength.
We hypothesized that surgical outcomes in drug-resistant
TLE are associated with altered DFNC temporal variations,
which could possibly be implied as an effective tool for
preoperative evaluation.

MATERIALS AND METHODS

Participants

Sixty-one unilateral drug-resistant patients with TLE and 51
age-, gender-matched HC with no history of head trauma or
neurological or neuropsychological disease were included in
the final analysis. The diagnosis of drug-resistant TLE was
determined by the classification of the International League
Against Epilepsy (Berg et al., 2010) based on a comprehensive
assessment consisting of detailed clinical history, seizure
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semiology, neurological examination, video EEG monitoring,
structural image, and positron emission tomography (PET). In
brief, focal aware seizures or impaired awareness; interictal or
ictal EEG that shows abnormal discharges over the temporal
region; MRI structural and PET metabolism abnormalities in
temporal lobe; and seizures cannot be controlled by anti-epileptic
drugs. Inclusion criteria included the diagnosis of TLE, the
diagnosis of drug-resistant epilepsy, and no contraindications
for surgical resection. Exclusion criteria included pre-surgical
intracranial monitoring, progressive neurological disease, focal
lesion aside from temporal region, and combination with
severe mental disorders. Only 59 of 61 patients with drug-
resistance TLE underwent anterior temporal lobectomy (n = 43),
selective amygdalohippocampectomy (n = 7), or temporal
lobe lumpectomy (n = 9) at the Department of Functional
Neurosurgery, Xiangya Hospital of Central South University
from 2018 to 2020. Two patients decided not to undergo
surgery after the preoperative evaluation, and we lost contacts
with four post-operative patients during the follow-up period.
Therefore, we only included 55 patients with TLE in the
further subgroup analysis. There were a total number of
36 SF patients and 19 NSF patients. Seizure outcomes
of the 55 patients were assessed by an epileptologist at
each year post surgery (up to 2 years) using the Engel
surgery outcome classification (Engel et al., 2003) as seizure-
free (SF; Engel Class I) and not seizure-free (NSF; Engel
Class II through IV).

This study was approved by the Ethics Committee of Xiangya
Hospital, and all participants provided written informed consent
according to the Declaration of Helsinki. The demographic
and clinical information of all participants are presented in
Table 1.

MRI Acquisition

Preoperative resting-state fMRI data for all patients with TLE
and HC were acquired on a 3.0 Tesla Siemens Prisma MRI
system with a standard 32-channel head coil (Xiangya Hospital
of Central South University). During the MRI scanning, all
participants were instructed to keep the head steady, eyes closed
without falling asleep, and relax without particular thinking.
Scans were scanned using echo planar imaging sequences set
to the following parameters: TR = 720 ms, TE = 37 ms, flip
angle = 52°, 64 axial slices with 2.5 mm thickness and 2.5-mm
gap, matrix size = 90 x 90, field of view = 225 mm x 255 mm,
voxel size = 2.5 mm x 2.5 mm x 2.5 mm. Each resting-state
functional sequence lasted 9.456 min, resulting in 788 volumes.

Controlling for Head Motion

We applied stringent control criteria to reduce the potential
head movement bias (Hutchison et al., 2013). Specifically,
we calculated maximum displacement and mean frame-wise
displacement. Eventually, we excluded participants with excessive
head movement (maximum displacement value over 0.3 mm
or mean frame-wise displacement value exceeding 3 mm)
during the scan.

Resting-State Functional MRI Data

Preprocessing

Resting-state functional MRI data were preprocessed using
Data Processing Assistant DPARSF (V4.3)," which is based
on Statistical Parametric Mapping software package SPM 127

http://www.rfmri.org/DPARSF

2www.fil.ion.ucl.ac.uk/spm

TABLE 1 | Demographic and clinical characteristics from study groups.

Variables HC SF NSF P value
(n=51) (n =39) (n=16) HC vs SF HC vs NSF SF vs NSF

Age, years, mean (range) 30.7 (18-56) 28.1 (14-55) 33.3 (17-56) 0.34 0.37 0.07
Sex (female/male) 19/32 18/21 7/9 0.40 0.64 0.87
Handedness (right/left) 51/0 39/0 16/0 > 0.99 >0.99 > 0.99
Age at onset, years, mean (range) - 14.1 (1-32) 15.5 (1-45) - - 0.69
Epilepsy duration, years, mean (range) - 14.0 (1-32) 17.8 (3-37) - - 0.16
Lesion side (right/left) - 18/21 11/5 - - 0.13
All Seizures Frequency, per month, mean (range) - 9.9 (1-33) 11.7 (3-45) - - 0.49
GTCS Frequency, per month, mean (range) - 1.3 (0-13) 1.3 (0-5) - - 0.99
Status Epilepticus - n=2 n=3 - - 0.1
Number Of Meds Failed, mean (range) - 4.3 (2-8) 4.2 (2-7) - - 0.79
MTS On Pathology - 28 13 - - 0.46
Interictal EEG (Lat/Not Lat) - 39/0 12/4 - - 0.0012
Ictal EEG (Loc/Not Loc/No Records) - 16/4/19 7/0/7 - - 0.44
Follow-up, months (range) - 18.2 (12-24) 18.8 (12-24) - - 0.74
Type Of Surgery (ATL/SelAH/TLL) - 28/5/6 11/2/3 - - 0.95

Values are given as mean (range). Statistical differences are listed between HC and SF (HC vs SF), HC and NSF (HC vs NSF), and SF and NSF (SF vs NSF). Chi-square
test was used for categorical variables. ATL, anterior temporal lobectomy; EEG, electroencephalography; GTCS, generalized tonic clonic seizures; HC, healthy controls;
Lat, lateralized; Loc, localized; Meds, anti-epileptic medications;, MTS, mesial temporal sclerosis; NSF, not seizure-free; SelAH, selective amygdalohippocampectomy; SF,

seizure-free; TLL, temporal lobe lumpectomy.
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implemented in MATLAB (version R2018b, MathWorks, Inc.,
Natick, MA, United States). The first 18 scans were discarded
to achieve magnetization equilibrium, resulting in a total of 770
volumes. Slice timing was used to correct the slice acquisition
delay, spatial realignment was performed for motion correction,
images were normalized to Montreal Neurological Institute
(Engel et al., 2003) space using the standard EPI template
and interpolated to 3 mm cubic voxel, and spatial smoothing
was applied with 6 mm full width at half maximum (FWHM)
Gaussian kernel.

Group Independent Component Analysis
After resting-state functional MRI data preprocessing,
intrinsic connectivity networks of all subjects were created.
We implemented group independent component analysis
in GIFT within the functional MRI Toolbox (GIFT version
3.01).> Group independent components (ICs) were obtained
by concatenating the preprocessed resting-state data from
all participants. During the principal component analysis,
two data reduction steps were performed, including subject-
specific and group-level steps. Using the principal component
analysis, the subject-specific data were reduced to 120 principal
components. Further, in the group-level data reduction, the
concatenated data were reduced to 100 group ICs with the
expectation maximization algorithm (Roweis, 1999). The
reliability and stability of the ICA algorithm were performed by
repeating it 30 times using ICASSO in GIFT (Himberg et al.,
2004). The obtained ICs with within-cluster similarity values
greater than 0.80 were selected to estimate their reliability
and stability. Subject-specific time and spatial maps for each
IC were created using the back-reconstruction algorithm
(Calhoun et al., 2001).

Among the obtained 100 ICs, the spatial map should exhibit
peak activation in the grey matter, low spatial overlap with
susceptibility artifacts of cerebral vessels as well as ventricles,
and time courses that were mainly of low-frequency fluctuations
with a power ratio of 0.15-0.25 Hz (Cordes et al., 2000).
According to these criteria, we identified 33 meaningful ICs,
and they were classified into nine instinct connectivity networks,
based on the spatial correlation values between each IC and
network templates (Yeo et al, 2011; Shirer et al, 2012;
Szaflarski et al., 2018). ICs are arranged into cerebellum (CB),
dorsal attention network (DAN), default mode network (DMN),
frontoparietal network (FPN), limbic (LIM), subcutaneous (SC),
sensorimotor network (SMN), ventral attention network (VAN),
and visual network (VN).

To reduce the detrend linear, quadratic, and cubic
trends, additional post-processing was performed for the
time cours of 33 ICs. Outliers were detected based on the
3DDESPIKE algorithm.* The fifth-order Butterworth filter
with a high-frequency cut-off of 0.15 Hz was selected for
filtering processing. Finally, movement parameters were
regressed out.

3http://icatb.sourceforge.net
“http://afni.nimh.nih.gov/afni

DFNC Analysis

Sliding Time Window Approach

Dynamic functional network connectivity analyses were
investigated with the sliding window approach in GIFT.
Resting-state time series data were split into windows of the
size of 60 repetition times (~44 s), convolving a rectangle
with a Gaussian and sliding a step with one repetition time.
Previous studies have shown that cognitive states could be
identified within a window length of 30-60 s, while the
topological transformation of the brain network began to
stabilize at 30 s (Shirer et al., 2012). Our window length has
been testified to provide a good balance between the precision
of covariance matrix estimation and the ability of DENC
calculation. Since short time series may have not enough
information to represent the full covariance matrix, the inverse
covariance matrix was used to estimate covariance in this study
(Smith et al., 2011). Further, following the graphic LASSO
method, we placed additional 100 repetitions on the L1 norm
of the accuracy matrix to advance sparsity (Friedman et al.,
2008). To stabilize variance prior to further analysis, Fisher’s
z-transformation was used to transform DFNC matrices to
zZ-scores.

Clustering Analysis

Window functional connectivity correlation matrix was
calculated using K-means clustering algorithm to obtain the
frequency and structure of reoccurring functional connectivity
states (Roweis, 1999; Lloyd, 2006). L1 distance (City distance)
function, as an effective measure for high-dimensional data,
was used for K-means clustering algorithm (Aggarwal et al,
2001). Furthermore, to estimate the optimal number of
clusters for group clustering, a cluster number validity analysis
was performed on the exemplar windows of all subjects by
varying k from 2 to 10. According to the gap criterion of
cluster validity index, under a null distribution of a reference,
the standardized within-cluster dispersion was expected to
merge with within-cluster sum of squares, as well as the
silhouette criterion, the similarity between points in other
clusters and windows in the same cluster (Peter, 1987;
Tibshirani et al., 2001). Given these two predictive criteria,
we finally determined that the optimal cluster number was two

(k=2).

Group Differences in DFNC

We evaluated the following temporal properties: (i) fractional
windows (the percentage of total time spent by subjects
in a given state); (ii) mean dwell time (the time subjects
spent in one state without switching to another state);
and (ili) number of transitions (the frequency of subjects
changing their state). We also tested for differences
between groups in DFNC pairs for each connectivity state.
Connectivity strength computation of all connectivity pairs
in each state (528 pairings; P < 0.05, FDR-corrected)
between TLE and HC, and among SE NSE and HC were
both based on templates available in the GIFT toolbox
implemented in MATLAB.
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Statistical Analysis

All statistical analyses were performed using SPSS version
22 (IBM Corporation, Armonk, NY, United States). The
differences between TLE and HC were tested using a two-sample
independent ¢-test, while between-group differences among the
TLE subgroups (SF and NSF) and HC were investigated using
the three-level one-way ANOVA. Post hoc t-tests were added
in case of significant ANOVA results. Pearson’s Chi-square test
was used to compare the categorical variables. The level of
significance was p < 0.05 (two-sided significant testing), and
multiple comparisons were performed using the false discovery
rate (FDR)-corrected.

RESULTS

Demographic and Clinical

Characteristics

Sixty-one patients with drug-resistant TLE and 51 HC were
included in the whole analysis. There were no significant
differences in age and gender. There were a total number of 36
SF patients and 19 NSF patients involved in further subgroup
analysis. There were no significant differences between SF and

NSF patients under each clinical variable except the interictal
EEG (Table 1).

Intrinsic Functional Connectivity

Networks

Thirty-three ICs were divided into the following nine networks:
CB (IC 7), DAN (IC 82), DMN (IC 7), FPN (ICs 29, 73, 89), LIM
(ICs 21, 23, 42, 43, 68, 94), SC (ICs 12, 20, 32, 38, 44, 67), SMN
(ICs 4, 10, 22), VAN (ICs 69, 76), and VN (ICs 14, 34, 65, 70,
78, 85). Figure 1A displays the detailed information and spatial
maps of ICs. Figure 1B shows the averaged intrinsic functional
network connectivity between 33 ICs for 61 patients with TLE
as well as 51 HC.

DFNC Analysis

Clustering Analysis

The optimal criteria for the number of states is shown in
Figure 2A. Given these two predictive criterion, the optimal
cluster number was determined to the value 2 (k = 2).
Figure 2B displays these two functional network connectivity
states and their visualized connectivity patterns. We identified
two completely distinct functional network connectivity states.
As noted in Figure 2B, State I of patients with drug-resistant
TLE and HC is a less frequent brain state (overall frequency:
28%, Figure 2B, upper panel), but it has strong positive inter-
network connectivity, located mainly between SMN, VN, DAN,
and VAN and State II is a more frequent brain state (overall
frequency: 72%, Figure 2B, below panel) with within-network
connectivity dominating, located mainly within SMN, VN, and
DMN. Figure 2C shows the group-specific k-means algorithm
results, and as noted above, there were 43 HC (percentage: 84.3%,
Figure 2C, upper panel), 28 SF patients (percentage: 71.8%,

Figure 2C, middle panel), and 5 NSF patients (percentage: 31.3%,
Figure 2C, below panel) who entered State I.

DFNC Strength

In State I, within-network connectivity of VN was weaker
in patients with TLE compared to HC (three-level ANOVA:
P < 0.05, post hoc t-test: P < 0.05, FDR-corrected). In State II, a
stronger inter-network connectivity (DMN-DAN) was observed
in SF patients, as well as a stronger within-network connectivity
(DMN-DMN) was observed in NSF patients, compared to HC.
While SF patients had a weaker connection in VN-VN, NSF had
weaker connections in LIM-LIM, VAN-SC, VAN-SMN, and VN-
VN (three-level ANOVA: P < 0.05, post hoc t-test: P < 0.05,
FDR-corrected) (Figure 3).

Temporal Properties

Figure 4 shows temporal properties of DENC for TLE and HC
groups, as well as SF patients, NSF patients, and HC. In TLE,
State IT was more frequently observed than State I (P = 0.039),
whereas in HC, State II occurred less frequently and State I more
commonly (P = 0.039) compared to patients with TLE. Further,
State II was more frequent in NSF than in SF and HC (NSF-SF:
P < 0.05, NSF-HC: P < 0.05, FDR-corrected), while the opposite
pattern was observed in State I, which was less frequent in NSF
than in SF and HC (NSF-SE: P < 0.05, NSF-HC: P < 0.05,
FDR-corrected) (Figure 4A).

As exhibited in Figure 4B, significant group differences in
mean dwell time between TLE and HC were identified in State
I (P < 0.05) and State II (P < 0.05). Subgroup analysis revealed
that NSF patients spent significantly less time than SF patients
and HC in State I (NSF-SF: P < 0.001, NSF-HC: P < 0.001,
FDR-corrected). NSF patients spent more time in State II as
compared to SF patients and HC (NSE-SF: P < 0.01, NSF-
HC: P < 0.001, FDR-corrected). Patients with TLE changed
less frequently between these two states than HC (P = 0.52).
Finally, subgroup analysis indicated that NSF group performed
fewer transitions than SF group and HC (NSF-SF: P < 0.05,
NSF-HC: P < 0.05, FDR-corrected) (Figure 4C). Overall, these
DFNC changes suggested that patients with TLE with unsatisfied
post-surgical outcomes stay longer in the sparse within-network
connectivity state, performed fewer transitions, and had shorter
dwelling time in the strong inter-network connectivity state.

Figures 1-3 were created using GIFT toolbox (v3.01). Figure 4
was made using Graph Pad Prism 8.0 software. MATLAB scripts
for DFNC computation were based on templates available in
the GIFT toolbox.

DISCUSSION

In this present study, we sought to predict post-surgical outcomes
based on data derived from the pre-surgical evaluation of patients
with drug-resistant TLE. We innovatively applied the DFNC
analysis to evaluate the differences between 61 patients with
drug-resistant TLE and 51 HC, ranging from favorable and
unfavorable surgical outcomes of patients with TLE, putting a
particular emphasis on temporal properties (fractional windows,
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FIGURE 1 | Spatial maps of the 33 intrinsic connectivity networks and the stationary functional connectivity. (A) Independent component networks spatial maps
divided into nine functional networks: cerebellum (CB, one component), dorsal attention network (DAN, one component), default mode network (DMN, five
components), frontoparietal network (FPN, three components), limbic (LIM, six components), subcutaneous (SC, six components), sensorimotor network (SMN,
three components), ventral attention network (VAN, two components), and visual network (VN, six components), based on their anatomical and functional properties.
(B) Group averaged static functional network connectivity between independent component pairs computed by the rest state functional MRI data. Connectivity
values in the correlation matrix represents the Fisher’s z-transformed Pearson correlation coefficient, averaged over all subjects. IC, independent component.

L . .
-

iRt o y

DA .._ s BN .. '
n u o 1

JEEE =it '
R | I

; SRR 0

: =" -t .
I

mean dwelling time, and number of transitions), and the brain
network connection strength of distinct connectivity states. We
identified two different dynamic connectivity states, which were
significantly related to surgical outcomes. The most altered
temporal variations were observed in NSF patients. Network
connection changes were apparent in VN-VN, DMN-DAN,
DMN-DMN, LIM-LIM, VAN-SC, and VAN-SMN. In summary,
this is the first study to assess dynamic connectivity properties
across the TLE surgical outcomes. We believe that DENC analyses
permit the evaluation of time-varying characteristics on the basis
of functional connectivity, may reflect the more comprehensive
functional capacity of the central nervous system, and thus, it
may serve as a potential clinical imaging biomarker of the disease
(Deco et al,, 2011; Hutchison et al., 2013; Kucyi et al., 2017).
Importantly, we have shown that temporal properties
(fractional windows, mean dwelling time, and number of
transitions) are altered in patients TLE vs. HC. Furthermore,
in patients with poor prognosis, these changes were especially
notable. We observed weaker connections in SF and NSF within
the VN compared to HC which may indicate that patients with
TLE had poor visual information processing ability. However,
the mechanism of visual function impairment in TLE is currently
not well understood. Previous studies of saccadic eye movements
have found a connection between hippocampal activity and
visual exploration in rodents (Jutras et al., 2013). Our study had
over 70% of the enrolled patients with postoperative pathology
confirming unilateral hippocampal sclerosis. A latest study
found that the hippocampus may not be limited to a single-
working mode of visual memory storage. It may also integrate
visual information and interact with the frontoparietal eye
movement region to assist in visual exploration, thus improving

the efficiency of information acquisition (Bridge et al., 2017).
Despite the similarity of our results with previous studies, further
investigations of the mechanism on drug-resistant TLE with
hippocampal sclerosis-related VN deficits are needed.

Then, we found a stronger connection between the DMN-
DAN in SE, and NSF had a stronger connection within the DMN
in the segregated state compared to HC. DAN and DMN were
distinct functional networks and these two networks operate
in an opposite pattern in the human brain (Fox et al.,, 2005).
Besides, the DMN of the epileptic brain was thought to be
more likely to transition between states than the healthy brain
(Yang et al, 2021). It may suggest that patients with TLE
had an overresponse during the dynamic balance of DMN.
Our results further confirmed the important position of DMN
in TLE networks. Our results have some consistency with
previous studies, but there are also have some differences. This
condition makes us have the reason to believe that our further
disease subgroup analysis in this study could help us to better
understand the significance of dynamic changes in the functional
network connectivity. We hypothesized that enhanced DMN-
DAN connectivity strength in SF patients is a compensatory
mechanism that will disappear as the brain network further
disrupts. The existence of the dynamic functional connectivity
compensation mechanism of preoperative brain networks in
patients may predict a better surgical outcome, but this still needs
to be confirmed by further studies.

In addition, we detected that NSF had weaker connections
in LIM-LIM, VAN-SC, VAN-SMN in State II compared to HC.
The interaction of attention-sensorimotor network is important
for movement control and skill learning. Unfortunately, patients
with TLE suffered from impaired multiple functions due to
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chronic recurrent seizures (Glickstein, 2000). Coordinating
functions of activity within-network and between-network were
closely interrelated with key interacting functional networks
(Greicius et al., 2003; Fox and Raichle, 2007). Chronic seizures
induced a pervasive disturbance of network behavior that may

influence the consistency of functional and effective connectivity
and lead to the decline of brain overall function (Friston,
2011; Jiang et al., 2018). Previous studies showed that patients
with focal epilepsy demonstrated extensive network alterations,
including the functional and structural networks’ abnormal
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FIGURE 3 | Dynamic functional connectivity state results. Subgroup-specific circle plots of significant dynamic functional connectivity differences in each state,
where SF and NSF patients had a weaker or stronger connectivity pattern in comparison to the HC. (post hoc t-tests, P < 0.05, FDR-corrected for multiple
comparisons). CB, cerebellum; DAN, dorsal attention network; DMN, default mode network; FPN, frontoparietal network; HC, healthy controls; LIM, limbic; NSF, not
seizure-free; SC, subcutaneous; SF, seizure-free; SMN, sensorimotor network; VAN, ventral attention network; VN, visual network.

Significantly less connected than HC

Significantly more connected than HC

intergration (van Diessen et al., 2014). DeSalvo et al. (2020)
found that lower overall network integration of preoperative
resting-state functional MRI scans was associated with persistent
postoperative seizures in patients with TLE. In general, these
results explained that the different surgical outcomes detected in
TLE may be related to the observed alterations of more extensive
within-network and inter-network.

Further, we observed that the overall frequency of State
I in patients with TLE occurred more often than in HC,
and along with it the appearance of State I was lower. Our

results concur with the DENC research by Liao et al. (2014)
who revealed dynamics of functional connectivity, adaptive
reconfiguration of functional brain networks, and confirmed
the vulnerability of the resting-state functional network in
epilepsy. The network reconstruction of patients with TLE is
more inclined to increase the intra-network connection and
decrease the connections between networks. Moreover, patients
with TLE diverged from HC depending on their surgical
outcomes. We detected differences among SE, NSF, and HC. This
characteristic network reconstruction model was more obvious
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in NSF patients. Further. post hoc analysis showed that State II Finally, we found that there were significant differences in
was observed more frequently in NSF patients than in SFand HC  DFNC temporal properties between patients with TLE and
groups; whereas there was no significant difference between SF HC. These diverse temporal properties were particularly evident
patients and HC. in NSF patients, who spent the longest time in State II and
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remained for a minimum amount of time in the strongly inter-
network connection State I than SF. There were consistent pieces
of evidence which indicated that weak functional connectivity
between networks, along with relative increases in functional
connectivity within networks, were interpreted as the reduced
integration efficiency of the neural network associated with
disease expression (Chan et al, 2014; Elman et al, 2016).
Moreover, active inter-state transition indicated better functional
flexibility (Nomi et al., 2017). Our results implied that patients
with TLE, in particular, NSF patients had the inefficient and
unstable information flow within/between functional networks
as well as the abnormal integration of brain networks. Our
results are consistent with the findings in other neurological
disorders, such as Alzheimer’s disease, Parkinson’s disease,
and schizophrenia, all showing abnormal temporal properties
compared to HC (Damaraju et al., 2014; Liu et al., 2017; Lottman
etal,, 2017; Diez-Cirarda et al., 2018). Aligned with these reports,
our observations highly suggested that the temporal properties of
functional network connectivity were closely related to surgical
outcomes of TLE. Logically, patients with TLE with abnormally
temporal variations were less likely to achieve seizure freedom.

There are several limitations of our study that require
discussion. First, the small sample size impedes accurate
estimates of generalizability. However, our sample is designed to
maximize homogeneity to understand a specific population of
patients. The proposed relationships with outcomes, therefore,
need validation in a larger, independent patient cohort. Second,
our data only include a 2-year follow-up and are measured only
in yearly increments. More detailed dates of recurrence would
improve future studies. Third, our cohort included patients who
underwent three different types of surgical treatment. While
no difference was detected in the outcome between selective
amygdalohippocampectomy vs. anterior lobectomy in a recent
study, this should be considered in future validation studies.
Finally, we realize that there is a methodological limitation in this
study. As none of the 61 patients underwent postoperative MRI
scans, the exact amount of excision tissue in these patients could
not be measured. However, our research objective was to explore
preoperative changes related to surgical outcomes, which could
help to guide preoperative evaluation.

CONCLUSION

In summary, this is the first study to evaluate DENC properties
resulting in the TLE surgical outcomes. Significantly, we have
demonstrated altered temporal properties (fractional windows,
mean dwelling time, and number of transitions) in patients
with TLE as compared to HC. Furthermore, in patients
with poor prognosis, these changes were especially notable.
Specifically, NSF patients have more extensive alterations in
DFNC strength within and between networks. Patients with
TLE with preoperative abnormal temporal variations were less
likely to achieve postoperative seizure freedom. We argue that
this research approach, in particular the temporal properties
of DFNC, could be a useful imaging biomarker for predicting
surgical outcomes in TLE.
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