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Editorial on the Research Topic

MRI-Based Methods for the Identification of Cerebellar Ataxia Types

Failure to coordinate movements in ataxia patients results in gait-limb ataxia, frequent falls,
dysarthria, and oculomotor abnormalities such as nystagmus or saccadic dysmetria (Palau and
Espinós, 2006). Lesions’ location in either of the cerebellum’s parts might cause a distinct sort
of ataxia. For instance, gait and truncal ataxia are caused by damage to the midline cerebellar
regions, whereas ipsilateral limb cerebellar ataxia is caused by damage to the unilateral cerebellar
hemisphere (Ashizawa and Xia, 2016).

The strength of neuroimaging in diagnostic investigations is currently based in part on pattern-
recognition techniques comparable to those employed in brain tumors. Two separate trends of
cerebellar ataxia might be found based on neuroimaging data: degenerative or malformative.
Cerebellar atrophy characterizes the degenerative pattern, which is frequently coupled with white
matter (WM) or gray matter (GM) T2/FLAIR signal alterations, whereas aberrant morphology of
the brain stem and/or cerebellum characterizes the malformative pattern (Vedolin et al., 2013).
For example, in Friedrich’s ataxia (FRDA), the cerebellum volume is retained despite modest upper
vermis atrophy, reduced dentate nuclei, and higher iron accumulation (Barbeau, 1978; Schipper,
2012; Stefanescu et al., 2015). The vermis is generally atrophied and typically isolated in young
children with ataxia-telangiectasia (AT) (Perucca et al., 2016). The iron-induced signal ordinarily
seen in dentate nuclei vanishes in ataxia with oculomotor apraxia types 1 and 2, and widespread
cerebellar atrophy predominates in the anterior vermis (Frismand et al., 2013). Mild vermis and
cerebellum atrophy, as well as volume reduction of the dentate nuclei and atrophy of the middle
cerebellar peduncle, have been documented in spinocerebellar ataxia type 3 (SCA3) (Eichler et al.,
2011; Jacobi et al., 2012). The vermis and cerebellar hemispheres showed significant atrophy in
SCA6, whereas the middle cerebellar peduncle showed no signs of atrophy (Eichler et al., 2011;
Jacobi et al., 2012).

This Research Topic includes four original research articles, one brief research report, and one
systematic review that examine the radiological features of distinct forms of cerebellar ataxias
depending on their categorization and etiologies. Wang et al. used the 3D fractal dimension
approach to measure morphological alterations in supratentorial areas and estimate atrophy in
relatively focal regions of 48 SCA3 patients and 50 healthy controls (HC). Their results showed
that SCA3 atrophy is not only limited to infratentorial regions. In fact, both cerebellum and basal
ganglia related cortex were impacted. These findings might be linked to common SCA3 symptoms
and suggest that SCA3 should no longer be thought of as a disease affecting only the cerebellum
and its connections, but rather as an illness impacting the whole brain.
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Vavla et al. longitudinally evaluated advanced MRI and retinal
imaging techniques in 11 FRDA patients in a study testing the
safety and efficacy of 6-month treatment with interferon gamma.
While the diffusion tensor imaging indices showed a gradual
reduction of fractional anisotropy, functional MRI (fMRI) and
resting-state fMRI (rs-fMRI) showed substantial changes during
and after therapy. The changes in fMRI were shown to have a
strong relationship with clinical response. The retinal nerve fiber
layer thickness was known to be thinner on optical coherence
tomography, but there was no change over time. This pilot study
suggests that fMRI and rs-fMRI might be useful as auxiliary
measures in clinical trials for FRDA.

In their systematic review, Vavla et al. also gave a
critical assessment of the findings and techniques of fMRI
investigations undertaken in genetically proven FRDA. A
total of 198 FRDA children and young adults, and 205
HC were enrolled, in 12 cross-sectional and longitudinal
fMRI studies. Motor and cognitive task paradigms, as well
as resting-state investigations, were among the reported
fMRI designs, with broad alterations in functionally engaged
regions and a wide range of study approaches. These studies
provided a mixed picture of hypo- and hyperactivations in
distinct cerebral and cerebellar areas. Clinical factors and
functional changes were also frequently linked. Overall, the
data support the idea of cerebro-cerebellar loop injury and
compensatory mechanisms.

The goal of Nigri et al. was to determine when early clinical
and neurodegenerative MRI alterations may be detected, and
assess the rate of disease progression in both preclinical and early
disease stages. In their one-year longitudinal study, 14 SCA2
patients, 13 presymptomatic SCA2 participants (preSCA2), and
15 HC were recruited. SCA2 patients had significant atrophy
in the cerebellum, brainstem, basal ganglia, and cortex, whereas
preSCA2 subjects had isolated volume loss in the pons, as well as
cortical thinning in specific frontal and parietal areas, such as the
rostral-middle-frontal and precuneus. The one-year follow-up
showed volume loss in the cerebellum, pons, superior cerebellar
peduncles, and midbrain in SCA2 patients, but primarily in the
cerebellum in preSCA2 participants. This pilot study showed
that MRI measures are very sensitive in detecting longitudinal

structural changes in SCA2 patients, as well as in preSCA2
individuals up to a decade before projected illness onset.

Alata et al. presented a longitudinal investigation of alterations
in the cerebellum, corpus callosum (CC), ventricular system,
and striatum of an H-ABC (Hypomyelination with atrophy
of the basal ganglia and cerebellum) patient and taiep rat.
They compared the patient’s MRI findings to the results
of immunofluorescence, gait analysis, cerebellum, CC, and
ventricular system segmentation in the taiep rat. They discovered
that cerebellar and callosal alterations, which might indicate
hypomyelination, deteriorated with age and coincided with the
onset of ataxic gait. They also reported an increased lateral
ventriculomegaly in both the patient and taiep, perhaps due to
WM degeneration. TheseWM alterations progress over time and
may contribute to clinical deterioration.

Lupo et al. assessed distinct MRI patterns that might be
associated with Spastic Paraplegia 7 (SPG7) mutations and may
be linked to patients’ cognitive profiles in six SPG7 individuals
and 30 HC. MRI voxel-based morphometry and functional
connectivity methods were used to assess the cerebello-cortical
network. In parallel, the cognitive and social functioning of
SPG7 patients was examined. Their findings revealed particular
changes in language, verbal memory, and executive function,
as well as impairments in social and emotional processes. The
presence of cerebello-cortical dysregulation in different networks
involved in cognition and social functioning in SPG7 patients is
confirmed by evidence of an over-connectivity pattern between
both the right and left cerebellar dentate nuclei and specific
cerebral regions.
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