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Alzheimer’s disease (AD), the most common cause of dementia, is a complex
and multifactorial disease involving genetic and environmental factors, with
hypercholesterolemia considered as one of the risk factors. Numerous epidemiological
studies have reported a positive association between AD and serum cholesterol
levels, and experimental studies also provide evidence that elevated cholesterol levels
accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia
accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol
in the brain and focus on the role of oxysterols, aiming to reveal the link between
hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral
oxysterol that flows into the brain, and it affects p-amyloid (AB) production and
elimination as well as influencing other pathogenic mechanisms of AD. Although the
potential link between hypercholesterolemia and AD is well established, cholesterol-
lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs
that target cholesterol exocytosis and conversion show benefits in improving AD
pathology. Herbs and natural compounds with cholesterol-lowering properties also have
a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative
risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia
to promote AD pathology. Drugs that regulate cholesterol metabolism are probably
beneficial for AD, but more research is needed to unravel the mechanisms involved
in 27-OHC, which may lead to new therapeutic strategies for AD.

Keywords: Alzheimer’s disease, hypercholesterolemia, 27-hydroxycholesterol, pathogenesis, drug

INTRODUCTION

Alzheimer’s disease (AD), the most common cause of dementia, is a pervasive, progressive
neurodegenerative disease characterized by cognitive impairment. With more than 55 million
people in the world currently affected by dementia, AD is recognized as a rising global health
crisis (Alzheimer’s Disease International and McGill University, 2021). B-amyloid (Ap) plaques and
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neurofibrillary tangles (NFT) are generally considered to be the
cardinal pathological features of AD (Busche and Hyman, 2020).
Researcher hopes are high that eliminating pathology could
lead to revolutionary treatment for AD and are committed to
developing drugs that target AP and tau. However, they are
mostly left empty-handed and new directions for AD research
are urgently required. AD is a multifactorial and complex
disease caused by a combination of genetic and environmental
risk factors. In recent years, risk factor management has been
proposed as an effective way to slow down AD development.
Modifiable risk factors present in midlife such as hypertension
(Lennon et al., 2019), diabetes (Gonzdilez et al., 2020), and
hypercholesterolemia (Anstey et al., 2008) are associated with
cognitive decline in later life (Gottesman et al., 2017; Knopman
et al,, 2018). It is important to note that risk factors do not
occur alone, but often coexist and interact with each other.
For instance, it is well known that hypercholesterolemia is a
major risk factor for atherosclerosis. In the Rotterdam study, a
correlation was found between atherosclerosis and AD (Hofman
et al., 1997). Furthermore, hypercholesterolemia may induce
hypertension because it increases the secretion of vasoconstrictor
molecules and decreases the bioavailability of nitric oxide
(Sposito, 2004). Hypertension can lead to pathological changes
such as AP plaques and tau tangles, either in humans or in
animal models (Lennon et al, 2021). Of note, this review
excludes the indirect effects of hypercholesterolemia on AD
processes by inducing other diseases, but focuses more on the
role of hypercholesterolemia itself on AD. Hypercholesterolemia
is defined as high plasma cholesterol levels with normal plasma
triglycerides (Martinez-Hervas and Ascaso, 2019). There are two
main sources of cholesterol in the human body: about 70% of
cholesterol is synthesized by the body, while the other 30% comes
from dietary intake (Kapourchali et al., 2016). Cholesterol is
widely present in all tissues, with about 1/4 of it distributed in
the brain. As an important lipid class, Brain cholesterol exists
mainly in the unesterified form, with one-third of the cholesterol
present in cellular membranes and most in myelin sheaths
(Karasinska and Hayden, 2011). For neurons and astrocytes,
cholesterol plays an important role in maintaining the structural
integrity of the plasma membrane and regulating its fluidity
(Dietschy and Turley, 2004). Cholesterol is also critical for
forming myelin sheaths in oligodendrocytes, which provides
electrical insulation around axons to speed up the propagation of
electrical signals through the nervous system (Saher and Simons,
2010). Demyelination has become a biomarker for dementia
pathology (Bouhrara et al., 2018). Moreover, cholesterol is
required for synapse and dendrite formation (Goritz et al., 2005).
Cholesterol enhances presynaptic differentiation, which is vital
for continuous synaptogenesis and important for the stability
of neurotransmitters (Dai et al., 2021). In addition, cholesterol
is a component of lipid rafts, which perform roles in signal
transduction, cell adhesion, and lipid/protein sorting (Kao et al.,
2020). Of note, lipid rafts contain AD-related proteins such
as APP, BACEL, and y-secretase (El Gaamouch et al., 2016).
Additionally, lipid rafts provide a platform for AP to interact
with ApoE (Kawarabayashi et al., 2004). The common variants
of ApoE are AopE2, AopE3, and AopE4, with ApoE4 serving as

the strongest genetic risk factor for sporadic AD (Kunkle et al.,
2019). Substantial evidence suggests that ApoE4 promotes Af
aggregation and deposition in the brain (DeMattos et al., 2004;
Dolev and Michaelson, 2004). Cholesterol metabolism plays an
essential role in maintaining brain function, whereas cholesterol
dysregulation serves as a potential risk factor for diseases,
including AD (Di Paolo and Kim, 2011). Interestingly, there is a
near-perfect regulatory system in the brain that prevents serum
cholesterol from entering the central nervous system (CNS)
to maintain stable cholesterol levels and support normal brain
function (Gliozzi et al., 2021). Thus, it remains to be explained
how hypercholesterolemia affects AD pathogenesis. Herein, we
reviewed the potential mechanisms of hypercholesterolemia with
AD, aiming to provide new strategies for preventing or delaying
the onset of AD.

EVIDENCE FOR THE ROLE OF
HYPERCHOLESTEROLEMIA IN
ALZHEIMER’S DISEASE

In the last decade, the relationship between cholesterol and
AD has been thoroughly investigated in epidemiological studies.
Scholars screened 17 studies for a meta-analysis and showed
that adults with high total cholesterol (TC) in midlife are at
higher risk for AD (Anstey et al, 2017). Similar results were
seen in a longitudinal, population-based prospective cohort
study, which followed participants without dementia for 13 years
and found that higher TC concentrations at baseline were
associated with an increased risk of AD (Schilling et al,
2017). In a United States-based cohort analysis, higher TC and
triglyceride levels in midlife were associated with a greater 20-
year decline in memory, as judged by decreased scores on
tests of executive functioning, processing speed, and sustained
attention (Power et al., 2018). In China, participants from
the cohort study “the Effects and Mechanism Investigation of
Cholesterol and Oxysterol on Alzheimer’s disease” completed
cognitive tests and lipid level assessment. The data suggest that
increased serum TC is significantly associated with accelerated
cognitive decline (An et al., 2019). Additionally, elevated TC
concentrations in late life can also accelerate cognitive decline,
as reported in two studies in China (Ma et al., 2017; Guo
et al., 2020). However, other different studies have reported
that cholesterol intake and peripheral cholesterol levels are not
associated with an increased risk of AD (Tan et al., 2003;
Ylilauri et al., 2017). Another study suggests that elevated TC
levels reduce the risk for dementia in older adults (Ding et al.,
2021). Epidemiological investigations have shown conflicting
results on the role of hypercholesterolemia for AD, which
highlights the complex role of serum cholesterol in cognitive
decline. Interestingly, experimental studies have shown that a
high cholesterol diet (HCD), to some extent, promotes AD
development. A previous study showed that Japanese white
rabbits on HCD were found to have changes in brain metabolism
and structure that were similar to those of human AD (Jin et al.,
2018). In rats and mice, HCD also induces significant cognitive
impairment and Alzheimer’s-like disease (Abo El-Khair et al,
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FIGURE 1 | Cholesterol metabolism in the brain. 7-HOCA, 7a-hydroxy-3-oxo-4-cholestenoic acid; 24-OHC, 24(S)-hydroxycholesterol; 27-OHC,

27-hydroxycholesterol; ABC, ATP-binding cassette; ApoE, apolipoprotein E; Chol, cholesterol; CSF, cerebrospinal fluid; LDLR, low-density lipoprotein receptor; and
LRP1, LDL receptor-like protein 1.
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FIGURE 2 | Effect of 27-OHC on AB production and elimination. 24-OHC, 24 (S) -hydroxycholesterol; 27-OHC, 27-hydroxycholesterol; ABCA1, ATP-binding
cassette A1; ApoE, apolipoprotein E; APP, amyloid precursor protein; BBB, blood-brain barrier; Chol, cholesterol; Gadd153, growth arrest and DNA
damage-induced gene 153; IDE, insulin-degrading enzyme; LRP1, LDL receptor-like protein 1; and RAGE, receptor for advanced glycation end products.
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2014; Ledreux et al., 2016; Mancini et al., 2018; Ledo et al., 2019;
Mancini et al., 2021). Altogether, hypercholesterolemia is likely to
promote AD development as a risk factor, especially with elevated
TC levels in midlife.

CORRELATION OF
HYPERCHOLESTEROLEMIA WITH
ALZHEIMER’S DISEASE PATHOGENESIS

Hypercholesterolemia and Amyloid

Accumulation

The abnormal accumulation of A is one of the pathological
hallmarks of AD (Hardy and Higgins, 1992). AP is produced
when amyloid precursor protein (APP) is cleaved via the
amyloidogenic pathway, which is mediated by pB-secretase
(BACE) and vy-secretase (Vassar et al., 1999). y-secretase is
a membrane protease complex that contains presenilin as
the catalytic subunit. Of note, APP can also be cleaved via
the non-amyloid pathway, a process mediated by o and y
secretase, which do not produce A (Dar and Glazner, 2020).
As aducanumab receives U.S. Food and Drug Administration
approval, it signals that anti-amyloid immunotherapy will
provide the first therapy to slow or reverse the progression
of AD (U.S. Food and Drug Administration, 2021). Although
opponents of the amyloid hypothesis argue that AP is an
epiphenomenon and that the true cause of the disease remains
unclear. Nearly indisputable human genetic data, as well as
extensive evidence from animal models, suggest a key role for
AB in AD (Musiek et al., 2021). Positron emission tomography
(PET) is an important tool for quantifying brain amyloidosis
in patients with suspected AD. In a longitudinal comparison
study, amyloid PET scan data derived from 207 non-demented
participants in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) were analyzed in conjunction with baseline cholesterol.
As expected, the results showed that higher serum cholesterol
levels accelerate AP deposition in the brain (Souza et al., 2020).
High-field magnetic resonance imaging is another technology
used for AP visualization. When such a technique was applied
to detect cholesterol-fed rabbits, signal voids were observed
in the brain, which corresponded to Af-positive plaques
(Chen Y. X. et al, 2018). In addition, the apolipoprotein
E (ApoE) knock-out mice were treated with a high-fat diet
and injected intracerebroventricularly with AB;5_ 35, the results
showed that hypercholesterolemia accelerated AP accumulation
and tau pathology, which subsequently deteriorated cognitive
impairment (Park et al., 2013). Similar results were obtained
in several different strains of mice and Sprague-Dawley
rats, with diet-induced hypercholesterolemia accelerating AP
accumulation in the brain (Shie et al., 2002; Li et al., 2003;
Umeda et al,, 2012; Liu et al.,, 2018). Various animal studies
suggest that hypercholesterolemia increases A by affecting
APP processing in vivo (Refolo et al, 2000; Ullrich et al,
2010). Although AP and APP levels were not affected in the
early stages of hypercholesterolemia, the levels of presenilin
1 (PS1) that initiates AP production were increased (Chen

et al, 2016). Collectively, the accelerated accumulation of
AB by hypercholesterolemia is likely to be a major cause of
cognitive decline.

Hypercholesterolemia and Tau Pathology
Tau is a microtubule-associated protein mainly expressed
in neurons, and one of its main functions is to maintain
the stability of axonal microtubules (Naseri et al., 2019).
Hyperphosphorylation may disengage tau from microtubules,
and tau tends to misfold and aggregate to form NFT, which
eventually impairs neuronal function. In addition, pathological
tau induces synaptic dysfunction, which is another early
pathological manifestation of AD (Wu et al., 2021). Researchers
found a significant association between hypercholesterolemia
and all AD neuropathological outcomes, including NFT, by
analyzing neuropathological and clinical data from subjects
in the National Alzheimers Disease Coordinating Center
(NACC) (Xu et al, 2020). In animal experiment, a high-
fat/cholesterol diet alters insulin/IGF signaling in C57BL/6
mice, which increases hippocampal hyperphosphorylated tau
levels and leads to AD-like cognitive impairment (Bhat and
Thirumangalakudi, 2013). Phosphorylated tau expression
was also increased in ApoE knock-out mice on a high-fat
diet with intracerebroventricular injections of Af 25_35
(Park et al., 2013). In rats treated with a high-fat/cholesterol
diet, phosphorylated tau levels increased similarly (Abd Al
Haleem and El-Bakly, 2019). However, not all studies have
come to the same conclusion. In humanized tau transgenic
mice, HCD is not sufficient to induce tau pathology, either
tau phosphorylation or aggregation (Gratuze et al, 2016).
The discrepancy may be due to differences in animal strains,
which have different responses to HCD. Overall, additional
studies are needed to fully understand the relationship
between hypercholesterolemia and tau pathology to provide a
definitive answer.

Hypercholesterolemia and

Neuroinflammation

In addition to AP and NFT, neuroinflammation also holds
a prominent role in the pathogenesis of AD (Leng and
Edison, 2021). Neuroinflammation is an inflammatory response
that occurs within the CNS, with microglia and astrocyte
involved in the process. Microglia accelerate AD pathogenesis
by releasing inflammatory mediators but play a beneficial role in
amyloid plaque clearance (Cai et al., 2014). Activated microglia
produces and secretes several proinflammatory mediators, such
as interleukin-18 (IL-1p), IL-6, IL-18 and tumor necrosis
factor (TNF) (Mandrekar-Colucci and Landreth, 2010; Leng
and Edison, 2021). The release of pro-inflammatory molecules
causes synaptic dysfunction, neuronal death and inhibition
of neurogenesis (Lyman et al, 2014). In AD patients, there
is a positive correlation between microglia activation and
tau aggregation, as well as amyloid deposition (Dani et al,
2018). Astrocytes have Al phenotype and A2 phenotype.
The Al astrocyte phenotype is involved in neuroinflammation
through the nuclear factor-kB (NF-kB) pathway that releases
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inflammatory cytokines (Leng and Edison, 2021). Exposure of
astrocytes to AP would release cytokines, ILs, NO and other
potentially neurotoxic mediators (Ahmad et al., 2019). In animal
studies, both 4-month-old C57BL/6 and LDL receptor-deficient
mice developed cognitive dysfunction on a high fat/cholesterol
diet for 8 weeks, with neuroinflammation thought to play a
primary role. It is because of microglia and astrocytes that have
been activated in mice hippocampus, with increased expression
of cytokines and mediators, which include TNF-a, IL-1p, IL-6,
nitric oxide synthase 2, and cyclooxygenase 2 (Thirumangalakudi
et al,, 2008). Similarly, Wistar rats on a high-fat/cholesterol
diet had significantly elevated IL-1p, IL-2, IL-6 and TNF-a
levels in the hippocampus (Abuelezz and Hendawy, 2021).
However, on 6-month-old CD1 mice, HCD for 8 weeks did not
show microglia activation in the hippocampus and only mild
astrogliosis was observed. In 16-month-old CD1 mice, HCD
enhanced microglia activation with an increase in IL-1f, IL-6
and TNF-a expression, however, HCD also promoted microglia
polarization to M2-like phenotype, which is characterized by
secretion of anti-inflammatory cytokines, such as IL-4 and IL-
10(Chen Y. et al., 2018).

Hypercholesterolemia and Oxidative

Stress

Oxidative stress is an imbalance between the oxidative and
antioxidant systems favoring the oxidative system, and its
contribution to AD progression has been demonstrated in a
wide range of studies (Butterfield and Halliwell, 2019). Reactive
oxygen species (ROS) and reactive nitrogen species (RNS) are
the most representative oxidants that have significant effects on
redox biology and cause oxidative stress (Ezraty et al., 2017).
Unlike oxidants, the antioxidant system is mainly served by
enzymes, which mainly include superoxide dismutase (SOD),
glutathione peroxidase (GPX), and others. SOD is an endogenous
enzyme that converts superoxide radicals into diatomic oxygen
and hydrogen peroxide. Hydrogen peroxide is further converted
to water by GPX. In addition, glutathione (GSH) is the main
non-enzymatic antioxidant that scavenges ROS to protect the
body from oxidative stress damage. The major biomarkers of
oxidative stress include malondialdehyde, protein carbonyls and
so on (Sies et al., 2017). Earlier studies have shown that HCD
increases malondialdehyde level and thiobarbituric acid-reactive
substances (TBARS) level in Wistar and Sprague-Dawley rats’
brains (Gokkusu and Mostafazadeh, 2003; Montilla et al., 2006;
Otunola et al., 2014; Hegazy et al., 2016). Malondialdehyde is
one of the lipid peroxidation products, and TBARS is considered
the end product of malondialdehyde. Moreover, protein carbonyl
levels were increased in the hippocampus of albino rabbits fed
with HCD (Aytan et al,, 2008). In addition to causing lipid
peroxidation, HCD decreases antioxidant enzyme activity in the
brain. In Wistar rats, HCD decreased SOD, GPX and GSH activity
in the brain (Montilla et al., 2006; Afonso et al., 2013; Otunola
et al,, 2014). GSH is the body’s master antioxidant that prevents
ROS accumulation. Similarly, HCD decreased GSH levels in
both Sprague-Dawley rats and LDLR -/- mice (Gokkusu and
Mostafazadeh, 2003; de Oliveira et al., 2013).

Hypercholesterolemia and Blood-Brain

Barrier Breakdown

The blood-brain barrier (BBB) is a highly selective
semipermeable cellular border that regulates the transport
of substances into and out of the CNS, which is essential for
proper neuronal functioning (Cai et al., 2018). BBB breakdown
allows neurotoxic substances to enter the brain and harm
neurons, and/or trigger amyloid deposits, which accelerate
the course of AD (Sweeney et al, 2018). Nowadays, BBB
breakdown has been identified as an early biomarker of human
cognitive dysfunction independent of AB and tau (Nation et al,,
2019). In rabbits fed on HCD, BBB tight junction proteins
expression was down-regulation and IgG was increased in the
hippocampus, suggesting that BBB is disrupted because IgG is
not present in normal brain parenchyma (Chen et al., 2008). BBB
permeability increase induced by HCD can be ameliorated by
simvastatin, a medicine used to lower cholesterol (Jiang et al.,
2012). In wild-type and LDLR—/— mice, BBB disruption is
reflected in increased permeability to sodium fluorescein in the
hippocampus and decreased levels of claudin-5 and occludin
mRNA (de Oliveira et al., 2020). Furthermore, cholesterol
supplementation in rats during hypertension (Kalayci et al,
2009), or diabetes combined with hypercholesterolemia (Acharya
et al, 2013) also increased the permeability of the BBB. In
hypercholesterolemic patients, increased BBB permeability was
demonstrated by quantifying the water exchange rate across the
BBB (Shao et al,, 2019). Overall BBB disruption appears to be a
relevant event for hypercholesterolemia-induced changes in the
brain. However, the mechanism by which hypercholesterolemia
increases the permeability of the BBB remains to be elucidated.
Current evidence has shown that a cholesterol-rich diet increases
plasma cholesterol concentrations and positively correlates with
AD pathology. As serum cholesterol is blocked from entering
the brain, it is necessary to review cholesterol metabolism in the
brain, which will be key to elucidating the potential link between
hypercholesterolemia and AD.

CHOLESTEROL HOMEOSTASIS IN THE
BRAIN

Cholesterol Metabolism in Central

Nervous System

The brain is an organ rich in cholesterol, accounting for
approximately 25% of total body cholesterol, which is higher than
any other organ (Bjorkhem and Meaney, 2004).

As BBB prevents the direct uptake of cholesterol, most
of the cholesterol in the brain comes from its synthesis,
a complex process involving multiple enzymatic reactions
(Genaro-Mattos et al., 2019). In the CNS, it is believed that
neurons synthesize only a limited amount of cholesterol via the
Kandutsch-Russell pathway, and more sources of cholesterol
are dependent on astrocytes, which synthesize cholesterol via
the Bloch pathway (Pfrieger and Ungerer, 2011; Zhang and Liu,
2015). A recent study indicates that both neurons and astrocytes
preferentially synthesize cholesterol via the Bloch pathway and
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that endogenous cholesterol accumulates in neurons over time
(Genaro-Mattos et al., 2019). As shown in Figure 1, neurons take
up cholesterol from astrocytes mainly via ApoE transport. Most
ApoE is synthesized by astrocytes and microglia in the CNS, and
under normal physiological conditions, neurons do not produce
ApoE (Vance and Hayashi, 2010). ApoE binds to cholesterol
for transport and releases cholesterol to neurons by binding
to the LDLR and LDLR-related protein 1 (LRP1) receptors
(Petrov and Pikuleva, 2019). LDLR and LRP1 are expressed
by neurons and glial cells, but LDLR is mainly expressed
in glial cells, while LRP1 is mainly expressed by neurons.
Other receptors in the brain are also involved in cholesterol
transport, such as VLDLR, ApoER2/LRP8, LRP4/MEGEF?7,
LRP1B, megalin/LRP2, LRP5, LRP6, and SorLA/LR11(Jin et al.,
2019). To maintain a steady state, cholesterol in the brain
can be converted to 24 (S)—hydroxycholesterol (24-OHC) by
cytochrome P450 46A1 (CYP46A1), a process that is completed
only in neurons (Lund et al., 1999). 24-OHC crosses the BBB
into the peripheral circulation more readily than cholesterol
and is subsequently picked up by plasma lipoproteins and
transported to the liver for metabolism (Bjorkhem et al., 2001).
The liver has several mechanisms to eliminate 24-OHC, such as
being excreted directly as a prototype or its conjugated form,
or being hydroxylated and excreted, as well as being converted
to cholic or chenodeoxycholic acid (Bjorkhem et al, 2001).
Cholesterol can also be excreted from neurons via ATP-binding
cassette (ABC) transporters, such as ABCAl, ABCGIl and
ABCG4 (Kim et al., 2008). Subsequent cholesterol transport
is mediated by ApoE, but it seems less important than the
24-OHC-mediated mechanism (Bjorkhem et al., 1998). Surplus
cholesterol is converted to cholesteryl esters for storage by
Acyl-CoA cholesterol acyltransferase (ACAT) (Leon et al., 2005).
Serum 24-OHC levels indicate a disturbance in brain cholesterol
turnover, as 24-OHC primarily comes from the brain. 24-OHC
has been reported to be exported from the brain at a rate of
about 2-3 mg/day (Iuliano et al., 2015). Similarly, peripheral
cholesterol can also enter the CNS in the form of side-chain
oxidation, and 27-OHC is the most abundant oxysterol in
blood circulation. The formation of 27-OHC is mediated by
cytochrome P450 family 27 subfamily A member 1 (CYP27A1),
which introduces the hydroxyl groups at position 27, a process
that occurs in almost all cells in vivo but is synthesized at low
rates in neurons and glial cells (Russell, 2000). A previous study
suggests that approximately 5 mg of 27-OHC per day flows
into the brain and that more 27-OHC will enter the brain if the
integrity and function of the BBB is impaired (Heverin et al,
2005; Bjorkhem et al., 2009). Generally, the flux of 27-OHC into
the brain is higher in males than females, but oxygen steroid
levels are not affected by sex differences (Parrado-Fernandez
et al., 2021). In neuronal cells, 27-OHC will be metabolized to
7a-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the action
of the CYP7B1 enzyme (Meaney et al., 2007). 27-OHC enters the
brain through free diffusion, so there is a correlation between
the level of 27-OHC in the cerebrospinal fluid (CSF) and the
level of 27-OHC in the circulation. Although HCD did not alter
brain cholesterol levels in animal models, however, fluxes of
27-OHC into the brain were significantly increased (Marwarha

and Ghribi, 2015). In addition to 24-OHC and 27-OHC, small
amounts of other oxysterols were found in the brain, which
includes 7a-hydroxycholesterol, 78-hydroxycholesterol, 4f-
hydroxycholesterol, a-epoxide, p-epoxide and 7-ketocholesterol,
among others (Hascalovici et al., 2009). Cholesterol can also
be metabolized to 25-hydroxycholesterol, which promotes
IL-1B-mediated neuroinflammation and is involved in AD
pathogenesis (Wong et al, 2020). Generally, 24-OHC and
27-OHC are considered more closely associated with AD
pathogenesis, although several types of cholesterol metabolites
are present in human brain and their levels will be altered in
pathological states (Gamba et al., 2015).

Twenty Four-OHC and 27-OHC in Brains
With and Without Alzheimer’s Disease

Oxidized cholesterols play an important role in maintaining
cholesterol homeostasis and its misregulation in the CNS
has been reported to be associated with neurodegeneration.
An earlier study had reported a decrease in 24-OHC and
an increase in 27-OHC in brain samples from AD patients
(Heverin et al., 2004). More specifically, such changes occurred
at advanced stages of the AD, with CYP46A1 and CYP27A1
mRNA levels significantly decreased and increased in the AD
brain, respectively (Testa et al., 2016). In the CSE both 24-OHC
and 27-OHC levels were significantly higher in those diagnosed
with early AD than in controls (Wang et al., 2016). Similar finding
has been reported in AD patients’ plasma (Zarrouk et al., 2020).
The altered 24-OHC levels in CSF are thought to be caused by
neuronal damage and/or demyelination, while elevated 27-OHC
levels are attributed to dysfunction of BBB and blood-CSF barrier
(Leoni et al., 2006). Recent study results revealed that not only
24-OHC but also 24-OHC/27-OHC ratio was higher in subjects
with AD pathology (Jahn et al, 2021). Due to the reduction
of CYP46Al1 in AD brain, single nucleotide polymorphisms
in CYP46A1 have been studied, in which CYP46A1 introns 1
(rs7157609) and 3 (rs4900442) were found to increase the risk
of AD (Kolsch et al,, 2009). Additionally, CYP46A1 intron 2
(rs754203) has a synergistic effect with APOE4 on increasing AD
risk (Borroni et al., 2004; Li et al.,, 2006). A study conducted
in Finland found a higher frequency of rs754203 CC genotypes
than CT and TT genotypes in AD patients with onset over
65 years of age (Helisalmi et al., 2006). In patients with AD
in China, the frequency of at least one CYP46A1 T allele
(C/T or T/T) was higher (He et al., 2012). However, other
studies found that rs754203 (Wang and Jia, 2007), rs4900442
(Li et al., 2006) are not associated with AD. Overall, CYP46A1
polymorphisms affect AD risk, but these contradictory reports
need further clarification (Li et al., 2018). CYP46A1 maintains the
balance of cholesterol metabolism in the brain by catalyzing the
conversion of cholesterol to 24-OHC. Of note, 27-OHC produced
by CYP27A1 also affects cholesterol homeostasis in the brain.
27-OHC is mainly derived from the peripheral circulation and
is likely to be a bridge between hypercholesterolemia and AD.
A case-control study showed a significant association between
high plasma levels of 27-OHC and mild cognitive impairment
(Liu et al., 2016). Another randomized controlled trial suggests
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that reducing serum 27-OHC levels by managing lifestyle and
vascular factors is beneficial for improving cognitive function
(Sandebring-Matton et al., 2021). In experimental studies, HCD
upregulates CYP27A1 expression and increases plasma 27-OHC
levels in rats, thereby affecting peripheral cholesterol metabolism
(Zhang et al., 2018). Further, 27-OHC negatively affects cognitive
function and cholesterol metabolism in rats when it is injected
into the body through the tail vein (Zhang et al, 2015).
Additionally, cholesterol diet affected spatial learning in wild-
type mice but not in Cyp27KO mice lacking 27-OHC (Heverin
etal., 2015).

MECHANISMS OF 27-OHC AFFECTING
AD PATHOGENESIS

Effect on Ap

Twenty seven-OHC increases the accumulation and deposition
of AP in the brain by regulating the metabolic processes of
AP, including the production, transportation, and elimination
(Figure 2). In APP/PS1 mice, subcutaneous injection of 27-
OHC increased gene and protein expression of APP, BACE]L,
and receptor for advanced glycation end products (RAGE),
while decreasing expression of a disintegrin and metalloprotease
10, LRP1, and insulin-degrading enzyme (IDE) (Zhang et al.,
2019). Substantial evidence suggests that activation of the NF-kB
signaling pathway increases BACE1 expression, which promotes
AP production (Shi et al, 2017; Kim et al, 2019; Ma et al,
2020; Zheng et al.,, 2020). In SH-SY5Y cells, 27-OHC evokes
phosphorylation of IkB kinase complex by activating gadd153
(growth arrest and DNA damage-induced gene 153), which in
turn causes IkB phosphorylation, and consequently leading to
IkB degradation and NF-kB activation (Marwarha et al., 2013).
The IkB degradation product, p65-p50 dimer, translocates to
the nucleus and binds to the kB site in the BACE1 promoter
region, thereby upregulating BACE1 expression (Marwarha et al.,
2013). Silencing the gadd153 gene can reduce 27-OHC induced
AP production and decreased APP and BACEL levels (Prasanthi
etal., 2011). AP is cleared from the brain by two major pathways:
efflux through the BBB and degradation by proteases. LRP1 and
RAGE are the main receptors for Ap transport, which mediate
AP efflux and influx into the brain, respectively (Wang et al.,
2021). Additionally, IDE is one of the main peptidases involved
in AR degradation, and 27-OHC treatment in mice resulted
in a reduction of IDE in the brain (Marwarha et al., 2010;
Zhang et al., 2019). Moreover, 27-OHC competitively inhibits
the benefits of 24-OHC because of their similar structure. SH-
SY5Y cells exposed to 24-OHC showed an increase in a-secretase
activity, implying that 24-OHC promotes APP processing by
activating the non-amyloid production pathway (Famer et al,
2007). Increased expression of ABCALI is another benefit of 24-
OHC (Prasanthi et al., 2009). ABCA1-mediated ApoE lipidation
plays a key role in facilitating extracellular AB degradation
by IDE and facilitating AP transport (Fan et al., 2009). Gene
overexpression of ABCA1 can reduce AP and plaque (Wahrle
et al., 2008). In contrast, gene inactivation of ABCA1 increased
the level of AB and plaque pathology in a mouse model (Corona

et al,, 2016). In the CNS, liver X receptor (LXR), retinoid X
receptor (RXR) and peroxisome proliferator-activated receptor
(PPAR) regulate ABCAL1 transcription and ApoE expression
(Koldamova et al., 2014). 24-OHC and 27-OHC are endogenous
activators of LXR. In human primary neurons, 27-OHC acts as an
LXR ligand and activates ABCA1 to reduce extracellular Af levels
(Kim et al., 2009). Of note, 24-OHC is a full agonist while 27-
OHC is a partial agonist (Mutemberezi et al., 2016). Apparently,
24-OHC and 27-OHC compete for a finite number of binding
sites, and 27-OHC will act as an antagonist.

Other Mechanisms of 27-OHC Affecting
AD Pathogenesis

In hTau-ApoE*/* mice, a mouse expressing P301L mutant
human tau as well as wild-type ApoE, HCD increased the
number of neurons with hyperphosphorylated tau, which
was associated with elevated 27-OHC levels (Glockner et al.,
2011). In hippocampal slices from New Zealand white rabbits,
27-OHC treatment increased tau phosphorylation by altering
leptin signaling, a process that can be reversed by leptin
supplementation (Marwarha et al, 2010). Further study
revealed that the 27-OHC reduced leptin expression in human
neuroblastoma SH-SY5Y cells by inducing endoplasmic
reticullum stress that activates C/EBP homologous protein,
which has a negative regulation on C/EBPa, a transcription
factor necessary for leptin expression (Marwarha et al., 2012).
Neuroinflammation also plays a role in the pathogenesis of
AD. In AD patients, pro-inflammatory factors such as IL-1f,
IL-6 and IL-8 were significantly increased, which coincided
with changes in oxysterol levels such as 27-OHC (Testa et al,,
2016). Similarly, an experimental study showed that 27-OHC
increased TNF-a and IL-17 levels in the brain by subcutaneous
injection in C57BL/6] mice (Wang et al., 2020). In SH-SY5Y
cells, 27-OHC increased TNF-a and inducible nitric oxide
synthase expression and decreased IL-10 levels by activating
the TGF-B/NF-kB signaling pathway. For rat glioma cells, 27-
OHC induces inflammatory damage by activating TLR4/TGF-f
signaling (Ma et al., 2019). In addition, 27-OHC mediates RAGE
upregulation in astrocytes and neurons via RXRy receptor
(Loera-Valencia et al., 2021a). RAGE activation is involved in
the inflammatory response and promotes neurodegeneration
(Yan et al,, 2009). In terms of oxidative stress, 27-OHC not only
increased ROS in astrocytes but also decreased the activity of
antioxidant enzymes by regulating the Nrf2 pathway, which
includes SOD, GSH and GPX (Ma et al., 2015). In addition to
being directly related to pathogenesis, 27-OHC is also closely
associated with AD-associated events. Synaptic dysfunction is
a major feature of many neurodegenerative diseases, including
AD (Jackson et al., 2019). Synaptic plasticity occurs in neural
circuits during long-term memory formation (Zhou et al., 2021).
Long-term potentiation (LTP) is one of the main forms of
synaptic plasticity, and high-frequency stimulation-induced LTP
is dependent on estrogen receptor (ER) activation (Tozzi et al.,
2019). 27-OHC is an endogenous selective estrogen receptor
modulator (He and Nelson, 2017), which may decrease LTP
amplitude. Lower LTP responses are often seen in AD models,
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but not in all. In Cyp27Tg transgenic mice, 27-OHC enhances
LTP at Schaffer collateral-CA1 synapses, which may be related
to abnormally large dendritic spines in the stratum radiatum
(Loera-Valencia et al., 2021b). It is important to note that
LTP responses deviating from normal, either higher or lower,
may lead to hippocampal circuit dysfunction. Additionally,
oxysterol mixtures containing 27-OHC decreased neuronal
postsynaptic density protein 95 (PSD95) levels, which suggests
that oxysterols induce synaptotoxicity (Staurenghi et al., 2021).
In New Zealand White rabbits, HCD increased 27-OHC levels
in the brain, and 27-OHC decreases synaptic marker protein
PSD-95 expression by downregulating ERa (Brooks et al., 2017).
27-OHC also decreased PSD95 levels in hippocampal rat primary
neurons, however, it was attributed to REST-miR124a-PTBP1
axis dysregulation (Merino-Serrais et al., 2019). Dysfunction in
the metabolism of glucose also leads to AD and mild cognitive
impairment (Gamba et al, 2019). Excess 27-OHC reduces
brain glucose uptake in CYP27A1 overexpressing mice fed with
HCD. On the one hand, 27-OHC increased aminopeptidase
A(AP-A) expression via LXR, and AP-A increased angiotensin
II production, which inhibited glucose transporter type 4
(GLUTH4) expression. On the other hand, 27-OHC increased
aminopeptidase N (AP-N) expression and AP-N enhanced the
degradation of angiotensin I'V, a metabolite that activates GLUT4.

CAN CHOLESTEROL REGULATION
PREVENT OR DELAY AD?

Cholesterol-Lowering Drugs

Statins are the most common cholesterol-lowering drugs,
blocking cholesterol synthesis in the hepatic pathway by
competitively inhibiting HMG-CoA reductase (Maron et al,
2000). Statins can be classified as hydrophilic or lipophilic
according to their ability to dissolve in lipid media or water.
Hydrophilic statins, such as pravastatin and rosuvastatin, are
unable to enter tissues other than the liver. In contrast,
lipophilic statins, such as simvastatin and atorvastatin, are more
likely to penetrate the BBB (Climent et al., 2021). Pravastatin
reduce the absolute levels of plasma cholesterol and 27-OHC
in men, with a slight increase in the ratio of 27-OHC to
cholesterol (Thelen et al., 2006b). Atorvastatin and simvastatin
can also reduce plasma cholesterol and 27-OHC concentrations
in normal subjects, but do not alter the ratio of 27-OHC to
cholesterol (Thelen et al., 2006a). Results from a retrospective
case-control study conducted in Germany showed a negative
association between the use of statins and all-cause dementia
including AD. These statins included pravastatin, rosuvastatin,
atorvastatin, fluvastatin, lovastatin, pitavastatin, and simvastatin
(Zingel et al., 2021). As a water-soluble drug, rosuvastatin
improved the performance of rats in neurobehavioral tests
and reversed high-salt and cholesterol diet induced changes in
oxidative biomarkers, which were due to its good affinity with
Nrf2 (Husain et al., 2018a). Another published paper showed
that rosuvastatin also has a high affinity for the active site of
NF-kB. Thus, rosuvastatin counteracts high-salt and cholesterol
diet induced neuroinflammation and cognitive impairment by

reducing TNF-a and increasing IL-10 through inhibiting the
overexpression of NF-kB in the hippocampus (Husain et al.,
2017). Simvastatin, one of the most common lipid-soluble
statins, may slow the progression of cognitive decline, as a
conclusion from a reanalysis of patient-level data on AD obtained
from failed clinical trials (Geifman et al., 2017). Simvastatin
effectively reduced AP4, protein levels in yeast cells (Dhakal
et al, 2019). In brain capillary endothelial cells, simvastatin
treatment significantly increased intracellular apo] levels. Apo]
can bind AP, thus promoting AP clearance through BBB
and reducing AP uptake (Zandl-Lang et al, 2018). Although
simvastatin readily passes through the BBB, a study suggests
that free simvastatin failed to improve cognitive impairment
caused by high-cholesterol diets and that it improves cognitive
dysfunction only when simvastatin was reproduced in lipid-
core nanocapsules (Lorenzoni et al., 2020). However, not all
studies specify that statins can protect against cognitive deficits
caused by hypercholesterolemia. Recent meta-analysis pointed
out that contemporary lipid-lowering drugs such as statins
did not show a significant difference with the incidence of
cognitive impairment in randomized controlled trials (Xuan
et al,, 2020; Ying et al., 2021). And even, statins are harmful
to cognitive function. The Food and Drug Administration has
added an adverse event message to the labeling of statins
that statins have the potential to cause reversible cognitive
impairment (U.S. Food and Drug Administration, 2015).
Inhibition of both protein farnesyltransferase (FT) and protein
geranylgeranyltransferase-1 (GGT) by statins may provide an
explanation for the inconsistent results in AD treatment.
Heterozygous deletion of either FT or GGT reduces AP
deposition and neuroinflammation, but only haplodeficiency
of FT rescues cognitive function in APP/PS1 mice (Cheng
et al., 2013). Of note, GTT is critical for synapse formation
and remodeling. In GGT-haplodeficient mice, reduced dendritic
spine density in cortical neurons and impaired hippocampal
synaptic plasticity were observed (Hottman et al., 2018). Thus,
the reduction in GGT by statins likely offsets the benefit of
FT reduction. In addition to statins, drugs that block intestinal
cholesterol absorption are also known to lower cholesterol
levels. Ezetimibe is a drug that reduces cholesterol absorption
and targets Niemann-Pick Cl-like 1. In Swiss albino mice on
a cholesterol diet, ezetimibe administration lowers cholesterol
levels and improves memory (Dalla et al., 2009). However,
ezetimibe increased enterocyte AP abundance in C57BL/6]
mice, which may affect cerebral AP homeostasis (Pallebage-
Gamarallage et al., 2009). Additionally, Niacin also has the
ability to lower serum cholesterol, and a prospective study in
Chicago suggests that niacin supplementation may prevent AD
(Morris et al., 2004). Altogether, statins are widely studied, but
no consistent conclusions have been reached in terms of AD
prevention and treatment.

Drugs Targeting ACAT, CYP46A1, LXR,
RXR, and PPAR

ACAT is an intracellular ~membrane-bound enzyme
responsible for converting cholesterol into cholesteryl esters
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(Rogers et al., 2015). Earlier work showed that ACAT inhibitors
(CP-113,818 and CI-1011) reduced cholesterol esters in APP
transgenic mice and reduced soluble AB4, and AP plaques in
the brain (Hutter-Paier et al., 2004; Huttunen et al., 2010). In
human H4 neuroglioma cells, knockdown of ACAT1 reduced
the proteolytic processing of APP and A production (Huttunen
et al, 2007). In a different study, which applied ACAT1
knockdown gene therapy to AD mice, similar results were
obtained (Murphy et al., 2013). ACAT1 gene ablation ameliorates
cognitive deficits in AD mice, which may be attributed to
improved AP pathology by increasing 24-OHC content (Bryleva
et al., 2010). It is known that cholesterol 24-hydroxylation is
catalyzed by CYP46A1, which can be activated by efavirenz
at low concentrations. In 5XFAD mice, efavirenz treatment
reduced amyloid abundance in the brain and decreased the total
number and area of AP plaques (Mast et al., 2017). In another
study, efavirenz treated 5XFAD mice increased 24-OHC levels
and improved cognition but had no effect on amyloid plaque
load (Petrov et al., 2019). 24-OHC is usually beneficial to the
brain, whereas excess 27-OHC is probably involved in AD
pathogenesis. 27-OHC is produced from cholesterol catalyzed by
the enzyme CYP27A1. Unfortunately, studies of drugs targeting
CYP27A1 are lacking. Besides esterification and conversion,
cholesterol can be excreted from cells via ABC transport. ABCA1
transcription and APOE expression are regulated by LXR, RXR
and PPAR, which have implications for cholesterol transport and
AP clearance. T0901317 is widely studied as an agonist of LXR.
T0901317-treated APP23 mice showed an increase in ABCA1
expression with a decrease in soluble AB 49 and AP 4, levels in
the brain (Koldamova et al., 2005). Similar results were observed
in APP23 mice on a high-fat diet (Fitz et al., 2010). Further study
showed that T0901317 reduced interstitial fluid levels of Ap but
had no effect on already-formed AP plaques (Fitz et al., 2014). In
Tg2576 mice, T0901317 promotes AP 4 clearance but did not
inhibit APP processing (Riddell et al., 2007). In APPLSxPS1mut
mice and APP/E4 ABCA1 haplo-deficient (APP/E4/Abcal +)
mice, T0901317 improved memory function, despite failing to
reduce AP plaque load (Vanmierlo et al., 2011; Carter et al,
2017). A recent study indicates that T0901317 can antagonize
AB-induced toxicity and exert a protective effect on human
neural stem cells (Chiang et al., 2022). GW3965, another LXR
agonist, improves synaptic function in primary hippocampal
neurons exposed to AR (Bdez-Becerra et al., 2018). In addition,
GW3965 reduces AP deposition in APP/PS1 mice (Donkin
et al., 2010). Since LXR activates gene transcription by forming
a heterodimer with RXR (Baranowski, 2008), agonists targeting
RXR have also been extensively studied. Bexarotene, an RXR
agonist, has been reported to reduce AP plaque load, increase
AR clearance, and improve cognitive function in APP/PS1 mice
(Cramer et al., 2012). However, subsequent studies failed to
confirm that bexarotene reduced AP plaque burden (Price et al.,
2013; Tesseur et al., 2013; Veeraraghavalu et al., 2013). Another
study suggests that bexarotene improved cognitive deficits in
APP mice, although it did not affect AP (Fitz et al,, 2013).
However, no cognitive benefit of bexarotene in APP/PS1 mice
has also been reported (LaClair et al., 2013). In 5XFAD mice,
Bexarotene treatment reduced amyloid plaque accumulation

but not A4, (Mariani et al., 2017). PPARYy activation stimulates
LXR expression, and significantly, PPARy also plays a role in
glucose regulation and inflammation inhibition (Landreth et al.,
2008). However, the PPARy activator rosiglitazone failed to
improve cognitive performance in AD patients (Gold et al., 2010;
Tzimopoulou et al., 2010).

Herbal Medicine and Natural Compound

The cholesterol-lowering effects of herbs and natural compounds
may reduce 27-OHC influx to the brain, as serum cholesterol
levels have a positive correlation with 27-OHC levels (Hirayama
etal., 2009). Safflower yellow, a flavonoid isolated from safflower,
reduces endogenous cholesterol by decreasing the expression of
mevalonate decarboxylase and APOE4 in the cortex, thereby
improving learning and memory performance in AD mice (Du
et al., 2021). Troxerutin is also a naturally occurring flavonoid
that improves cognitive impairment induced by brain insulin
resistance in mice fed with HCD (Lu et al., 2011). On the
one hand, troxerutin reduces cholesterol levels by inhibiting
the activation of c-jun N-terminal kinase 1 and IkB kinase
B/NEF-kB. On the other hand, troxerutin alleviates oxidative
stress by reducing the levels of ROS, protein carbonyls and
advanced glycation end products (Lu et al., 2011). Quercetin, a
polyphenolic flavonoid, reverses HCD-induced cognitive deficits
by lowering cholesterol levels, reducing Af levels, and decreasing
oxidative stress and neuroinflammation (Lu et al., 2010).
Additionally, cognitive impairment induced by HCD can be
partially reversed by treatment with a tannins-enriched fraction
of Emblica officinalis, which exerts its anti-inflammatory effects
by inhibiting NF-kB nuclear translocation (Husain et al., 2018c)
and exerts its antioxidant stress effects by activating the Nrf2-
ARE pathway (Husain et al., 2018b). In addition to flavonoids,
some other chemical components also possess biological activities
to improve HCD-induced cognitive deficits. Phytosterol ester
reduces serum lipid levels in HCD rats and improves cognitive
performance by reducing neuroinflammation and improving the
cholinergic system (Rui et al., 2017). Dill tablets and Ocimum
basilicum L. attenuates cognitive dysfunction in rats by restoring
histopathological changes and delaying Ap accumulation, which
was attributed to a decrease in serum cholesterol and a
reduction in oxidative stress (Mohammadali et al., 2020; Heshami
et al., 2021). Walnut polyphenols similarly improved memory
function in hypercholesterolemic mice by lowering cholesterol
and reducing oxidative stress (Shi et al., 2014). In addition,
polyphenols from Oriental plums ameliorated cognitive decline
in HCD mice, which mechanism involved lowering cholesterol
and reducing BACEI and AP expression (Kuo et al, 2015).
Thymoquinone not only down-regulates BACE1 and RAGE
levels to reduce the source of AP, but also up-regulates IDE and
LRP1 levels to promote AP degradation and thus resist HCD-
induced AP accumulation (Ismail N. et al., 2017). Royal jelly, a
secretion with complex composition, regulates Ap metabolism
by a mechanism like thymoquinone and reduces cholesterol
levels in HCD-fed rabbits (Pan et al., 2018). Similar results were
observed in ovariectomized cholesterol-fed rabbits, where royal
jelly treatment reduced lipid levels and AP aggregation, as well as
increased cholinergic receptor activity and antioxidant capacity,
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which contributed to improved cognitive impairment (Pan et al.,
2019). Overall, herbal extracts and natural compounds show
promise to improve HCD-induced cognitive impairment, but
more research is needed to investigate their effects on 27-OHC.

CONCLUSION AND FUTURE
PERSPECTIVES

Patients with hypercholesterolemia are at risk for developing
AD, as data obtained from human and animal models suggest
an association between peripheral cholesterol levels and AD
development. Of note is that serum cholesterol is not allowed
to enter the brain, whereas oxysterols can easily cross the
BBB (Rhea and Banks, 2021). In AD patients, oxysterol levels
are significantly changed, among which 24-OHC and 27-OHC
are considered additional biomarkers for AD diagnosis (Wang
et al,, 2016). Generally, 24-OHC flows from the brain into the
periphery, whereas 27-OHC flows from the periphery into the
brain (Gamba et al., 2021). 27-OHC is positively correlated with
plasma cholesterol levels (Burkard et al., 2007; Nelson et al.,
2013), and plays an important role in AD pathogenesis. Hence,
27-OHC is likely to be a key link between hypercholesterolemia
and AD. Statins are known for their cholesterol-lowering effects,
but statins have had mixed results in preventing AD, and other
cholesterol-lowering drugs are less well studied. Drugs targeting
cholesterol esterification, conversion, and transport have mostly
shown improvements in cognitive deficits in animal models, and
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