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Frequency-modulated continuous wave radar sensors play an essential role for assisted

and autonomous driving as they are robust under all weather and light conditions.

However, the rising number of transmitters and receivers for obtaining a higher angular

resolution increases the cost for digital signal processing. One promising approach

for energy-efficient signal processing is the usage of brain-inspired spiking neural

networks (SNNs) implemented on neuromorphic hardware. In this article we perform

a step-by-step analysis of automotive radar processing and argue how spiking neural

networks could replace or complement the conventional processing. We provide SNN

examples for two processing steps and evaluate their accuracy and computational

efficiency. For radar target detection, an SNN with temporal coding is competitive to

the conventional approach at a low compute overhead. Instead, our SNN for target

classification achieves an accuracy close to a reference artificial neural network while

requiring 200 times less operations. Finally, we discuss the specific requirements and

challenges for SNN-based radar processing on neuromorphic hardware. This study

proves the general applicability of SNNs for automotive radar processing and sustains

the prospect of energy-efficient realizations in automated vehicles.

Keywords: spiking neural networks, FMCW, radar processing,MIMO, automotive, neuromorphic computing, signal

processing

1. INTRODUCTION

Automated driving is currently a very appealing area of research continuously drawing attention
from academic and industrial research groups alike. One key aspect of this development is the
success of modern machine learning approaches over the past decade, particularly deep learning
by achieving remarkable results on several tasks necessary for fully automated driving, such as
traffic sign recognition (Ciresan et al., 2012), semantic segmentation (Badrinarayanan et al., 2015),
2D and 3D object detection (Zhou et al., 2019; Yin et al., 2020), and behavior prediction of
other traffic participants (Deo and Trivedi, 2018). Therefore, the use of such powerful learning
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approaches in automated vehicle functions and components
is likely to increase in the near future. On the other hand,
automated vehicle prototypes are typically equipped with a
rich setup of various sensor units (Aeberhard et al., 2015, see
also Figure 1A) to ensure a sufficient coverage of the vehicle’s
surroundings as well as safety through sensor redundancy. This
combination of increasing in-vehicle deployment of modern and
power-hungry machine learning approaches; rich and redundant
sensor setups; and limited on-board energy resources poses
significant challenges on the realization of automated vehicles:
Already today, a significant amount of energy in automated
vehicle prototypes is dedicated to computing (Gawron et al.,
2018, see also Figure 1B). Furthermore, in electric vehicles
high processing demands can significantly reduce the travel
range. While the energy per operation in CPUs and GPUs
decreases for smaller semiconductor manufacturing processes,
researchers see an asymptotic efficiency wall that is slowly
approached in the next years (Marr et al., 2013): Therefore,
alternative approaches regarding hardware and algorithms are
demanded that fulfill both the efficiency and safety requirements
for autonomous vehicles.

The neuromorphic computing field (Roy et al., 2019)
presents an attractive alternative to overcome the previously
described challenges. It takes inspiration from the brain by
means of a highly-parallel and local processing of information in
neural networks, where the memory—the synaptic weights—is
physically close to the computing units (neurons). Spiking
neural networks (SNNs) employ event-based communication of
information, which is fast, efficient and sparse, as information
flows when something significant changes or happens. In turn,
neuromorphic engineering (Mead, 1990; Indiveri et al., 2011)
integrates neuro-inspired building blocks into electronic circuits
for an energy-efficient sensing and information processing
suitable for low-power edge applications or large-scale brain

FIGURE 1 | (A) Exemplary sensor setup of an automated vehicle prototype. Image source: BMW. (B) Sources of added energy consumption on a medium automated

vehicle system on an electric vehicle prototype. Reprinted with permission from Gawron et al. (2018) Copyright 2018 American Chemical Society.

simulation. There exist several large-scale neuromorphic
hardware systems for SNNs using either purely digital (Merolla
et al., 2014; Davies et al., 2018), multi-processor based (Furber
et al., 2014) or mixed-signal approaches (Qiao et al., 2015;
Wunderlich et al., 2019) (see Furber, 2016; Thakur et al., 2018
for reviews). This is complemented with a new generation of
sensors, such as dynamic vision sensors (Lichtsteiner et al.,
2008; Brandli et al., 2014) or dynamic audio sensors (Liu et al.,
2014), which enable a neuro-inspired pre-processing to directly
output events, allowing a seamless integration to neuromorphic
compute platforms. Still, those sensors and hardware platforms
are mainly used in academic research and are just gradually
making their way to commercial products, particularly in the
automotive context.

In this article, as one step toward energy-efficient neuro-
inspired processing for automated driving, we investigate the use
of spiking neural networks for automotive radar signal processing.
Automotive radars complement LIDAR sensors and cameras for
the perception of the street scene and other road users. The used
frequency modulated continuous wave (FMCW) radar sensors
operate in the 77GHz band and provide accurate range and
relative velocity measurements for distances up to 250m. In
contrast to LIDAR and camera, automotive radar works reliably
under all weather conditions and in scenarios with poor lighting,
and it also achieves fast reaction times for automatic emergency
breaking systems (Patole et al., 2017). However, traditional radars
lack fine angular resolution to recognize and separate close
targets in complex automotive scenarios, and to fully exploit
their capabilities in the new artificial intelligent (AI) era. Recent
research efforts (Khalid et al., 2018; Arkind et al., 2020; Rao et al.,
2020) are tackling this problem by significantly increasing the
number of transmit and receive antennas in a multiple input
multiple output (MIMO) configuration, which enables a very
high angular resolution (down to 1◦). This new imaging radar
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trend has the potential to address the perception challenges in
traditional automotive radar sensors, extend the detection to
occluded situations in which a pedestrian is not yet exposed to the
visual sensors, and provide an accurate radar-based classification
of targets in all scenarios, which are all key aspects to enable fully
automated driving.

Motivated by the successful application of SNNs for a wide
range of signal processing and pattern recognition tasks (Zhou
et al., 2020; Davies et al., 2021; Göltz et al., 2021; Yin et al.,
2021), we want to explore whether the signal processing steps
of automotive radars can be implemented with SNNs and how
well those SNNs perform compared to conventional algorithms.
To this end, we first collect and discuss SNN concepts for all
steps of the radar processing chain. Next, in order to provide
concrete examples, we implement and evaluate SNNs for two
processing steps in software. Furthermore, as we plan a future
implementation on digital neuromorphic hardware, such as Loihi
(Davies et al., 2018) or SpiNNaker2 (Mayr et al., 2019), we derive
the specific requirements and challenges of neuromorphic radar
processing.

Our main contributions in this article are:

1. We perform a comprehensive analysis of the state-of-the-art
digital signal processing (DSP) steps for automotive radars
and discuss SNN-based approaches for all stages of the
processing chain.

2. For the radar target detection step, we implement SNNs
for two variants of the constant false alarm rate (CFAR)
algorithm and compare their object detection performance
and computational cost to classic approaches.

3. For the first time, we apply an SNN to automotive radar
object classification achieving an accuracy close to a reference
artificial neural network (ANN) at significantly reduced
computational cost.

4. We derive the requirements for realizing SNN-based radar
processing in neuromorphic hardware systems and discuss the
encountered challenges.

The remainder of this article is organized as follows: Section 2
describes the operating principle of automotive radars and the
digital signal processing chain. It further introduces spiking
neural networks and the CARRADA automotive radar dataset
used in this article. Section 3 presents a detailed assessment
of SNN concepts with the potential to enhance or extend the
previously described DSP chain. Section 4 implements and
evaluates spiking neural networks for two radar processing steps.
Finally, Section 5 discusses the challenges and future outlook in
this direction.

2. BACKGROUND

2.1. FMCW Radar
Frequency modulated continuous wave (FMCW) radar is
massively used in cars for advanced driver assistance system
(ADAS), and due to its robustness, it is considered an automotive
industry standard. As its modulated waveform, it uses a
continuous monotonic chirp, whose frequency increases (or
decreases) linearly along its duration. Figure 2 shows a general

block diagram of the FMCW radar, in which the reference signal
(Tx) is generated in the ramp synthesizer, and transmitted via
the antenna array (Tx1, Tx2, and Tx3) after its radiated power is
increased using a power amplifier (PA). Each receiver block (Rx)
mixes the Tx signal with the amplified target echo at the output
of the low noise amplifier (LNA), and creates the intermediate
frequency (IF) signal, which is digitized through the analog-
to-digital converter (ADC). Considering a radar echo from a
single object, the received frequency ramp will have a time shift
1t proportional to the distance d to the radar sensor, which is
equivalent to a frequency shift 1f , as shown in Figure 2. After
down-mixing the two signals, the reflection from a single radar
object will contribute a sinusoid of frequency 1f to the IF signal.
This frequency is defined by:

1f =
2dB

c0Tc
, (1)

where B is the bandwidth of the chirp, Tc the chirp duration, and
c0 the speed of light. In practice, the IF signal is a superposition of
reflections frommultiple targets with different1f and noise. The
range of the targets can be extracted via the range-FFT (signal
processing described in the Section 2.2).

Within a so-called radar frame, multiple of these fast chirps
are transmitted successively to obtain the relative velocity: For an
object that moves away from (toward) the sensor, the frequency
shift 1f increases (decreases) between chirps, although the shift
is typically so small that it cannot be recognized after the range-
FFT. Yet, the phase difference ωv of the IF signal components
between two consecutive chirps (cf. Figure 2B) contains the
information about the relative velocity v:

v =
λωv

4πTc,diff
, (2)

with the carrier wavelength λ (3.9mm for 77GHz radar) and the
time between chirps Tc,diff . To achieve a high accuracy for the
velocity estimation, it is typically extracted by applying the so-
called Doppler-FFT over all chirps within a frame (see, e.g., Patole
et al., 2017 for further details).

In order to retrieve the angle of arrival (AoA) θ for one target,
at least two receivers are needed. For an antenna array of two
elements with a separation distance d, the reflected signal from
the single target is captured with a phase difference (ωθ ). Using
far field approximation this phase difference can be calculated as

ωθ =
2π

λ
d sin θ . (3)

By adding more receive and transmit antennas, the angular
resolution for detecting target reflections and distinguishing
them from other reflections can be increased. Typical automotive
radar sensors have 3 transmitters and 4 receivers. While the
receivers are arranged along the horizontal axis, the transmitters
are arranged in an L-shape to also obtain an elevation angle (Sun
et al., 2020). Hence, the so-called virtual antenna array in azimuth
direction has 8 antennas. Yet, there is a trend to high-resolution
radars with 64 antenna elements and above (Bilik et al., 2018;
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FIGURE 2 | FMCW radar: (A) Schematic of radar frontend with 3 transmitters and 4 receivers. (B) FMCW radar principle showing a sequence of transmitted and

received frequency chirps (top) and the sampled IF signal (bottom).

Och et al., 2018; Sun et al., 2020). The drawback of this MIMO
approach is that it needs modulation schemes to ensure the
separation of the individual contributions from each transmitter.
The most used modulation scheme is time-division multiplexing
(TDM), in which only one transmitter is enabled concurrently,
but there are other approaches that use phase codes or frequency
division multiplexing (Roos et al., 2019).

2.2. Radar Signal Processing
In the following, we describe the steps for processing a single
radar frame recorded with a MIMO FMCW sensor. The IF data
recorded in a frame is organized as a data cube with 3 dimensions:
the number of receivers NRX, the number of chirps per receiver
Nchirps, and the number of ADC samples per chirp Nsamples. A
single sample is typically an integer value with 12 to 16 bits, or
a complex number with two 16 bit integers in case of an IQ-
baseband architecture (Ginsburg et al., 2018). Typical numbers
for the three dimensions could be 4 receivers, 64 chirps, and 512
samples. In total, the complete raw data of one frame can require
up to 256KiB for the considered case of real-valued samples. The
digital signal processing steps are illustrated in Figure 3, which
are briefly described in the next sections. For further details see
Patole et al. (2017) or Gamba (2020).

2.2.1. Fourier Transform
The IF signal can be regarded as a superposition of sine waves
with different frequencies and amplitudes corresponding to
radar reflections from objects at different distances. The ADC
samples additionally contain noise from radar clutter and the
radar frontend.

2.2.1.1. Range-FFT
The discrete Fourier transform (DFT) is applied on the IF
samples of each chirp to obtain the frequency representation
of the IF signal, which is related to the range of objects using
Equation (1). As the fast Fourier transform (FFT) algorithm
(Cooley and Tukey, 1965) is used for efficiency reasons, this
step is called range-FFT. The output of such N-point FFT are
N complex numbers representing the N frequency bins in the

range [−
fs
2 ,

fs
2 ], where fs is the ADC sampling rate. Typically, a

window function like the Hann function is applied before the
FFT computation to smooth the frequency response and reduce
sidelobes in the frequency spectrum (Gamba, 2020, Section 3.7).
In case of real-valued IF samples, the frequency spectrum is
symmetric so that only the N/2 positive frequency bins are
considered for the next processing steps.

2.2.1.2. Doppler-FFT
The relative radial velocity of radar objects is obtained by
applying a 2nd FFT on the output of the range-FFT across the
chirps of a frame. The Doppler-FFT is applied individually for
each range bin so that in total N/2 Doppler-FFTs are computed
to generate a range-Doppler map for each receiver. In order to
improve the SNR of the target, a systematic range-Doppler map
is obtained by accumulating the range-Doppler maps from all
NRX receivers, which is shown in Figure 3. We note that, as the
velocity calculation depends on the phase shift ωv between two
chirps Equation (2), there is a so-called maximum unambiguous
velocity corresponding to ωv = π . Larger relative velocities are
mapped to the range [−π ,π] and will appear at a negative or
lower frequency bin in the Doppler spectrum. See Gonzalez et al.
(2021) for more details and disambiguation techniques.

2.2.2. Angle-of-Arrival Calculation
To obtain the angle-of-arrival, typically a Fourier transform is
applied across the virtual antennas for each range-Doppler cell.
Alternatively, there are more sophisticated approaches, such as
MUSIC (Schmidt, 1986), or ESPRIT (Roy and Kailath, 1989).
Still, the FFT is normally used due to the lower computational
effort (Gentilho et al., 2019), and due to the existence of on-board
FFT accelerators already available for the range and velocity
calculation. The output of the angle calculation step can either be
a range-Doppler-angle cube, or a range-angle map as illustrated
in Figure 3. In addition to the primary azimuth direction, the
elevation angle can also be computed depending on the antenna
layout, providing a 3D ((x, y, z)) representation of the radar scene.
Sometimes, the AoA calculation is postponed and only calculated
for detected objects.
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FIGURE 3 | Conventional radar processing chain: The raw input data (ADC samples from multiple chirps and receivers) is processed by a sequence of algorithms

yielding a list of detected objects with coordinates and labels. Intermediate data representations are shown in the top. In the top right figure, the inset shows the CFAR

kernel for target detection with cell under test (yellow), guard cells (red), and training cells (blue).

2.2.3. Target Detection
The next task is to find and locate objects in processed radar
data (range-Doppler map, range-angle map or radar-Doppler-
angle cube). First, amplitude peaks are detected by an adaptive
threshold mechanism. Second, detected peaks are clustered in
groups belonging to the same object.

2.2.3.1. Constant False Alarm Rate Algorithm
Radar spectra, such as the range-Doppler map, contain both
target reflections and noise. The simplest approach to detect
peaks is to compare them to a global threshold above the noise
level. Such a threshold has to be chosen small enough to detect
weak target reflections (e.g., distant pedestrians) but also high
enough to avoid false alarms (noise detected as objects). As
the noise and signal levels of the radar may vary depending
on the signal source (range, angle) or weather conditions, an
adaptive threshold is applied that aims to keep the false alarm
rate constant. The so-called constant false alarm rate (CFAR)
algorithm (Rohling, 1983) checks whether the amplitude of the
cell under test (CUT) is significantly higher than the noise level
Pnoise of surrounding cells in the radar spectrum, e.g., a range-
Doppler map:

xCUT > αPnoise . (4)

Here, α denotes a threshold factor that is related to the “constant
false alarm rate,” which defines the desired rate of false object
detections.

Common algorithms are the cell-averaging CFAR (CA-CFAR)
which estimates Pnoise as the average of the surrounding cells,
and the ordered-statistic CFAR (OS-CFAR) which takes the kth
largest value of the surround cells as noise estimate. In both cases,

the so-called “guard cells” close to the CUT are discarded for
noise estimation, as they may contain reflections from the same
radar object (see Figure 3 for an illustration of the CFAR kernel
in a range-Doppler map).

2.2.3.2. Clustering/Peak Grouping
Clustering algorithms are in charge of grouping the sparse point
clouds provided by the object detection stage into blobs that
represent the different objects in the scene. In other words, the
clustering stage assigns a label to each point, where each label
identifies a unique object. The points that correspond to noise
can either be left unlabeled or be assigned to a dummy label.
In Figure 3, the detected reflection points are clustered in two
targets (T1, T2) with different colors.

Clustering algorithms are generally divided into partitioning
algorithms, where the amount of clusters is decided beforehand,
and hierarchical algorithms, which organize clusters in a tree-
structure with an undetermined number of nodes. Even though
the former offer higher computational and memory efficiency,
they are not adequate for the automotive radar processing as cars
typically navigate through unknown scenarios with a dynamic
number of objects around them.

Perhaps the most popular hierarchical clustering algorithm is
DBSCAN (Density-based spatial clustering of applications with
noise, Ester et al., 1996). First, the density around each point p is
computed. Then, all points with density higher than an arbitrary
threshold are considered core-points. Finally, all core points that
are density-reachable are clustered together.

Another clustering algorithm with similar complexity is
DENCLUE (Hinneburg et al., 1998). Similar to DBSCAN,
DENCLUE creates a density map of the input space. However,
the latter calculates the density gradient afterwards and performs
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a hill-climbing procedure for connecting points that can be
connected by a low-gradient path. When comparing both,
DENCLUE shows small benefits in terms of efficiency, but it
involves a more complicated tuning that makes it harder to be
generalized for changing environments.

2.2.4. Target Classification
The next step in the radar processing chain is the classification
of the detected radar objects into categories, such as vehicles,
pedestrians, cyclists, buildings, or traffic signs. The classical
approach for target recognition is to identify features for the
radar data and then apply a machine learning classifier such as a
support vector machine (SVM) (Heuel and Rohling, 2011, 2012;
Lee et al., 2017). In this case, the features used for classification
are typically hand-crafted and include primary parameters, such
as range and velocity but also the radar cross section (RCS) or the
extension of detected clusters (Bartsch et al., 2012). Subsequently,
supervised learning is used to train a classifier. While these
approaches are effective and computationally efficient, they do
require expert knowledge for feature extraction. Furthermore,
the usability of the features may be limited to a specific problem
or dataset.

Most recent approaches therefore rely on deep neural
networks (DNNs) for radar object classification, since they
do not require manual feature selection and extraction. These
approaches can be further divided into those using convolutional
neural networks (CNNs) (Kim andMoon, 2016; Schumann et al.,
2017; Capobianco et al., 2018; Patel et al., 2019; Pérez et al.,
2019), recurrent neural network (RNN) (Klarenbeek et al., 2017;
Schumann et al., 2017) or a combination of both (Angelov et al.,
2018; Kim et al., 2018). Most approaches process the range-
Doppler map, while the majority of those focusing on moving
target classification are based onmicro-Doppler signatures. A few
approaches also make use of additionally processed radar data
for classification. In Meyer and Kuschk (2019b), the authors fuse
the information from a 3D radar point cloud with camera data
for object detection. Schumann et al. (2017) cluster the points
and combine them with a number of features for classification
with an LSTM and a random forest algorithm. On the other
contrary, Patel et al. (2019) process the range-anglemap for target
classification: A region of interest (ROI) of fixed size around the
center of each detected object is classified with a 3-layer CNN into
seven different object types.

2.2.5. Target Tracking
Tracking the movement of road users is essential for automated
driving as it allows to predict future trajectories. A common
approach for tracking single radar targets is the Kalman filter
(Kalman, 1960), that iteratively optimizes its parameters from
noisy observations to predict the next system state (x, y, z, and the
velocity vector of radar target). Often, the extended Kalman filter
is used as it allows to predict position and velocity in Cartesian
coordinates from observations of range and angles of arrival
(Ikram and Ali, 2013). Other methods like Bayesian filtering can
also be applied to radar object tracking (Gordon et al., 1993).

In case of multiple objects in the radar scene, there is a data
association problem, as the detected objects in each frame need

FIGURE 4 | Schematic illustration of a leaky integrate & fire (LIF) neuron,

where multiple spikes (blue) from different input neurons lead to an output

spike (red) of the given neuron. In the center, the course of the membrane

potential over time is shown: When reaching the spike threshold (dashed line),

the potential is reset and a spike is sent out to other neurons.

to be assigned to tracks. Radar targets may appear or disappear
from the radar field of view so that new tracks have to be
created and old ones deleted. The algorithms should also be
able to track objects that are temporarily occluded, such as small
pedestrians behind parking cars. Common approaches for data
association are the rather simple generalized nearest neighbor
(GNN) algorithm that minimizes the distance between tracks and
detections, and the more compute-intensive joint probabilistic
data association (JPDA). We refer to (Gamba, 2020, Section 7.4)
for further information.

2.3. Spiking Neural Networks
2.3.1. Spiking Neurons
Spiking neurons are a subclass of artificial neurons that
communicate via spike events with each other. These neurons
typically have an internal state, that is called membrane potential,
inspired from biological neurons. Whenever the membrane
potential reaches a certain threshold, its value is reset and a
spike is sent to all connected neurons. At the target neurons, the
spike leads to a change of the membrane potential dependent
on the strength of the connection – the so-called synaptic
weight. This process is illustrated in Figure 4. In contrast to
artificial neurons, which continuously forward scalar values
to their connected neurons, SNNs convey information in the
timing and count of spikes. Technically, SNNs resemble artificial
RNNs as the neurons have states, i.e., the membrane potential.
Therefore, SNNs are considered candidates for efficient and
effective processing of spatio-temporal data. Two very common
neuron models are the integrate & fire (I&F) neuron, which
integrates incoming synaptic events and resets the membrane
voltage after reaching its threshold, and the leaky integrate
& fire (LIF) neuron, whose membrane potential decays over
time. Spiking neurons can be connected in a pure feed-forward
fashion, where each layer encodes some features which are then
forwarded to the next layer. However, spiking networks achieve
their optimum efficiency with more complex network structures,
such as combinations of recurrent and feed-forward connections
(Yin et al., 2021).
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2.3.2. Neural Codes
Here we summarize common spike codingmechanisms that have
potential for radar processing with SNNs. For all cases, we need
to distinguish between encoding, which means the conversion
of arbitrary input into spikes, and decoding, the extraction of
results from spike data. Bothmay be applied for single ormultiple
neurons. For encoding one may further differentiate between
one-time inputs (e.g., a gray-scale value of an image pixel) and
time-varying signals such as an ECG signal.

Rate coding translates a scalar input value into the firing
rate of an associated spike source. Spikes are either generated
with a fixed interval or in Poisson neurons with random spike
times according to a given firing probability. As spike rates can
only be positive, signed input values need to be either scaled
and shifted to positive spike rates or represented by two spike
sources representing positive and negative values, respectively.
To decode information from spike trains, the number of spikes
has to be counted and averaged over a certain time window. Rate
codes typically require many spikes and long simulation times
for an accurate encoding and are thus rather computationally
expensive.

In contrast, temporal codes use the spike timing to carry
information. The latency or time-to-first-spike code translates
input values to single spikes per source neuron where typically
higher values are mapped to lower spike times. Similarly, the
timing of output spikes of a network can be used to extract
results, e.g., the neuron with the first spike predicts the class of an
image (Mostafa, 2017). Another temporal approach is rank-order
coding (Thorpe and Gautrais, 1998), where the order of spikes
from different neurons encodes information. In contrast to the
latency code, the exact spike times do not matter and no external
reference such as the start time is needed. Similarly, in phase
coding an internal oscillatory signal like the gamma waves may
provide a reference signal for temporal codes. Temporal codes are
computationallymore efficient than rate codes as they require less
spikes, yet one challenge is to achieve a high temporal precision
in simulation or emulation on neuromorphic hardware.

There are many more approaches for spike encoding,
including delta encoding as applied in dynamic vision sensors that
output ON or OFF events when the input intensity changes. The
current injection approach modifies the input current to an LIF
or IF neuron; population coding uses multiple neurons for value
representation and unconventional approaches may combine
several of the above mentioned concepts (Schuman et al., 2019).
For a survey of encoding techniques (see Auge et al., 2021b).

2.3.3. Network Architectures and Training
SNNs theoretically exhibit extraordinary computational power
(Maass, 1997), yet not many approaches exist that demonstrate
this ability in practice. One way to approximate dedicated
functions is to construct networks from scratch including
connectivity, weights, neuron models and parameters. Common
general approaches for that are the neural engineering framework
(Eliasmith and Anderson, 2003) or liquid state machines (Maass
et al., 2002). Besides, one can take inspiration and re-use
networks, connection motifs, and principles from biology such as

receptive fields as filters in the visual pathway or winner-take-all
networks as two examples.

Regarding network training the brain offers
unsupervised mechanisms such as Hebbian learning or
spike-timing-dependent plasticity (STDP) (Bi and Poo, 1998) to
adapt weights based on pre-and postsynaptic activity. This for
example allows neurons to specialize on certain spatio-temporal
features of the input (Masquelier et al., 2008). Reward-based
learning is realized by adding neuromodulation to synaptic
plasticity (Frémaux and Gerstner, 2016). For supervised
learning, as applied to deep neural networks with the error
backpropagation, there is no direct equivalent for SNNs due
to the discontinuity of the membrane voltage after spiking
leading to a non-differentiability. Yet, in the last years many
approaches have been developed to create deep spiking networks
with similar performance as DNNs for image classification,
either by conversion (Rueckauer et al., 2017; Sengupta et al.,
2019) or direct training, e.g., using surrogate gradients as an
approximation mechanism (Wu et al., 2018; Zenke and Ganguli,
2018). Recent work has shown that recurrent spiking networks
can also be trained to high accuracy for sequential data using
backpropagation through time (BPTT) with surrogate gradients
(Neftci et al., 2019; Yin et al., 2021) or more bio-inspired
approaches like e-prop (Bellec et al., 2020).

2.4. CARRADA Dataset
The recently published CARRADA dataset (Ouaknine et al.,
2020) is one out of few publicly available automotive datasets
containing not only vision and LIDAR/depth information but
also radar data. Most datasets do not include radar data at all
(Geiger et al., 2013; Yu et al., 2020), but even if they do, the
radar data included is usually in form of point cloud information
(Caesar et al., 2019; Meyer and Kuschk, 2019a; Schumann et al.,
2021), providing the (x, y, z) coordinates and the relative velocity
of objects. The CARRADA dataset, on the other hand, includes
the range-Doppler as well as the range-angle map for each scan.
Still, it is limited in size, complexity and variety compared to the
aforementioned datasets, as it is recorded on a remote test track
in Canada with low environmental noise.

The CARRADA dataset consists of 30 separate sequences
with a mean number of 422 frames per sequence (0.7 min)
gathered from a synchronized setup composed of an FMCW
radar and a camera mounted on a stationary car. Out of the total
12666 frames taken, 7,193 are annotated, containing one or two
moving objects (car, pedestrian or cyclist). Each frame contains 3
different annotations (bounding boxes, sparse points and dense
masks), making the dataset suitable for different tasks like object
detection, semantic segmentation or tracking. The experiments
presented in Section 4 make use of this dataset.

3. RADAR PROCESSING WITH SNNS:
CONCEPTS

In this section, we discuss concepts for replacing radar processing
steps with SNNs. For each step, we review common spiking
network architectures and principles of information processing
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in the brain that potentially can replace the conventional
algorithms. Here, we mainly seek for SNNs that can solve single
steps. How to combine SNNs to realize the complete processing
chain, e.g., how to use the output spikes from on step as the
input spikes to the SNN of the next step, is not covered here.
We consider this overview of concepts an initial collection that
inspires the use of SNNs for radar processing, but not claim for
completeness.

3.1. Fourier Transform
The Fourier transform is typically applied in three different
dimensions in automotive radar applications, i.e., the range,
angle, and velocity. While the efficiency of the FFT algorithm
is unquestionable, we consider SNNs for frequency spectrum
analysis as they might be implemented very efficiently on
neuromorphic hardware: We first discuss the use of resonate &
fire (RF) neurons, continue with a recent spiking realization of
the discrete Fourier transform and conclude with other brain-
inspired approaches.

3.1.1. Resonate-and-Fire Neurons
The RF neuron (Izhikevich, 2001) is a two-dimensional neuron
model that shows oscillatory dynamics depending on its input.
Here, the two coupled state variables x =

[ x1
x2

]

of each neuron
resonate with their Eigen frequency ω0 if the associated spectral
component is present in the signal. The signal itself is directly fed
into the neurons as the current I:

ẋ =

[

−d −ω0

ω0 −d

]

x+

[

I
0

]

(5)

Additionally, a damping constant d controls the resonance
behavior of the neurons. A spike is generated as soon as the
second variable x2 reaches the firing threshold. The spike pattern
of an RF neuron contains information about the frequency,
amplitude, phase, and their temporal development in the
analyzed signal (Auge et al., 2021a).

For radar processing, the straightforward approach is to feed
the IF signal as input I to an array of RF neurons with different
resonant frequencies. The amplitude of the spectral component
of the signal directly translates to the firing time of the neuron
with the associated resonant frequency. The phase φ of the signal
leads to an additional but much smaller shift of the spike time
1t = φ

ω0
. However, this phased-based time shift is much smaller

than spike time variations introduced by noise in the input signal
(Auge and Mueller, 2020). As for both range-Doppler analysis
and angle estimation a high phase accuracy in the presence of
noise is required, RF neurons are not suited for the present
application. Still, the power density spectrum of the signal can
be used in applications which do not rely on accurate phase
estimations. We remark that the RF neuron model in Equation
(5) has been recently implemented in the Loihi2 chip for audio
processing (Orchard et al., 2021).

3.1.2. Spiking Discrete Fourier Transform
We have proposed another alternative that replicates the Fourier
transform (FT) calculation by using a non-leaky I&F spiking

model (López-Randulfe et al., 2022). The architecture and
weights of this model are derived from the trigonometric
equation of the discrete Fourier transform,

Yk =

L−1
∑

l=0

Xl

[

cos

(

2π

L
kl

)

− i · sin

(

2π

L
kl

)]

. (6)

where Yk is the output of the kth frequency bin and L is the size
of the input vector X. The previous equation can be rewritten for
the nth FT dimension as the algebraic linear system
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Im
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)
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(

Y(n−1)
)T

Im
(

Y(n−1)
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, (7)

which can be implemented as a neural layer with 2 × L neurons,
where half of them represent the real values of the DFT and the
other half represent the imaginary values, and WRe and WIm

are derived from Equation (6). The spiking Fourier transform
(S-FT) network applies time coding for computing the FFT:
Inputs are represented by spiking neurons with a single spike at
a time inversely proportional to the respective input values Xl.
The neuron model is able to accurately reproduce vector-matrix
multiplications by splitting the operation in two stages. In the first
stage, called silent stage, the neuron accumulates information
from all pre-synaptic connections without producing a spike. In
a second stage, the neuron is charged with a constant current and
the output values are obtained from the firing times of the I&F
neurons at the output. The experiments on the S-FT have tested
its output error, energy consumption, and execution time for an
implementation in the neuromorphic chip Loihi.

3.1.3. Other Approaches
Other works in recent years proposed spiking networks for doing
partial or full analysis of the frequency spectrum of temporal
signals. In Jiménez-Fernández et al. (2016), the authors explored
the usage of SNNs for extracting specific frequencies from silicon
cochleas, i.e., neuromorphic implementations of the cochlea that
output spikes (Chan et al., 2007).

The authors in Sabatier et al. (2017) suggest an asynchronous
event-driven Fourier analysis that triggers an update of the
DFT outputs only when an input value changes more than a
predefined significance threshold. Note that the approach uses
events with scalar values and not spikes. The algorithm is applied
for the Fourier analysis of data from an event-based vision sensor:
As the light intensity of pixels changes rather slowly, a high
reduction of computations is demonstrated. The applicability to
FMCW radar is limited as the first FT is applied to the time-
varying IF signal which changes at high frequency. Yet, applying
this approach to the Doppler or Angle-FFT seems more suitable
as their input values generally change slowly.

Also noteworthy are principles from the brain, where neurons
develop spectrotemporal receptive fields (see, e.g., Theunissen
and Elie, 2014) and thus can specialize for specific input patterns.
Yet, it seems challenging to transfer this to FMCW radar, as
there are two time dimensions (so-called “fast time” for range
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and “slow time” for velocity extraction). Any approach would
be further complicated by the underlying MIMO coding schemes
(Section 2.1).

3.2. Angle-of-Arrival Calculation
In addition to replacing the angle FFT with a spiking neural
network, we discuss other approaches for angle calculation:
Looking at the brain, this problem resembles the sound
localization which uses interaural time differences (ITD) for
the AoA computation. Highly experienced echo-locators such
as bats employ interaural level differences (ILD) instead, which
in contrast to the ITD using their small heads, allows them to
capture a wide diversity of target cross-sections at different ranges
by sensing pressure differences across their ears. Engineering ITD
methods require the concept of phase locking and delay lines
so that certain neurons show a high firing rate when a certain
frequency arrives at a certain AoA (Carr and Konishi, 1990).
The concept has been proven in neuromorphic hardware with
spiking neurons (Pfeil et al., 2013). However, it seems challenging
or even unrealistic to apply the ITD or ILD methods to radar
processing: For the continuous wave radar approach, there are
no time differences measurable at different receivers, also the
phase shifts are very small and would need to be pre-processed
to act as an input to a neural network based on ITD or ILD.
More complexity is added as there is not a single transmitter, but
there are multiple that alternate in being active such that input
data would need to be buffered before being processed as a larger
virtual receiver array.

As conclusion of our analysis, the spiking Fourier transform
from Section 3.1.2 seems to be the only suitable approach for the
angle-of-arrival calculation so far. Yet, further research should
be carried out on replacing high-resolution algorithms such as
MUSIC or ESPRIT.

3.3. Target Detection
The classical approach uses the constant false alarm rate
algorithm to adjust a local threshold to distinguish radar object
reflections from noise. In a second step, the reflections are
assigned or grouped to clusters representing the same radar
object. We present two constructed SNNs implementing two
different CFAR algorithms and briefly discuss spiking network
approaches for clustering and grouping.

3.3.1. Spiking OS-CFAR
The OS-CFAR algorithm is one of the most popular algorithms
for object detection in radar data, which uses the kth largest value
of the surrounding cells as noise estimate Pnoise (Equation (4)).
Due to the required sorting of neighbor values, it was termed
order-statistic CFAR (Rohling, 1983).

In recent work, we have designed an SNN that approximates
the OS-CFAR by using a one-layer network that takes as
input temporal-coded spikes (López-Randulfe et al., 2021). All
neighbor cells are connected with the same negative weight−wN ,
and the value under consideration is connected with a positive
weight kwc. Therefore, the output neuron will produce a spike
if and only if the CUT spikes before k neighboring neurons.

FIGURE 5 | Diagram of the spiking CFAR approaches for one cell. The cell

under test is shown in yellow, the red cells are guard cells and have no

influence on the result, and the blue cells are the neighbor elements, also

called training cells. The weights are set differently for the spiking OS-CFAR

and spiking CA-CFAR. Figure redrawn from López-Randulfe et al. (2021).

Figure 5 shows the connection scheme of this network for a
single cell in the input map.

3.3.2. Spiking CA-CFAR
Another common approach to discern object reflections from
noise is the cell-averaging CFAR Rohling (1983), which computes
the noise level as average of N training cells:

Pnoise =
1

N

N
∑

i=1

xtrain,i . (8)

In the following, we propose a spiking network that implements
the CA-CFAR exactly using temporal coding. The CFAR
condition xCUT > αPnoise Equation (4) can be rewritten by
means of a dot product of the vectors x̂ and w:

x̂ · w > 0, (9)

with x̂ : = 〈xCUT, xtrain,1, ..., xtrain,N〉 and w : =
〈

1,− α
N , ...,−

α
N

〉

.
Equation (9) is equivalent to an artificial neuron with inputs

x̂, weights w and the Heaviside step function as nonlinearity. The
same behavior can be realized with an integrate-and-fire neuron
with current input and latency coding of input spikes. The input
values x̂i are translated into spike times ti with a fixed linear
mapping to an interval [0,T]:

ti ←
x̂max − x̂i

x̂max
· T , (10)

where x̂max is an upper bound on all input values. The higher the
input value, the earlier the spike time. The neuron equation is
defined as:

I(t) =
∑

i

wi2(t − ti) , (11)

dv

dt
= I , (12)

where 2(·) is the Heaviside step function. In Equation (11), for
each input spike i, the current I is increased by the weight wi at
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time ti. After the neuron is simulated for duration T, it is checked
whether the voltage v is positive. If this is the case, the CUT
fulfills the CFAR condition and generates a spike. In practice,
each product x̂i ·wi in Equation (9) is emulated by the integral of
its contribution to the current I, whose amplitude iswi during the
time [ti,T] and zero before (see Supplementary Section 1.2.1 for
the proof of mathematical equivalence to the original CA-CFAR).

Both spiking CFAR algorithms are evaluated on the
CARRADA dataset in Section 4.1.

3.3.3. Clustering/Peak Grouping
There are several different approaches one could implement and
evaluate for the clustering of reflections in the range-Doppler
or range-angle maps. They can be divided into three overall
categories: clustering with radial basis function (RBF) networks,
(continuous) attractor networks, and CNNs.

There are a number of spiking clustering approaches which
are based on the concept of spiking RBF neurons, introduced
originally byHopfield (1995) for pattern recognition. Natschläger
and Ruf (1998) and Bohte et al. (2002) extend and evaluate this
approach by, e.g., increasing the scalability. All approaches are
using temporal coding for the input values with one input neuron
for each dimension in the basic case. The clustering is performed
by updating the weights for multiple, differently delayed synapses
between the input and RBF neurons so that each RBF neuron
spikes maximally for a single cluster. The weights are trained
in an unsupervised manner using a Hebbian learning rule. A
network here consists of n input neurons, one for each dimension
of the input data, m RBF neurons, one for each cluster, and
l synapses between each input neuron and each RBF neuron,
depending on the discretization/granularity of the data.

The so-called SpikeCD approach by Lin et al. (2019)
uses a clustering degeneracy algorithm with RBF neurons in
order to dynamically adjust the number of clusters in the
network. The performance is further improved by a supervised
learning algorithm and the system is evaluated on multiple
complex clustering tasks. SpikeCD overcomes the performance
and parameterization issues of the classic RBF networks.
Furthermore, the authors introduce a supervised classification to
the clustering network. A similar setup could be used not only
to cluster the data from, e.g., a range-angle map but also add
a subsequent classification of the clustered points. Frady et al.
(2020) have already demonstrated, that a spiking implementation
of the k-NN algorithm on neuromorphic hardware (Loihi) is
able to solve large scale clustering tasks with superior latency
while being more energy efficient than traditional CPU-based
algorithms. Diamond et al. (2019) performed similar experiments
with their unsupervised spiking clustering algorithm but on the
SpiNNaker platform.

One of the major disadvantages of the RBF neuron based
clustering approaches is that each point from, e.g., a range-
Doppler map needs to be processed individually and even
multiple times, in order for the network to settle to a
stable cluster. A similar functionality can be also realized
with continuous winner-take-all attractor networks of spiking
neurons, with one neuron for each data point in the range-
Doppler map and a Mexican-hat like connection structure

(Vogels et al., 2005). The synapses in this network would be
excitatory to nearby neurons and inhibitory to those further
away. A network with such an architecture is generally able to
process the whole range-Doppler map at once, while possibly
needing some time to settle into a stable state.

Object detection and localization is also performed in the
visual cortex in the ventral and dorsal stream (Desimone and
Duncan, 1995). Artificial neural networks like CNNs have
taken inspiration from that and are now highly-performant
for this task (Ebrahimpour et al., 2019). In such approach,
several radar processing steps (target detection, clustering and
classification) can be realized by a single artificial neural network
as demonstrated by Pérez et al. (2019). Given the successful
conversion of the popular YOLO model (Redmon et al., 2016)
for object detection in images to a spiking network (Kim et al.,
2020), we expect that a similar translation is also possible for the
automotive radar domain.

3.4. Target Classification
The state-of-the-art approaches for target classification mostly
use ANNs like CNNs or RNNs (Section 2.2.4). As mentioned
in Section 2.3.3, SNNs for image and sequence classification can
be obtained by conversion from DNNs or direct training. In the
following, we focus on the classification of single radar objects
with SNNs, i.e., we expect that only a single target is present in
the input data. This can be achieved by extracting ROIs from the
radar data making use of the clustered object reflections from the
previous processing step.

To the best of our knowledge, so far SNNs have not been
applied to automotive radar object classification, yet there is a
variety of work on radar gesture recognition using SNNs which
differ in the coding of the input data and network architectures:
For the SoLi dataset (Wang et al., 2016), which provides
sequences of range-Doppler maps, Yin et al. (2021) trained a
network of several recurrent SNN layers with adaptive spiking
neurons using surrogate gradients and BPTT. Similarly, Safa et al.
(2021a,b) trained a spiking convolutional network achieving a
higher accuracy. Both approaches turn the range-Doppler maps
to spikes by thresholding. Instead, Tsang et al. (2021) feeds
the spiketrains into a liquid state machine, a recurrent network
of spiking neurons retaining a memory of received input, and
evaluates various classifiers as read-out: Using an SVM a state-of-
the-art accuracy for SoLi of greater than 98% is reached, which is
superior to any DNN approach. For a non-public radar gesture
dataset, in Kreutz et al. (2021) we combine the AoA information
with range-Doppler maps from multiple frames to train deep
SNNs with surrogate gradients and temporal coding. Different
ways of encoding scalar values into spikes are evaluated.

Other SNNs operate on the micro-Doppler patterns: For the
IMEC 8GHz dataset, Stuijt et al. (2021) treat the micro-Doppler
as a binary image, train a DNN and convert it to a rate-based
SNN. For the same dataset, Safa et al. (2021b) improve the
classification accuracy by means of time-to-first-spike coding, a
direct training of the spiking CNN and further preprocessing.
Instead, in Arsalan et al. (2021), we treat the micro-Doppler
pattern as a sequence of velocity vectors which is then fed
into a SNN consisting of a 1D convolution layer, one dense
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LIF hidden layer, and an output layer. The network is trained
with a SoftLIF (Hunsberger and Eliasmith, 2016) activation (an
approximation to LIF) in the NengoDL framework (Rasmussen,
2019). Note that here the conversion to spikes only happens
after the first convolutional layer. In a very different approach
Banerjee et al. (2020) apply unsupervised learning (STDP) to
train the weights of spiking convolution layers on binarized
micro-Doppler sequences. A logistic-regression-based classifier
acts on the output of all spiking convolutional layers.

In this work, we combine several of the concepts from radar
gesture recognition for automotive radar object classification:
Sequences of ROIs in the range-Doppler maps are classified
with a spiking convolutional network with recurrent layers that
was trained using surrogate gradients and BPTT. For details see
Section 4.2.

3.5. Target Tracking
Neurological experiments with different types of mammals
have shown, that they do some kind of path integration,
i.e., they are able to infer their current position relative to
some reference point with the help of e.g., locomotion signals
(Etienne and Jeffery, 2004). (Continuous) attractor networks
have not only a high degree of biological plausibility but also
have been the most successful network type for modeling path
integration (Redish and Touretzky, 1997). These networks have
already been deployed successfully to real-world problems like
mobile robot localization and mapping (Milford et al., 2004),
as they are capable of keeping a (Gaussian) state representation
continuously, even in the absence of any input.

Since the problem of path integration, which is a subproblem
of simultaneous localization and mapping (SLAM), is very
similar to the tracking of targets, we expect that this approach
can be adapted for tracking objects in range-Doppler or range-
angle maps. We further assume that with some changes in
the connections and weights of the network it is possible to
implement a clustering algorithm, similar to the ones used for
clustering the data points in a range-Doppler map.

In such case, both the clustering and tracking could be solved
by the same network(cf. Section 3.3.3).

4. RADAR PROCESSING WITH SNNS:
EXAMPLES

In Section 3, we have presented concepts for SNN-based radar
processing. Here, we provide examples of SNNs for solving
two of the radar processing steps: target detection and target
classification. Beyond demonstrating a proof-of-concept, the
solutions are compared to the conventional state-of-the-art
approaches considering also the limitations when SNNs are
processed on hardware.

4.1. Target Detection With Spiking CFAR
Algorithms
In Section 3.3, we have presented two SNNs that use temporal
encoding for replacing the CA-CFAR and OS-CFAR algorithms,
respectively. While both of them are mathematically equivalent

to the original algorithms, their performance may deteriorate
when being realized on neuromorphic hardware due to limited
parameter resolution or discretization of spike times.

For SNNs that use temporal coding, especially the binning
of spike times to time steps can become a severe constraint:
When considering digital neuromorphic systems that have a
global system tick for updating neurons or inserting spikes (such
as Loihi, TrueNorth, or SpiNNaker), the total number of time
steps will have a major impact on the accuracy of the time-coded
spiking CFAR networks. To assess this limitation we implement
the CFAR SNNs with different number of time steps where the
input values are translated to discrete spike times. We compare
the output of the spiking CFAR to the reference implementation
and provide exemplary results: Figure 6A shows a challenging
sample RD map from the CARRADA dataset due to the long
extension of the main object and the slow degradation of the
intensity until it becomes background. Figures 6B,C show the
performance of the spiking OS- and CA-CFAR, respectively,
when simulated for 250 time steps. We then count the number of
true positives (TP: targets detected by both classical and spiking
algorithms), false positives (FP: targets detected by spiking CFAR
but not by conventional), and false negatives (FN: true targets
not identified by spiking CFAR). The examples show many true
positives, as well as several false negatives and few false positives.
The detected bins by the classical algorithms differ slightly
between OS and CA-CFAR due to the different approaches for
noise level estimation. It further stands out that the spiking OS-
CFAR has more false negatives than the spiking CA-CFAR but no
false positive detections. Details on the chosen CFAR parameters
are given in Supplementary Section 1.1.

For a statistical analysis we evaluated the spiking CFAR on
1,000 randomly selected RD maps from the CARRADA dataset
and accumulated the counts of TP, FN and FP detections. Based
on this we obtain the sensitivity and precision as performance
indicators of the spiking variants:

sensitivity =
TP

TP + FN
, (13)

precision =
TP

TP + FP
. (14)

For bothmetrics a value close or equal to 1 is desired. Themetrics
are evaluated depending on the number of SNN simulation time
steps in Figure 7: the spiking CA-CFAR with nearest-rounding
for binning spike times to simulation time steps shows a very
high sensitivity even for less than 100 time steps, which means
that only few CFAR detections are missed by the SNN. However,
there are many false positive detections, so that the precision
stays below 95% for less than 300 time steps. Only starting
from 500 time steps both sensitivity and precision are above
99%, which we consider competitive to the original algorithm.
We tried additional rounding schemes for the CA-CFAR, which
are introduced and discussed in Supplementary Section 1.2.2,
exhibiting a worse performance than the rounding to nearest
presented here.

In contrast, the results of the spiking OS-CFAR in Figure 7B

show a different dependency: There are no false positives at
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FIGURE 6 | Example of object detection with spiking CFAR algorithms. (A) Exemplary range-Doppler map from CARRADA dataset. (B,C) Results of spiking

OS-CFAR (B) and spiking CA-CFAR (C) applied to the range-Doppler map from A and comparison to original algorithms. Green points mark reflections detected by

both classical and spiking algorithm. Yellow points are detections missed by the spiking version (false negatives) and red points are false positive detections by the

spiking algorithm. The SNNs were simulated with 250 time steps.

all (precision is always 1) while the sensitivity increases very
slowly with the number of time steps and reaches 95% at
around 800 time steps. The reason for this bad performance
of the spiking OS-CFAR can be explained by looking at the
distribution of input values: When using RD map amplitudes
as inputs, most of the converted spike times are binned to
only a few number of time steps which leads to missed
detections by the SNN (see Supplementary Section 1.3.1 for
details). Alternative rounding schemes are not considered here,
as they do not affect the order statistic. Instead, we converted
the RD map to a logarithmic scale prior to feeding the values
to the network. Moreover, we added a small time delay to
the neighbor cells in order to avoid false negatives when the
center cell is slightly bigger than the k-th largest value. These
modifications increased the sensitivity of the spiking network
to around 99% when simulating it for 100 time steps (see
Figure 7C). Further details and explanations are provided in
Supplementary Section 1.3.

To sum up, we found that the performance of the algorithms
can reach values close to 99% when using an adequate amount of
time steps. The required time steps are lower for the spiking OS-
CFAR, mostly thanks to the logarithmic re-scaling of the input
range-Doppler map (which is not possible for the CA-CFAR).We
note that, when the spiking CFAR algorithms are embedded into
a full radar processing chain with subsequent classification and
tracking, a lower performance with respect to the classical CFAR
might be sufficient: One could co-optimize the parameters of the
spiking CFAR and the classification algorithm to achieve a high
overall performance, e.g., one could decrease the CFAR threshold
factor to create more detections and let the classifier filter out the
noise from actual radar targets.

Finally, we compare the computational effort of the spiking
CFAR algorithms to the conventional approaches. For SNNs the
effort mainly depends on the number of neuron updates and
synaptic events. Both spiking CFAR networks perform as many
neuron updates as time stepsNsteps and process as many synaptic

events as training cells Ntrain. Additional effort is required for
releasing input spikes at the predefined times, which, however,
only needs to be done once per RD map bin if the CFAR is
realized by one large SNN for the whole RD map. The classical
CA-CFAR is dominated by Ntrain ADD operations. The OS-
CFAR, which compares the kth largest element with the cell
under test, can be efficiently implemented by Ntrain compare
operations (a sorting of training cells is not required).

Table 1 evaluates the computational cost in terms of ADD
and compare operations: The spiking OS-CFAR requires
approximately Nsteps more operations than the classic approach,
and the spiking CA-CFAR needs 2Nsteps more operations.
Considering that in our example there are 176 training cells
and 100 time steps (OS-CFAR) resp. 500 time steps (CA-CFAR),
it is apparently not beneficial to realize the CFAR algorithms
as spiking networks on conventional processors. Yet, a spiking
CFAR network might be realized very efficiently on dedicated
neuromorphic hardware, especially when the input is already
provided as spikes, or when the spiking output is directly fed into
subsequent SNNs. For the future, we suggest to directly compare
the energy and latency of the spiking CFAR on neuromorphic
hardware to the conventional CFAR on a suitable DSP.

4.2. Target Classification in Range-Doppler
Maps
To evaluate the feasibility of spiking networks for object
classification based on range-Doppler maps, the CARRADA
dataset is used. As the conceived network is only for the
purpose of object classification (and not object detection or
localization), we prepare a sub-dataset that only contains fixed
sized regions of interest for all labeled objects in the range-
Doppler maps of the dataset. To include temporal dependencies
the extracted regions are taken as small sequences of 8 frames.
The generated sub-dataset contains 399 car, 208 bicycle, and 323
pedestrian sequences. Additionally, we consider the dataset of
all single ROIs for training a 2D convolutional network as a
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FIGURE 7 | Evaluation of spiking CFAR regarding number of SNN time steps. (A) Spiking CA-CFAR with nearest rounding to discrete time steps. (B) Spiking

OS-CFAR with range-Doppler map amplitudes as input. (C) Spiking OS-CFAR with dB values as input and a delay added to time steps of training cells. The evaluation

was performed on 1000 range-Doppler maps from the CARRADA dataset.

TABLE 1 | Comparison of computational cost of spiking and conventional CFAR

algorithms.

Algorithm ADD CMP Total (this example)

OS-CFAR - Ntrain + 1 177

OS-CFAR (spiking) Ntrain Nsteps 276

CA-CFAR Ntrain 1 177

CA-CFAR (spiking) Ntrain + Nsteps Nsteps 1176

ADD: number of addition operations or synaptic events, CMP: number of compare

operations. Total: total number of operations in the example network with Ntrain = 176,

Nsteps = 100 for OS-CFAR and Nsteps = 500 for CA-CFAR. The cost for releasing input

spikes is discarded as being hard to quantify.

baseline reference. The dataset preparation is elaborated in the
Supplementary Section 2.1. We note that in a real-time scenario
the ROIs need to be selected dynamically based on the location of
detected objects.

Figure 8 visualizes the proposed network architecture for
the classification of ROI sequences. Two variants of the neural
network are considered: First, an ANN consisting of two
convolutional layers, a recurrent layer with LSTM cells, and the
output layer. Second, an SNN with two spiking convolutional
layers, a recurrent layer with LIF neurons, and an output
layer with non-spiking integrator neurons. Both networks have
the same structure and layer sizes which are detailed in
Supplementary Section 2.3. In both cases, the 2D convolutional
layers extract spatial information from single frames while the
recurrent layer combines the latter for spatio-temporal signal
processing. The proposed SNN model resembles the spiking
convolutional network for gesture classification from Safa et al.
(2021b); yet it was developed independently and differs from it
by having recurrent connections between the LIF neurons. Both
the ANN and SNN in this work are trained on real-valued inputs
and on event-encoded inputs. This allows to analyse the effect
of converting the input data to spikes on the overall network
performance. To generate the input spikes, the range-Doppler
map values are compared to a specific reference value. With
this scheme, on average 537 input spikes are used to encode

the sequential ROIs including 8 discrete time steps. In case of
the ANN the encoding is used to create a binary input map.
In contrast, the first convolutional layer of the spiking network
is also evaluated using real-numbered inputs in combination
with a spiking activation function similar to some converted
SNNs (Hunsberger and Eliasmith, 2016; Rueckauer et al., 2017).
The network models are trained with BPTT, using surrogate
gradients in case of the SNN. In addition to the recurrent
networks, a 2D CNN is trained on single frames providing a
baseline reference. Further details on the network architectures
and training methods can be found in Supplementary Section 2.

Table 2 shows the results of the conducted experiments:
The best accuracy of 94.7% is achieved by the ANN with
convolutional and LSTM layers applied on ROI sequences,
significantly better than the CNN on single frames (90.5%) and
the pure SNN with spike input (90%). When the recurrent ANN
is trained with binary inputs, the accuracy drops down to 86.3%.
In contrast, when the SNN processes the first convolutional
layer with real-valued inputs, the accuracy is increased to
92.6% getting closer to the ANN. The table also provides the
number of parameters and the number of operations [spikes,
synaptic events, and multiply-accumulate (MAC) operations]
per network model as a measure of the network complexity
and computational cost. The SNN with spike input clearly
shows the best compromise between number of operations
and achieved accuracy. Also, the SNN with real-numbered
inputs still requires less than 20% of operations of the best
performing ANN.

Note that, in contrast to the spiking CFAR evaluation,
we do not consider specific limitations of neuromorphic
hardware like the number of time steps, which is 8 in this
experiment for all recurrent networks. Yet, the results show
that the binary spike encoding decreases the accuracy for
both the ANN and SNN. We further remark that the dataset
is rather small and we expect that the test accuracy can
be improved for all models by increasing the training data
and a thorough hyperparameter optimization. Nonetheless, this
example demonstrates the general feasibility of SNNs for efficient
object classification with automotive radars.
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FIGURE 8 | Approach and network architecture for radar object classification: From range-Doppler maps region of interests (ROIs) around detected objects are

extracted and injected into a classifier neural network over discrete time steps tn. The network consists of two 2D convolutional layers, a recurrent layer and an output

layer. Both ANN and SNN variants are compared, see main text for details.

TABLE 2 | Radar object classification results.

Architecture Parameter Acc. Avg. Spikes Avg. Syn. Events MAC ops

CNN (single frame) 11 593 90.5% - - 94 398

ANN (real-valued input) 46 256 94.7% - - 1 031 680

ANN (spike input) 46 256 86.3% - - 1 031 680

SNN (real-valued input) 12 303 92.6% 145 1990 186624

SNN (spike input) 12 303 90.0% 642 3944 -

5. DISCUSSION

5.1. Summary, Related Work and
Limitations
In this article, we reviewed the state-of-the-art digital signal
processing steps for automotive radars and discussed for each
step various SNN approaches as replacements (Section 3). To the
best of our knowledge, such comprehensive analysis of concepts
for radar processing with SNNs has not been done before. Yet,
we consider this collection of approaches preliminary, and we
are sure that more and enhanced approaches will be adopted
or developed in the future. Furthermore, for two processing
steps we have provided concrete SNN examples and compared
them to classical approaches: For the CFAR object detection
we developed two temporally coded SNNs and analyzed their
accuracy depending on time steps. Starting from 100 time steps,
the spiking version is competitive with the reference approach.
For object classification, we trained a deep recurrent SNN with
BPTT and surrogate gradients on ROI sequences of range-
Doppler maps from the CARRADA dataset. The accuracy of
the SNN with real-valued inputs of 92.6% is close to the 94.7%
achieved by a reference ANN while requiring only 18% of the
operations. Instead, the pure SNN with spike input achieves
90.0% with less than 0.5% of the operation of the ANN. Further
improvement is expected by increasing the size of the dataset
and performing a systematic hyperparameter search. Regarding
related work in the context of FMCW radar, so far, SNNs have
only been used for gesture recognition, cf. Section 3.4. Very

recently, Stuijt et al. (2021) have demonstrated radar gesture
recognition using an ultra-low-power SNN chip and a 8 GHz
FMCW radar. They turn the micro-Doppler map into a small
binary image and classify it with a rate-based feed-forward
SNN on the chip. In López-Randulfe et al. (2022), the time-
coded spiking Fourier transform introduced in Section 3.1.2 was
implemented and validated on Loihi to compute the range and
Doppler-FFT on recorded radar data. Compared to dedicated
hardware FFT accelerators, the neuromorphic solution lags
behind by one to three orders of magnitudes in terms of
energy and latency. Brown et al. (2021) have developed an
SNN hardware accelerator for compressed sensing with pulse-

Doppler radars. A spiking locally competitive algorithm (LCA)

solves the sparse optimization to achieve highly accurate and

efficient target and velocity estimation. This compressed sensing

approach is not directly applicable to the FMCW automotive

radar processing chain discussed in this article. Further, Barnell

et al. (2020) use spiking DNNs on Loihi for classification of

synthetic aperture radar images. While this demonstrates the

efficiency of neuromorphic hardware for image classification,
new network models will have to be developed for automotive

FMCW radar data.
The SNN concepts presented in this work apply to single steps

of the radar processing chain. How to combine several SNNs or

how to build a radar processing chain completely with spiking

neurons was not the objective of this paper and remains an open
research subject.
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TABLE 3 | Requirements for a neuromorphic ASIC for radar processing.

Frame parameter Value

NTX 2

NRX 4

Nchirps 64

Nsamples (complex) 256

Frames per second 10

Input type Memory [kB] Bandwidth [MBit/s]

Raw data cube (256x64x4 á 2x16b) 197 15.7

Range-Doppler map (256x64 á 16b) 32.8 2.62

Range-angle map (256x256 á 16b) 131 10.5

Processing step Inputs Neurons Synapses Time steps/ frame Repetitions/frame

Range-FFT (López-Randulfe et al., 2022) 512 4608 37888 550 256

OS-CFAR on RD map (this work) 16 384 16 384 2899968 100 1

Object classification (this work, pure SNN) 520 3747 311328 1 1-20

5.2. Toward Neuromorphic Radar Sensors
Whether or not spiking neural networks can outperform
conventional radar processing depends on how efficiently
they can be realized in neuromorphic hardware. In the
following, we summarize the requirements of a neuromorphic
application-specific integrated circuit (ASIC) to process the radar
data in real time. For this, we assume that a neuromorphic
processor replaces or complements a DSP (cf. Figure 2A)
and receives raw ADC data or preprocessed data that has
to be converted to spikes on the chip. Our analysis includes
the required memory for buffering input data, the required
input bandwidth, the number of neurons and synapses, and
the processing speed of those neuromorphic components. As a
radar sensor setup we take the one from the CARRADA dataset
with 2 transmitters and 4 receivers (cf. Table 3), yet we note
that the requirements for high-resolution radars will strongly
increase. Reviewing the radar processing steps from Figure 3,
the hardware requirements vary significantly for each processing
step, e.g., the amount of input data per frame that needs to be
processed varies a lot, as shown in Table 3. Especially processing
the full raw data or high-resolution range-angle maps requires
more than 100 kB of memory for buffering the input. This
amount does not pose a problem for typical embedded micro-
processors, yet it might become challenging for high-resolution
radars with more than 10 times as much data or when fed into
edge neuromorphic processors. Similarly, for the communication
between a radar sensor and neuromophic hardware at least a
bandwidth of 10–100 MBit/s is needed.

At the bottom of Table 3, we review SNN requirements
for some of the radar processing steps: The range S-FT with
time coding from López-Randulfe et al. (2022) can be realized
with sparse connectivity and one spike per synaptic connection
for 550 time steps. While the S-FT network itself is rather
small, the challenge is to run the model 256 times (64 chirps
× 4 receivers) per frame on a neuromorphic processor (e.g.,

within 20ms assuming that 20% of the 100ms frame time are
budgeted for the range-FFT). This seems possible, according to
the results obtained in López-Randulfe et al. (2022), where a
1024-point spiking FFT can be calculated every 105 µs on the
Loihi neuromorphic chip. For the spiking OS-CFAR from Section
4.1, a network of 16 k input and output neurons with nearly 3
million synapses is required to process an entire range-Doppler
map. Compared to the range-FFT, this SNN is run only once
per frame and thus has lower neuromorphic compute demands.
Finally, the SNN-based radar object classification (Section 4.2)
has the least requirements for implementation on neuromorphic
hardware as the network is smaller and there is only one time
step per frame (cf. Supplementary Section 2.3). Note, however,
that the network needs to be newly instantiated for each detected
object and we expect in the order of up to 20 radar objects in
simple street scenes.

Looking at the neuromorphic requirements for the different
automotive radar processing steps, we expect that SNN-based
object classification has the highest potential for energy-efficient
realization in neuromorphic hardware. SNN-based object
tracking should also be evaluated further in the future. For the
earlier processing steps like the FT and CFAR object detection,
further work shall determine if neuromorphic hardware tailored
at these operations can implement these operations more
efficiently than digital signal processors and close the current gap
in terms of energy and time performance (López-Randulfe et al.,
2022). At the system level, one could alternatively combine a DSP
with a neuromorphic processor to achieve maximum efficiency.
When split onto different chips, the data bandwidth requirements
from Table 3 need to be fulfilled. An even more radical approach
for radar processing with neuromorphic hardware is to use
analog spiking neurons in hardware with the radar IF signal as
input. Resonate-and-fire neurons are the perfect candidates for
that, but this might be limited to radar systems that don’t need
phase information, e.g., using a single transmitter and receiver.
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Yet, further research may clarify whether a full SNN pipeline on
dedicated neuromorphic hardware can outperform classical DSP
or hybrid DSP/ANN approaches.

5.3. Toward Neuromorphic Automated
Driving
As motivated in the introduction, the use of neuromorphic
hardware has a high potential to significantly reduce the energy
demands for highly-automated driving. Besides radar signals,
also camera and LIDAR data need to be processed in order to
get a complete understanding of the automotive scene. For image
processing there already exist first attempts to solve complex
tasks with SNNs, e.g., for object detection (Kim et al., 2020) or
semantic segmentation (Kim et al., 2021). Also recently, Viale
et al. (2021) realized an SNN on Loihi for car detection using
a dynamic vision sensor. Using LIDAR data, which is naturally
sparse and thus predestined for SNNs, Zhou et al. (2020)
showed a spiking convolutional network for real-time 3D object
detection. Shalumov et al. (2021) use LIDAR data for SNN-based
collision avoidance with a control network based on the neural
engineering framework. All these examples show that SNN-based
sensor processing for autonomous driving is a trending topic.
Besides the development of SNNs and their implementation
on neuromorphic hardware, also the combined processing, i.e.,
sensor fusion using SNNs, will become an important topic.

When it comes to AI-based autonomous driving, ensuring
functional safety of both software and hardware is a critical issue.
The principles that are currently developed to support machine
learning models (Henriksson et al., 2018; Mohseni et al., 2019)
will also apply to SNNs. Similarly, neuromorphic hardware will
have to fulfill the same standards as any automotive electronic
system: adhere to temperature ranges, be resistant to vibrations,
be deterministic and redundant, or contain self-monitoring. For
that reason, only digital neuromorphic systems are candidates
for integration in cars, while the use of analog or mixed-signal
neuromorphic hardware seems out of scope at the moment
due to their intrinsic variability. Hence, we suggest to focus on
advanced digital systems such as SpiNNaker2 (Yan et al., 2021)
or Loihi2 (Orchard et al., 2021) to further explore neuromorphic
hardware for automotive radar processing and automated driving
in general.
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