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Spiking neural networks (SNNs) are regarded as a promising candidate to deal with
the major challenges of current machine learning techniques, including the high energy
consumption induced by deep neural networks. However, there is still a great gap
between SNNs and the few-shot learning performance of artificial neural networks.
Importantly, existing spike-based few-shot learning models do not target robust learning
based on spatiotemporal dynamics and superior machine learning theory. In this
paper, we propose a novel spike-based framework with the entropy theory, namely,
heterogeneous ensemble-based spike-driven few-shot online learning (HESFOL). The
proposed HESFOL model uses the entropy theory to establish the gradient-based few-
shot learning scheme in a recurrent SNN architecture. We examine the performance of
the HESFOL model based on the few-shot classification tasks using spiking patterns
and the Omniglot data set, as well as the few-shot motor control task using an end-
effector. Experimental results show that the proposed HESFOL scheme can effectively
improve the accuracy and robustness of spike-driven few-shot learning performance.
More importantly, the proposed HESFOL model emphasizes the application of modern
entropy-based machine learning methods in state-of-the-art spike-driven learning
algorithms. Therefore, our study provides new perspectives for further integration of
advanced entropy theory in machine learning to improve the learning performance
of SNNs, which could be of great merit to applied developments with spike-based
neuromorphic systems.

Keywords: spiking neural network, few-shot learning, entropy-based learning, spike-driven learning, brain-
inspired intelligence

INTRODUCTION

The human brain has the advantages of imagination, lifelong learning, and learning based on the
interaction with the environment. Especially, the human brain can learn a new concept from a
small number of examples and has the strong generalization capability, which outperforms current
machine intelligence (Goelet et al., 1986). Some extraordinary capabilities exist in the human
brain. For example, when giving a reference example, the brain can be easily generalized to new
examples or create a new example. It is necessary and meaningful to develop a novel brain-inspired
framework to break the current bottleneck of machine intelligence based on brain processing and
learning mechanism.
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A spiking neural network (SNN) is the third generation
of an artificial neural network (ANN), which is based on the
underlying mechanism of the biological brain (Falez et al,
2019; Paredes-Vallés et al, 2019). It has the advantages of
rich spatiotemporal dynamical characteristics, large diversities
of the neural encoding mechanism, and low-power event-based
computation (Yang et al., 2021a,b). It is critical and meaningful
for artificial general intelligence (AGI), and is essential for high-
efficiency edge computing devices with low power consumption
and real-time processing capability (Pei et al., 2019).

In recent years, along with the development of computing
devices, deep learning with a large amount of labeled data
obtains successful and significant achievements in the fields
of computer vision and natural language processing (Strack,
2019; Zou et al, 2019; Tolkach et al, 2020). The capability
of deep learning has been stronger than that of human in
some certain fields. For example, the classification accuracy
of ResNet is significantly higher than that of human on the
ImageNet data set, and AlphaGo performs better than the
human champion at playing chess (Singh et al., 2017; Lu et al,,
2018). However, current machine learning algorithms depend
highly on a large amount of labeled data. In some practical
applications, the cost of data labeling is expensive. For example,
it requires experienced doctors to spend a large amount of time
to label the images in detail. Therefore, it is vital to investigate
the few-shot learning method, which has higher generalization
capability based on a small limited amount of labeled data.
Using machine learning models, such as support vector machine
(SVM) or convolution neural networks (CNNs), it is difficult
to realize the few-shot learning capability because the lack of
enough training data will cause the overfitting problem. SNN-
based few-shot learning is a novel perspective for few-shot
learning tasks, which is a promising approach to solve this
kind of problem.

The learning capability of current SNN models still suffers
from their robust adaptation to the environment with non-
Gaussian noise, which severely limits the application of spike-
driven models in real-world problems. Correntropy is a kind
of non-linear local similarity measure in kernel space, which
is closely related to the cross-information potential (CIP) in
information-theoretic learning (ITL) (Chen et al., 2018). The
main advantages of correntropy include two aspects. The
first aspect is that it has the local property of providing
an effective mechanism to weaken the influence of outliers
and non-Gaussian noise. Another major advantage is that it
introduces a novel measure method in sample space. If the
samples are close to each other, the measurement is similar
to the L2 norm. If the samples separate from each other, the
measurement is similar to the L1 norm. When the samples are
far away from each other, the measurement finally approaches
the LO norm. Due to its robustness to outliers and non-
Gaussian noise, the correntropy theory has been widely applied
in various fields, including signal processing and machine
learning (Du et al, 2018; Luo X. et al, 2018; Chen et al,
2019a).

In recent years, some novel entropy-based learning principles
have been proposed for robust learning, such as the maximum

mixture correntropy criterion (MMCC) (Wang et al,, 2021).
Previous studies have revealed that MMCC is a better selection
than current optimization criteria, including the minimum mean
square error (MMSE) criterion (Chen et al., 2019b). The MMSE
criterion depends on the assumption that the data are noise-
free or obey the Gaussian distribution. Once the assumption is
not satisfied, such as the data disturbed by heavy-tailed noise,
the performance of current machine learning algorithms may
be severely reduced. Therefore, this work proposes to adopt the
MMCC as the optimization criterion to rederive a novel spike-
driven few-shot online learning (SFOL) model, resulting in a
heterogeneous ensemble-based SFOL (HESFOL). The proposed
model can perform robust few-shot online learning for sequential
data. The paper is organized as follows: Section “Introduction”
describes the preliminaries of this study, including SNN and
entropy-based learning theory. The proposed HESFOL model is
introduced and explained in Section “Materials and Methods.”
Section “Results” presents the experimental results. And finally,
the discussions and conclusions are proposed in Sections
“Discussion” and “Conclusion,” respectively.

BACKGROUND

This study focuses on the two major broad areas of research,
which are few-shot learning based on meta-learning method, and
the entropy-based methods for machine learning. In this section,
the related work in these two fields are covered and summarized.

Few-Shot Learning Model Based on a

Meta-Learning Framework

Few-shot learning based on the meta-learning method majorly
uses the idea of learning-to-learn to realize the ambition.
For example, meta-learning with augmented memory neural
networks can solve the problem of how to quickly encode the vital
information of new tasks by introducing an additional memory
module (Santoro et al, 2016; Wang Y. et al, 2020). Model-
agnostic meta-learning aims to learn a good initialization for the
model, so that it can achieve good classification performance
with only one or several gradient updates when facing a new
task. Specifically, MAML introduces a new gradient, i.e., the
two-order gradient, to find the most sensitive direction of the
gradient change for fast learning of the new task. Gidaris et al.
(2019) simultaneously identified the training category and the
new category, and presented a dynamic network to generate
the corresponding classification weight for the new category
by designing a weight generator (meta-learner) based on the
attention mechanism. Sun et al. (2019) presented a meta-transfer
learning method, which pre-trains a feature extractor on the
auxiliary data set and then fine tunes a learner based on a small
amount of training data from the new tasks. Although there are
a series of previous works to solve the few-shot learning problem
using the meta-learner, there is no effective work based on SNN
model to realize the few-shot learning performance by combining
the brain mechanism with the machine learning theory, such as
entropy learning theory.
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Information-Theoretic Learning

The information-theoretic learning approach has been widely
applied to improve the performance of machine learning
algorithms in recent years. Zadeh and Schmid (2020) presented
an alternative loss derived from a negative log-likelihood loss
that results in much better calibrated prediction rules. Zhang
et al. (2020) presented to learn saliency prediction from a
single noisy labeling based on entropy theory. To optimize the
performance of current learning algorithms, researchers have
focused on the correntropy-based method. Zheng Y. et al. (2020)
presented a mixture correntropy-based kernel-based extreme
learning machine (MC-KELM) to improve the robustness of
KELM, which adopts the recently proposed MMCC as the
optimization criterion, instead of using the MMSE criterion.
Heravi and Hodtani (2018) presented a group of novel robust
information theoretic backpropagation (BP) methods, such as
correntropy-based conjugate gradient BP (CCG-BP). Xing et al.
(2019) presented a novel correntropy-based multiview subspace
clustering (CMVSC) method to efficiently learn the structure
of the representation matrix from each view and make use of
the extra information embedded in multiple views. Ensemble
algorithms can also be used for improving the robustness of
learning tasks, such as clustering. Bootstrap AGGregratING
(Bagging) algorithms were proposed to improve the classification
by combining the classification of randomly generated data
sets (Fischer and Buhmann, 2003). Bagging is a successful
example of an independent ensemble classifier to train the model
independently and then combine the outputs for the final verdict.
Although there are a number of studies on correntropy-based
machine learning, there still lacks an efficient and effective way
to adopt the entropy theory in the application of spike-based
machine learning. Therefore, this study aims at presenting an
optimized entropy-based spike-driven few-shot learning with
ensemble loss functions for robust few-shot learning.

MATERIALS AND METHODS

Proposed Ensemble Loss

In this study, a novel objective function is proposed, which is
the combination of single losses and integrates the proposed
objective function into the spike-driven few-shot learning model.
First, a mathematical explanation of the meaning of the proposed
loss function is given to clarify the importance of the loss
function. Let y represents the estimated label of a true label
§. A loss function L(y,y) represents a positive function, which
indicates the difference between y and y. Several types of loss

functions are combined with trainable weights. Let {Lj ( , 5/) }]K=1
represents K single loss functions. The aim is to find the best
weights {\;, X2,, Mg} to combine K basis loss function for
the generation of the best application-oriented loss function.
A further constraint is added to avoid values close to 0 for all the

weights. The proposed ensemble loss function is expressed as

K K
L= %Lli(n.3), > hi=1 (1)
i=1 i=1

The optimization with N training samples can be expressed as

e . N N 2 A
mlIE’I)I:IIZC 21 Zj:l AL (vis 1)

. (2)
s.t. Z]K:1 )\JZ =1

Then, the constraint is incorporated as a regularization term
according to the concept of Augmented Lagrangian. The
modified objective function based on Augmented Lagrangian is
described as

N N
mir:jr}{lize Z Z )\JZLj (yi-31) +m
: i=1 j=1

K
fo—l +
=1

2

K
n D -1] . (3)
=1

First and second terms of the objective function induce the
values of A7 to approach 0 but the third term satisfied Z]K:l )\]2 =
1. The overall training process is described in Algorithm 1.

Algorithm 1: Pseudo-code of the whole training process for the proposed
method.

Input:
The training set T, parameters 4; (Weights associated with each loss function), 71,
n2 (Lagrangian weights), o (Correntropy kernel bandwith), and m [maximum
number of iterations (epochs)]
Base loss functions {Lj()(/,y,)}4/:1 , K=4 (MMCC, Cross-entropy, MMSE based on
firing rate, MMSE based on membrane potential)
Output:
Parameter W, A4, A2, A3, A 4
1: Initiate Ensemble Loss Function using (Lj()(/,y,)}4/:1 and random A1, 12,43, 44
2: Initialize parameters WN(0,X) and t = 0
3: while not converged do
4: Select a mini-batch of training samples {X;, y;}/:1N from training set T.

5: Perform a forward path, calculate the loss and regularization term:
N K=4

K=4 K=4
D> RRL ) + e ( 211.271) + q( 277271)
i=1 j=1 j=1 j=1
6: Perform a backward propagation by the BPTT algorithm
7: Update W, A4, 12, Az, 14 by gradient descent algorithm.
8: t<«t+1

return (W(1), 21(0), Ao(t), A3(t), A4(t)}

Mixture Maximum Correntropy Criterion

The correntropy has been widely used in various kinds of fields,
such as machine learning and signal processing, which is defined
as

Vo(X,Y)=E [kc X, Y)] = //kU (x, y)fxy (x, y) dxdy (4)

where X and Y represent the stochastic variables, and E[.]
represents the expectation operator. The function ks (..)
represents the kernel function with kernel width o, and
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fxy(.,.) represents the joint probability density function (PDF).
In practical engineering projects, PDF is usually unknown.
Therefore, the sample estimator can be defined by finite usable

samples as
N

Vo (X, Y) = % > ko (xi = yi) - (5)

i=1

The radial basis function is usually selected as the function of
correntropy, which can be formulated as

. S S i = il
Vo (X,Y) = N ;kc (xi —yi) = N ;exp <_T) :
(6)
As alocal similarity measurement, the correntropy can effectively
inhibit the influence of the outlier and the non-Gaussian
distribution. Only if the variables X =Y, the correntropy reaches
the maximum value, which is defined as maximum correntropy
criterion (MCC). It can be used as the optimization criterion and
robust loss function.
Therefore, this study uses a mixture correntropy, which can be
described as

S
Ve (X,Y)=E [z AsGos (X, Y):| : ?)

s=1

where {Gg; (., .)}Ss=1 are S different Gaussian kernels based on
each kernel size o;. {)\s}le are S mixture parameters satisfying
0 <X <1land Zle s = 1. In this paper, S is selected to be
2. Thus, the sample estimator of mixture correntropy can be
expressed as

Vo (X, Y) = § 2L [4Gon (37.57) + (1 = 1) Goa (1. ;)]
_ % Zf\il [)\ exp (_ ”xiz_o)%’illz) F (1= exp (_ Hxiz—c}%’iﬂz)] .
(8)

An unknown parameter can be estimated by maximizing
the mixture correntropy between the desired signals and the
estimated values. More details on the MMCC can be found in
Zheng Y. et al. (2020). The curve of influence functions of MCC
and MMSE are shown in Figure 1. In this figure, the x-axis e
represents the estimated error between the actual output and its
corresponding estimate. The influence function ‘¥'(e) is calculated
as follows:

oGy 2

where G, (-) represents the Gaussian kernel and o is the size
of the Gaussian kernel. It is shown that the influence function
of MMSE increases linearly with the amplitude of the estimated
error, while MCC is constrained to larger errors. Since larger
errors are induced by outliers, MCC is useful to deal with the
robust learning problem.

Cross-Entropy Loss Function
The cross-entropy loss function is also regarded as log loss and
is the most commonly used loss function for back propagation. It

MMSE MCC
10 0.8
0.6
5 04
0.2
O ©
S 0 S 0
-0.2
5 04
0.6
-10 0.8
-10 -5 0 5 10 -10 -5 0 5 10
e e
FIGURE 1 | Influence functions based on the minimum mean square error
(MMSE) or maximum correntropy criterion (MCC).

also increases as the predicted probability deviates from the actual
label, which can be expressed as follows:

Lee ()A’b )’i) = Zyi log (5/’) :
i

(10)

In this study, a label I" is used for each image, which assumes a
value of 1 only for images that belong to the same class as the
image in the test phase and assumes a value of 0 otherwise. Then,
the formulation can be described as

5
Ec = Z —I"logo (y120") — (1 — ") log (1 — o*01207)

n=1
(11)
where the output of the SNN model only counts after all the
images are fully presented.

Regularization by Minimum Mean Square
Error

To obtain a sparse firing regime, additional terms are added
for the regularization of spiking activities. Two types of
regularization methods are employed, including firing rate
regularization and voltage range regularization. Firstly, to keep
the average firing rate f; for all neurons j close to a predefined
target firing rate f4/ger» a term is added, which is defined as

)\fErate = )\f Z (f] _ftarget)z (12)
J

where f; is computed as the average spike count, which is

expressed as
Npaten T

> 25"

n=1 t=1

1
Npaten T

fi= (13)

where zj(”’t

) indicates the neural spikes in a particular batch with
n, and T represents the total duration on a particular task. In
addition, the factor s represents a hyperparameter that scales
the importance of firing rate regularization.

Besides, to encourage the membrane potential to remain in

a particular range, the membrane potential values are penalized,
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FIGURE 2 | Schematic block figure of the proposed heterogeneous ensemble-based spike-driven few-shot learning (HESFOL) model.

which are defined as

Ay

N

& () DY _ Z mh _ 4mn)?

VR (V] ,A] ) = ﬁ (max (0, Vj A] )
i=1 t=1 j

2
+ max (0, —v;"’t) - v,h> )

where an index # is used to indicate each batch. The variables
vi' and a; represent the membrane potential and the adaptive
firing threshold, respectively. The resultant threshold voltage is
Aj(t). The factor ), represents a hyperparameter that scales the
importance of the resulting membrane potential regularization.

(14)

Network Architecture of the Proposed
Heterogeneous Ensemble-Based
Spike-Driven Few-Shot Online Learning

Model

In this study, the proposed HESFOL model contains a SFOL
model with spiking neurons along with the ensemble loss
function for back propagation. The proposed learning method
is shown in Figure 2, where the ensemble loss function is
represented by the dashed box. The combination of the loss
function is based on Equations (1)—(3), which contains MMCC,
cross-entropy loss function, and the two types of MMSE.
Assume that in a multi-class data set X, x;€RX represents the
k-dimensional input. y{0,1}* represents the one-shot encoding
of the label. Figure 2 depicts the proposed HESFOL model,

extended with our ensemble loss function for the few-shot
learning problem. In the backward step, the gradients of the
proposed loss function flow back through the networks and
weights. The weights are updated in the opposite direction of
the gradient because the weights are determined and adjusted to
decrease the loss value.

Two-Compartment Spiking Neuron
Model With Adaptation Mechanism

This study uses a two-compartment spiking neuron model
for robust learning. Previous research has demonstrated that
spike-driven learning with dendritic processing can fasten the
convergence speed and reduce the number of spikes (Yang
et al,, 2021a). Therefore, a spiking and dendrite neuron model is
proposed in this study. The soma compartment has two variables,
which are the membrane potential v;! and the adaptive firing
threshold a;'. The resulting threshold voltage A;(f) increase along
with each output spike and decays to the baseline threshold vy,
based on an adaptation time constant ta. Specifically, the soma
compartment can be formulated as

zZj (t)=H (V]‘ () — Aj (t)) (15)
Aj () = \aj ) + v (16)
aj(t) =pajt—1)+z -1 (17)

Frontiers in Neuroscience | www.frontiersin.org

May 2022 | Volume 16 | Article 850932


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al.

Heterogeneous Ensemble-Based Spike-Driven Few-Shot Learning

where L = e 2!/, The factor . represents the impact of

threshold adaptation. The discretion form of the spiking soma
and dendrite models can be formulated as

MDD — v (N) + & (VE ) - Vi)

. (18)
+ i Wiz (N — D)
(19)

m
VEN) =" wys™ (N) + b
=1

where g and g, represent the leak conductance and the
basal dendrite conductance, respectively, and AT represents the
integration step. W;;"" represents the synaptic weight from the
neuron i to the neuron j in the recurrent architecture, and D
represents the transmission delay of recurrent spikes accordingly.
The parameter T = C,,/g; represents a time constant, where C,,
represents the membrane capacitance. The variable z; represents
the output spikes of the ith spiking neuron. The variables V;
and V;? represent the membrane potentials of soma and basal
dendrite of the ith neuron, respectively. The term W;; represents
the synaptic weights in the input layer, and the constant b; is
defined as a bias term. The variable s"P* is calculated based on
the following equation:

input _ _ input
s () = >« (t ty )
k

(20)

where tjki"P”t represents the kth spiking time of the input neuron

j» and the response kernel is expressed as follows:
K(t) = (e_t/“ — e_t/rs) 0 (1) / (L — 1) (21)

where 17 and T, represent long and short time constant, and ®
represents the Heaviside step function.

Spike-Driven Online Learning Model

In the proposed HESFOL model, a regular leaky integrate-and-
fire (LIF) neuron model is used, which is modeled based on the
membrane potential v;(¢) at time . The membrane potential can
integrate the input current and decay to a resting potential based
on its membrane time constant t,,. Each time v;(t) reaches the
threshold, the neuron generates a spike as zj(t) = 1. The regular
spiking neuron model can be expressed as

zj (t) = H (vj (t) — Aj (1)) (22)

Aj ) = ha; ) 4+ v (23)
where W;;" represents the synaptic weight from the neuron i to
the neuron j, and Wj;"" represents the weight of input component
xi(t) for the neuron j. The factor describes the decay speed of
the membrane potential, and H and d represent the Heaviside
step function and the transmission delay of recurrent spikes,
respectively. A refractory period t,,f4. is used to set z;(t) = 0 after
a neural spike. The outputs from the proposed HESFOL model

are constructed by a weighted sum of low-pass filtered spikes,
which is defined as

T =1 =v) D" > v (t—t) Wiz (¢) + 5

<t j

(249)

where Wi, b, v= e Altouw and 1,y are the
readout time constants.

In the proposed HESFOL model, an associated eligibility
trace is considered at each synapse, which is the key concept of
the e-prop algorithm. The eligibility trace ej(t) represents the
influence of the weight Wj; on the spiking activities of the neuron
j at time ¢, but requires taking into account dependencies that do
not involve other neurons besides i and j. Eligibility traces exist
separately for input and recurrent synapses. The variable ;(t)
represents the hidden variables for a neuron j at time ¢. Then, the
dynamics of the eligibility trace is defined as follows:

. azj (t) )
gi (t) = oy (1) - &ji (£) (25)
) . ahj (l’) o ﬁhj (t)
gji () = o (t— 1) g (t—1) + oW; (26)

The eligibility vector €;;(t) means that the quantity is propagated
forward in time along with the computation of the proposed

HESFOL model. The term 22%8
because the relationship between z;(t) and h;(f) contains the
non-differentiable Heaviside function. Therefore, the derivative

in Equation (22) is replaced with a pseudo derivative that is

described as
Vi — vj (1) ‘)
Vth .

The vector of hidden variables h;(t) is defined by h;(t) = v;(¢),
and the eligibility traces applied in the LIF dynamics can be
formulated as

cannot be calculated directly

¥ () = 0.3 - max (o, 1-— (27)

¢ji (1) = W (1) - Zi (t — d) (28)
where Z; (t) = Zt,stat”/zf is defined as the low-pass filtered
presynaptic spiking activities of the neuron i. In addition, the
vector of hidden variables of a neuron, h;(t), also contains the
variable of the firing threshold hj(t) = [v;(t), a;()]. For the
adaptive LIF (ALIF) neuron model, the eligibility trace e;i(t) is
defined as

(29)

eii (1) = W (1) (zi (t — d) — Beaji (1)),

gaji ()= (p—B-¥j(t—1))eqji(t—1) (30)
+¥(t—-Dz(t—d—1)

To realize the plasticity of the proposed HESFOL model, the
3H(V]‘(t)—vth)
51/]'(t)

a pseudo derivative in the backward pass, which is formulated as

v — v (1) D
Vih

derivative of the Heaviside function is replaced with

¥, (t) = 0.3 - max (o, 1-— (31)
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In addition, the derivative of the Heaviside function
(ﬂ(vjé(zi(;ﬁ(t)) is replaced by the formula as
Ai(t)y— v (t
¥; (f) = 0.3 - max (0,1— M') (32)
Vth

where the actual update to the initial synaptic weight Wj,;; of the
proposed HESFOL model is realized by the application of Adam
with a learning rate 1 ,a.

RESULTS

Details of the Heterogeneous
Ensemble-Based Spike-Driven Few-Shot
Online Learning Architecture

As shown in Figure 3, the overall architecture of the proposed
HESFOL model contains two parts, which are the SFOL model
and the ensemble loss. The SFOL model is inspired by the
neural mechanism underlying the human brain, which is based
on the interaction between the hippocampus and the prefrontal
cortex (PFC). Therefore, there are two modules in the SFOL
model, which are hippocampus-inspired SNN (HSNN) and the
PFC-inspired SNN (PSNN). The external inputs are summed
and integrated into the membrane potentials of neurons in
HSNN and PSNN modules. The HSNN readout is composed
of the weighted low-pass filtered spike trains of neurons in the
HSNN module. Suppose there exists an infinitely large family
F of possibly relevant learning tasks C. The HSNN module
learns a particular tasks C from F based on the learning signals
provided by the PSNN module. Each time HSNN receives
the new C tasks from the family F, the synaptic weight is
updated. The learning performance of HSNN on the task C is
evaluated based on the loss function. After the first phase of
learning, the parameters are fixed between HSNN and PSNN
modules, and new C tasks from the family F are selected
to evaluate the HSNN learning performance. The encoding
module of the SFOL model uses the processing mechanism
of the visual pathway, so there is a visual-pathway-inspired
neural network (VNN) based on the 2D ConvNet. The images
are input into the VNN in a pixel array manner for input
encoding. The 2D ConvNet consists of three layers, which
is based on the non-spiking McCulloch-Pitts neuron model.
HSNN contains 180 two-compartment LIF (TLIF) neurons
and 260 conventional LIF neurons. The learning signals can
be only transmitted from PSNN to HSNN in the first phase.
To realize the outer loop optimization, the ensemble loss is
employed in the BPTT algorithm, which contains the loss
functions of the MMCC, MMSE, and cross-entropy loss. The
values of the hyperparameters used in the HESFOL model are
listed in Table 1.

Few-Shot Learning Performance on

Spike Patterns With Non-Gaussian Noise
In the first task, spiking patterns with the non-Gaussian noise
are used to test the few-shot learning capability of the proposed
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FIGURE 3 | An overview of the proposed HESFOL framework. We employ 2D
convolution for the ConvNet, which is considered as a visual-pathway-inspired
neural network (VNN). In addition, two subnetworks are realized, which are
hippocampus-inspired SNN (HSNN) and PFC-inspired SNN (PSNN). The
learning signals are transmitted from PSNN to HSNN.

TABLE 1 | Hyperparameter list used in the heterogeneous ensemble-based
spike-driven few-shot online learning (HESFOL) architecture.

Parameters Description Values
m Timing constant of membrane 15 ms
Tout Timing constant of readout neurons 10ms
d Synaptic transmission delay 1ms
trefrac Refractory period duration 5ms
Trarget Target firing rate 20 Hz
Nout Learning rate of outer loop 2 x 1078
M Spike rate regularization 1.0
Vin Threshold 1.0

Ay Voltage regularization 1072
timg Number of time steps per image 20 ms
Ta Adaptation timing constant 200 ms
n Learning rate 1.915 x 1073
Npsnn Network size of HSNN 447
Qada Neuron fractions using adaptation 40.5%
B Impact of threshold adaptation 0.4902
Npatch Batch size for outer loop optimization 285
Npsnn Network size of the PSNN 239
s Timing constant learning signals of readouts 10 ms
ftarPSNN Target firing rate for PSNN 20 Hz

HESFOL model. A spatiotemporal spike pattern classification
task is considered, where each pattern is generated with
the firing frequency ranging from 2 to 50 Hz. Indeed, the
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FIGURE 4 | Comparison of the few-shot learning performance with
non-Gaussian noise between the HESFOL model and the other models.
(A) Few-shot learning accuracy with Poisson noise. (B) Few-shot learning
accuracy with random deletion noise.

spike patterns describe the spatiotemporal dynamics of the
neural population, in which the firing frequency and precise
timing of spiking neurons contain the rich information of
an external input of the environment. The spike patterns of
each category are instantiated by adding the non-Gaussian
noise to the corresponding template, which contains the
Poisson noise and the spiking deletion noise. We first
generate 1,000 spike pattern templates based on certain
spiking neurons. Then, we generate 25 spike patterns for each
template by randomly marking a uniform distribution of the
neural firing rate. Therefore, we build a few-shot learning
data set of the spike patterns with 1,000 classes and 25
samples for each class.

Two types of non-Gaussian noise are considered in few-
shot learning in the spiking patterns classification task. In
the first type, new noisy spatiotemporal pattern samples are
generated by adding Poisson noise to the templates with the
standard deviation (SD) of ,is. In the second type, random
deletion noise is added to the templates to generate new noisy
spiking pattern samples, where each spike is randomly deleted
according to a probability of Pg,;. As shown in Figure 4,
our proposed HESFOL model achieves remarkable performance
in various noisy situations, highlighting the advantages of
our heterogeneous ensemble-based approach. Among all the
presented learning loss functions, the loss function with MMCC,
MMSE, and cross-entropy loss is the best to realize the highest
robustness to tolerate noise.

With
noise

Without
noise

With
noise

Without
noise

5 3¢ 8¢

FIGURE 5 | Images with non-Gaussian salt-and-pepper noise in the Omniglot
data set using signal-noise rate of 1, 0.9, 0.7, and 0.5.

Few-Shot Learning Performance With

Non-Gaussian Noise

In this study, we test our HESFOL model using the Omniglot data
set. The Omniglot data set contains a total of 1,623 classes and
32,460 images, and each class contains 20 images. The data set is
split up into 964 training classes and 659 classes. There are two
phases in the test, which means a sequence of images in which
one image of the same class exactly appears in phase #2 as the
one shown in phase #1. The 2D CNN with 15,488 neurons is
organized into three layers, which contain 16, 32, and 64 filters,
respectively. The kernel size used in the convolutional filters is
3 x 3. The average pooling layers and batch normalization layers
are also used for optimization improvement in the HESFOL
model. Salt-and-pepper noise is added to the Omniglot images
by randomly flipping 15% of the images, which is a kind of non-
Gaussian noise. Figure 5 shows the images in the Omniglot data
set that are contaminated by the non-Gaussian salt-and-pepper
noise. The loss value of the ensemble evolves with an iteration,
which is shown in Figure 6. This reveals that the loss value of the
proposed HESFOL model reduces to a stationary level of about
0.2 quickly within 1,000 iterations.

The values 0 and 1 are used to encode phases #1 and #2,
respectively, which are included in the input signal. Images from
the Omniglot data set are presented to the VNN using the
28 x 28 grayscale pixels of arrays. A single output is used to
determine in phase #2 whether the presented image belongs to the
same class as that in phase #1. Spike-based learning is employed
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task on the Omniglot data set. This reveals that the sparse
spiking activities of the HSNN and PSNN subsystems occur in
the few-shot learning task. The ensemble loss, which contains
MMCGC, cross-entropy loss function, and two types of MMSE, can
successfully solve the few-shot learning problem with the images
with non-Gaussian noise.

Few-Shot Learning Performance on

Manipulator Control

We further demonstrate the few-shot learning capability for
manipulator control. The manipulator uses the end-effector of
a two-joint arm for a generic motor control task to trace a
target trajectory in Euclidean coordinates (x, y), as shown in
Figure 8. In the motor control task, the proposed HESFOL model
can learn to reproduce a particular randomly generated target
movement with the actual movement of the arm end-effector.
The learning task is divided into two trails, which contains a
training and a testing trial. In the training trial, PSNN receives the
target movement in Euclidean coordinates, and PSNN outputs
the learning signals for the HSNN module. After the testing trial,
the weight update is applied to HSNN. In the testing trial, HSNN
is tested to reproduce the previously given target movement of
the arm end-effector without receiving the target trajectory. The
input of HSNN is the same across all trials and is given by a clock-
like input signal. The output of HSNN is the motor commands
for angular velocities of the joints ®' = (¢!, §}). As shown in
Figure 9, the trajectory generated by HSNN as solid lines during
both the training and testing trial. HSNN can regenerate the
target movement based on biologically realistic sparse spiking
activities after PSNN send learning signals to HSNN during the
training trial. Figure 9 also shows the learning signals and the
spiking activities of the proposed HESFOL model. The mean
square error between the target and actual movement in the

FIGURE 7 | One sample trial for the few-shot learning on the Omniglot data
set using the HESFOL model. (A) Output of the readout neuron. (B) Spiking
activities of neurons in the HSNN module. (C) Spiking activities of neurons in
the PSNN module. (D) Learning signals of PSNN for HSNN neurons.

FIGURE 8 | Few-shot motor control of the end-effector of a two-joint robotic
arm.

testing trial is shown in Figure 10. The result reveals that the
HESFOL model with the ensemble loss performs better than
the model with just one or less types of loss functions. This
reveals that the proposed HESFOL provides a new point of view
for efficient motor control and learning underlying the neural
mechanism of the human brain.

Effects of the Ensemble Parameters on

Learning Performance
In this study, we further explore how each of the base loss
functions in the ensemble loss of the proposed HESFOL model
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FIGURE 9 | Few-shot motor control performance of the proposed HESFOL
model. It shows the one-shot learning of a new end-effector movement in
500 ms. It reveals control performance and spiking activities before and after
training. (A1) Position in the x-direction based on HESFOL control before
training and the target position in the x-direction. (A2) Position in the
x-direction based on HESFOL control after training and the target position in
the x-direction. (B1) Position in the y-direction based on HESFOL control
before training and the target position in the y-direction. (B2) Position in the
y-direction based on HESFOL control after training and the target position in
the y-direction. (C1) Motor command in the form of joint angular velocity and
target angular velocity in the x-direction before training. (C2) Motor command
in the form of joint angular velocity and target angular velocity in the
x-direction after training. (D1) Motor command in the form of joint angular
velocity and target angular velocity in the y-direction before training. (D2)
Motor command in the form of joint angular velocity and target angular
velocity in the y-direction after training. (E1) Spiking activities of HSNN before
training. (E2) Spiking activities of HSNN after training. (F1) Spiking activities of
PSNN. (F2) Learning signals generated by PSNN for HSNN.

contribute to the ensemble loss function in Table 2. We test
the effects of the ensemble parameters on the few-shot learning
performance on different types of data sets, including spiking
patterns and the Omniglot data set. Overall, the cross-entropy
loss has the largest weights for both the data sets, which means
that the cross-entropy contributes the most to form the ensemble
loss function of the proposed HESFOL model.

In terms of the correntropy loss function, the weight value
of 0.1 tends to be a suitable loss function in a very noisy
environment, especially in the presence of outliers. The proposed
SNN architecture realizes the few-shot learning tasks by back
propagating the gradient of the loss and it is likely to suffer from
the problem of gradient vanishing. Thus, a loss function that
highlights the error can outperform the MMCC loss function.
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FIGURE 10 | Control performance based on the mean square error of original
and HESFOL models.

Therefore, the weight of the cross-entropy loss function is
larger than the others in the ensemble loss function of the
proposed HESFOL model.

Comparison With the Other Models on

Few-Shot Learning Performance

To evaluate the few-shot learning performance more directly,
we compare the HESFOL model with other models, including
ANNs and SNNs. Jiang et al. (2021) proposed a novel SNN
model with a long short-term memory (LSTM) unit for few-
shot learning, called the multi-timescale optimization (MTSO)
model. As the proposed HESFOL model has not used model
augmentation to achieve the best accuracy, a fair comparison
is conducted with the other models without augmentation and
fine tuning. The MTSO model without augmentation can achieve
95.8% accuracy. In terms of ANN models, the MANN presented
by Santoro et al. (2016) achieved 82.8% accuracy on the Omniglot
data set. The learning accuracy of CNN presented by Jiang
et al. (2021) only reached 92.1%, while the spiking CNN with
L1 regularization for sparsity obtained 92.8% learning accuracy
on Omniglot. The Siamese Net can get 96.7% accuracy with
augmentation (Koch et al., 2015). The proposed HESFOL model
achieved 93.1% accuracy on the Omniglot data set with non-
Gaussian noise, which shows a comparative performance on the
few-shot learning task. Although its learning accuracy is slightly
lower than that of the Siamese Net, the HESFOL model uses a
spike-based paradigm, which means that it owns the advantage
of low power consumption and high biological plausibility. In
addition, the HESFOL model is 2.7% lower than the MTSO, but
the HESFOL model uses non-Gaussian noisy data to evaluate,
other than the pure data set used by the MTSO model. This
demonstrates that the proposed HESFOL model can achieve high
robustness of few-shot learning without losing much accuracy.
As the proposed HESFOL uses a simple spike-based few-shot
learning framework, more complicated data set is not the aim of
this study. However, we will conduct on more complicated data
set in the future work. It should be noted that the major ambition
is to present a robust spike-based few-shot learning framework
based on the ITL theory.
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TABLE 2 | Test accuracies (%) of different ensemble parameter settings in the Omniglot data set.

Groups Loss Values Omniglot accuracy Groups Loss Values Omniglot accuracy
Group 1 MMCC 0.1 90.6% Group 5 MMCC 0.1 90.6%
Cross 0.9 Cross 0.9
Rate 0.5 Rate 0.5
Vol 0.5 Vol 0.5
Group 2 MMCC 0.1 90.6% Group 6 MMCC 0.2 93.1%
Cross 1.3 Cross 0.8
Rate 0.3 Rate 0.5
Vol 0.3 Vol 0.5
Group 3 MMCC 0.1 92.2% Group 7 MMCC 0.2 90.6%
Cross 1.0 Cross 1.3
Rate 0.45 Rate 0.25
Vol 0.45 Vol 0.25
Group 4 MMCC 0.1 91.4% Group 8 MMCC 0.2 89.8%
Cross 0.7 Cross 0.6
Rate 0.6 Rate 0.6
Vol 0.6 Vol 0.6

The bolded values are the optimal configuration.

Effects of the Critical Parameters of the
Heterogeneous Ensemble-Based
Spike-Driven Few-Shot Online Learning

Model on Learning Performance

In addition, we further explore the critical parameter of the
proposed HESFOL model on the few-shot learning performance.
Three critical parameters are selected, which are the timing
constant of membrane t,,, timing constant of readout neurons
Tout» and membrane potential threshold vy,. We select the
Omniglot data set to test the learning performance of the
HESFOL model. As shown in Figure 11, learning accuracy is
demonstrated by changing parameters. Figure 11A reveals that
the highest learning accuracy can be obtained when t,, = 15
and Tty = 1 0. In addition, Figure 11B shows that t,, = 10
and vy, = 1.0 can result in the highest learning accuracy. It
also suggests the preferred parameter values for neural dynamics
when realizing the classification tasks to test the few-shot learning
performance. As the proposed HESFOL model realizes the few-
shot learning capability based on the meta-learning scheme, it
also implies that the SNN model with this set of parameter values
has the highest LSTM performance to store a priori experience
for the current learning task.

DISCUSSION

Theoretical Analysis

The major components of a learning model are the loss function,
which demonstrates the influence of samples on the model
training. The loss function gives each sample a value, which
demonstrates the participation level of each sample in the
learning problem. For example, if the loss function assigns
an outlier sample a large value, this outlier may generate a
negative impact on the model parameters. If the 0-1 loss function

penalizes all samples that are classified incorrectly with the
value 1, this can be considered as robustness. A robust learning
machine requires that outliers do not influence the system
performance too much. The ultimate goal of a learning approach
is to own the capability to classify unseen data. Therefore, the
classifier should have robustness to data disturbance. A more

A
S
>
Q
£
=
Q
]
o0
g
E
b1
—
B
93
0
S 924 2
Iy
] e
g 91
Q
g
S, 90+
.=
E 89
Q
—
88 -
20\\/2,0
10 v =
Tout 0 0.5 Vih
FIGURE 11 | (A) The effects of timing constant of membrane tm and timing
constant of readout neurons tout on learning accuracy. (B) The effects of
membrane potential threshold vth and timing constant of readout neuorns
Tout on learning accuracy.
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FIGURE 12 | The loss function curve of MMCC along with the errors.

difficult situation exists in the noisy environment, where the
outlier will damage the training or testing data. To deal with the
noisy environment, an efficient approach is to use a robust loss
function. If there exists a constant k and samples with ¢; > k
do not be set with a large value by the loss function, where ¢;
represents the error of the ith sample, this loss function can be
regarded as robust. Despite some learning classifiers can classify
the training data with high performance, it cannot estimate the
unknown data. Therefore, although the training error is low,
it will induce high generation error. This failure is due to the
overfitting problem, which means that the classifier matches the
training data and loses the generalization capability. A better
generalization solution is to use a loss function to realize a more
general classifier.

If an error value is expected to be minimized, the loss
function will generate a more generalized classifier with an
enhanced margin. If a classifier has an enhanced margin, the
performance will be improved to deal with unseen data with
better generalization. An enhanced classifier can be realized
when the correct samples close to the classification line are
penalized, and the loss function can be regarded as margin
enhancing. As each loss function has its own advantages and
disadvantages, there is no comprehensive loss function to work
well in all situations. Therefore, this research proposes the use
of an ensemble of loss in the SNN model. As correntropy is
a bounded function, it is less sensitive to outliers. The kernel
size limit the influence of each independent sample on the total
result, which can reduce the effects of non-Gaussian noise in
the environment on learning performance. Figure 12 further
presents the loss function of MMCC. It shows that MMCC is a
measure to evaluate the local similarity of samples and present a
unique mixed norm feature, which is specifically summarized as
follows:

1. MMCC shows the characteristics of the £2 norm when the
error is close to 0;

2. The MMCC loss function shows the characteristics of the £1

norm when the error increases from 0;

3. The MMCC loss function demonstrates the characteristics of

the £0 norm when the error is particularly large.

Therefore, MMCC is sensitive to elements with high local
similarity in the sample, but not to the two elements with
large difference. Due to these characteristics, MMCC can
effectively reduce the impact the non-Gaussian noise on
learning tasks, inducing more robust spike-driven few-shot
learning performance.

In addition, spiked dendrites in the HESFOL model also
enhance the robustness of few-shot learning. It has been proven
in some previous studies (Yang et al., 2021a). This is because
the non-linear computation of spiked dendrites can inhibit the
disturbance of input noise and in the transmission pathway,
thus improving the learning performance. In addition, as
spiked dendrites can solve the credit assignment problem and
distinguish the information flow in feedforward and recurrent
pathways, the learning performance, including robustness, can be
further enhanced.

Power Efficiency Based on the
Heterogeneous Ensemble-Based
Spike-Driven Few-Shot Online Learning
Model

Previous research has revealed that the lowest energy
consumption of a synaptic operation is about 20 pJ in the
state-of-the-art neuromorphic system (Merolla et al., 2014; Qiao
et al., 2015). The proposed HESFOL model will cost around
60 spikes in HSNN and around 70 spikes in PSNN on the
classification task using the Omniglot data set. Therefore, single
spike classification using the proposed HESFOL will cost 2.6 p]J
in such a neuromorphic system, which outperforms the current
work based on digital neuromorphic hardware (=2 pnJ) (Esser
et al, 2016) and potentially 50,000 more power efficient than
current graphics processing unit (GPU) platforms (Rodrigues
et al,, 2018). Our previous work has shown that the classification
task using an improved DEP-based SNN model induces about
1,011 SynOps to obtain the highest classification accuracy (Yang
et al, 2021a). Therefore, the proposed HESFOL model can
reduce 87.14% of the totally induced spikes, ie., the power
consumption, in comparison with the state-of-the-art SNN
model. The reasons for the low-power consumption by the
proposed HESFOL model can be divided into three aspects.
Firstly, the ensemble entropy theory is used, which can fasten
the learning speed to reach the maximum learning accuracy.
It is useful to reduce the power consumption cost during
learning. Secondly, a few-shot learning procedure is used in the
classification task, which will shorten the overall learning process
and potentially reduce power consumption. Thirdly, spiked
dendrites are used in the spike-driven learning task, which can
further cut down the required spikes due to their non-linear
information processing capability. Therefore, the proposed
HESFOL model cannot only improve the learning accuracy and
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robustness of SNN models, but also further cut down the power
efficiency of neuromorphic hardware.

Comparison With Spiking Neural
Networks of Liquid State Machines and
Future Work

Previously, Roy et al. (2019) presented a good overview of
recent SNN training techniques in the context of reservoirs or
liquid state machines (LSMs) whose architectures are similar
to the proposed HESFOL framework. LSMs use unstructured,
randomly connected recurrent networks paired with a simple
linear readout. As shown in Table 3, such frameworks with
spiking dynamics have shown a surprising degree of success for
a variety of sequential recognition tasks (Panda and Roy, 2017;
Soures and Kudithipudi, 2019; Wijesinghe et al., 2019). Soures
and Kudithipudi (2019) presented a deep LSM with an STDP
learning rule for video activity recognition. Wijesinghe et al.
(2019) presented the ensemble approach for LSM to enhance
class discrimination, leading to better accuracy in speech and
image recognition tasks compared to a single large liquid. WangJ.
et al. (2020) proposed a novel LSM model for sitting posture
recognition. Luo S. et al. (2018) presented two different methods
to improve LSM for real-time pattern classification from the
perspectives of spatial integration and temporal integration. We
introduce LSM as a model for an automatic feature extraction
and prediction from raw electroencephalography (EEG) with a
potential extension to a wider range of applications. Al Zoubi
et al. (2018) introduced LSM as a model for an automatic
feature extraction and prediction from raw EEG with a potential
extension to a wider range of applications. Although these works
presented different strategies for sequential recognition tasks,
none of them have successfully solved the few-shot learning
problem. This study firstly proposed a unified framework for the
simultaneous realization of robust image classification and few-
shot learning performance, which is superior to representative
LSM models based on the recurrent architecture.

For deep SNN training, the ANN-SNN conversion requires
less GPU computing than supervised training with surrogate
gradients. Meanwhile, it has yielded the best performance on
large-scale networks and data sets among the methodologies. For
example, Ding et al. (2021) proposed a rate-norm layer to replace
the ReLU activation function in source ANN training, enabling
direct conversion from a trained ANN to an SNN. Zheng H. et al.
(2020) also proposed a threshold-dependent batch normalization

(tdBN) method based on the emerging spatiotemporal BP,
enabling direct training of a very deep SNN and efficient
implementation of its inference in neuromorphic hardware.
These works have successfully realized pattern recognition
functions on more complicated data set than the data set used
in this research, and have achieved high performance on these
tasks, such as classification on dynamic vision sensor- (DVS-
) CIFAR10. However, none of these research have solved the
few-shot learning problems, and learning robustness is also not
focused and referred in these studies. In contrast, the proposed
HESFOL model presented a robust few-shot learning framework
with ITL approach, which is meaningful for combining the
machine learning approach with brain-inspired SNN paradigms.
On the other hand, future work will try to apply the ANN-
SNN conversion technique in few-shot learning algorithms based
on ANN models, and it will be further combined with the ITL
method that is used and plays a major part in the robust few-shot
learning performance of the HESFOL model.

One of the critical issues is to present efficient training
algorithms for SNN models to deal with complicated data set for
more realistic applications. Shallow SNNs can be trained based
on surrogate gradient descent, but they can only achieve high
performance on simple data sets, such as MNIST. In fact, the
discrepancy between a forward spike activation function and a
backward surrogate gradient function during training limits the
learning capability of deep SNNs. There are a series of studies
in which SNN has shown to be trained from scratch using the
surrogate gradient descent approach. For example, Kim and
Panda (2020) proposed a technique called Batchnorm through
time (BNTT) for training SNNs that dynamically changes the
parameters and has an implicit effect as a dynamic threshold.
They also proposed a spike activation lift training approach,
which is essentially a threshold fine-tuning or initialization step
before the actual training (Kim et al., 2021a,b). These two
models can train SNN models with deep layers, and they are
tested on complicated data sets, such as DVS, CIFAR100, and
Tiny ImageNet. They demonstrate high performance on deep
SNN models, which can be scaled for more realistic application.
Therefore, in the next step, the proposed HESFOL model will be
combined with the BNTT algorithm for deep network training.
For example, the proposed ITL approach will be added to the
current BNTT framework to explore the learning robustness or
efficiency, and the HESFOL model can be used in the modeling
of a single layer in a deep SNN architecture. Thanks to the
spiking dendrites of the HESFOL model, it can naturally solve the

TABLE 3 | Comparison with the representative liquid state machine (LSM) models with the recurrent architecture.

Research Application Robustness Few-shot learning
Soures and Kudithipudi, 2019 Video activity recognition No No
Wijesinghe et al., 2019 Image/speech recognition No No
Wang J. et al., 2020 Sitting posture recognition No No
Luo S. etal,, 2018 Pattern classification No No
Al Zoubi et al., 2018 Emotion recognition No No
Panda and Roy, 2017 Visual recognition Yes No
HESFOL Image classification Yes Yes
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credit assignment problem between feedforward and feedback
pathways. It is meaningful for application in more complicated
tasks and practical situations.

Another future work is to apply the proposed HESFOL model
in tasks beyond recognition experiments. Previous research
has presented a series of possibilities for SNNs to target
complicated tasks other than visual recognition. For example,
Kim and Panda (2021) presented a visual explanation technique
to analyze and explain the internal spiking behavior of deep
temporal SNNs to make SNNs ubiquitous. Kim et al. (2021a)
explored the applications of SNN beyond classification and
presented semantic segmentation networks configured with
spiking neurons. Venkatesha et al. (2021) designed a federated
learning method to train decentralized and privacy-preserving
SNNs. In addition, Kim et al. (2021b) proposed PrivateSNN,
which aims to build low-power SNNs from a pre-trained ANN
model without leaking sensitive information contained in a
data set. All these studies inspire the HESFOL model toward
applications in other fields, such as federated learning and
privacy preservation.

CONCLUSION

In this work, we first introduced an entropy-based scheme
for SNNs to realize robust few-shot learning performance. We
developed a novel spike-based framework with the entropy
theory, namely, the HESFOL model, to implement the gradient-
based few-shot learning scheme in a recurrent SNN architecture.
Several types of tasks are employed to test the few-shot
learning performance, including the accuracy and robustness
of learning. Experimental results based on spiking patterns, the
Omniglot data set, and the motor control task reveal that the
proposed HESFOL model can improve the learning accuracy and
robustness of the spike-driven few-shot learning performance.
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