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Linear leaky-integrate-and-fire
neuron model based spiking
neural networks and its mapping
relationship to deep neural
networks
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Shanghai, China

Spiking neural networks (SNNs) are brain-inspiredmachine learning algorithms

with merits such as biological plausibility and unsupervised learning capability.

Previous works have shown that converting Artificial Neural Networks

(ANNs) into SNNs is a practical and e�cient approach for implementing an

SNN. However, the basic principle and theoretical groundwork are lacking

for training a non-accuracy-loss SNN. This paper establishes a precise

mathematical mapping between the biological parameters of the Linear

Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-

AN/Deep Neural Networks (DNNs). Such mapping relationship is analytically

proven under certain conditions and demonstrated by simulation and real data

experiments. It can serve as the theoretical basis for the potential combination

of the respective merits of the two categories of neural networks.
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leaky integrate-and-fire model, spiking neural networks, rectified linear unit,

equivalence, deep neural networks

1. Introduction

In recent decades, Artificial Intelligence (AI) has taken a path that has been rising,

then falling, and is now under steady development. Based on the understanding of

the human cerebral cortex’s mechanism, ANN is formulated and becomes one of the

primary directions for AI, called connectionism (McCulloch and Pitts, 1943). ANNs

are composed of artificial neurons (ANs) connected as a graph. The weights of the

connections, mimicking the cerebral cortex’s synapses, represent the network’s plasticity

and can be trained via gradient descent (Ruder, 2016) in supervised learning tasks. With

a large amount of annotated training data, a deep large-scale network structure, and

computing power, DNNs have achieved great success in many application fields. They

have become the most popular AI technology. The performance of a DNN can reach the

human level on specific tasks, such as image recognition (Krizhevsky et al., 2012; He et al.,

2016; Jiang et al., 2018; Zhao et al., 2019), instance segmentation (Cao et al., 2020), speech

understanding (Hinton et al., 2012), strategic game playing (Mnih et al., 2013), etc.
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DNNs employ a hierarchical structure with an

exponentially-growing representation capacity. Such deep

network structure was studied as early as the 1980s, but it was

found difficult to train due to the vanishing of backpropagated

gradients (Ivakhnenko and Lapa, 1965; Ivakhnenko, 1971;

Schmidhuber, 2015). This problem was not solved until the

deep learning era when the much simpler activation function

called Rectified Linear Unit (ReLU) was used instead of

conventional nonlinear functions such as the sigmoid (Jarrett

et al., 2009; Glorot et al., 2011; Choromanska et al., 2014).

Equipped with the ReLU activation function, DNNs have gained

a powerful fitting capability on large-scale complex data. DNN

is considered second-generation neural networks (Maass, 1997).

It is widely considered that DNN’s great success is attributable

to big data, powerful computational technology (such as GPU),

and training algorithms.

As DNNs are widely applied in real applications, limitations

are becoming apparent. For example, strong dependence on

labeled data and non-interpretability are considered drawbacks

of deep learning. With the increase of layers and parameters,

DNNs require many annotated data and computing power

for training. However, current research mainly focuses on

network architecture and algorithms designed for specific AI

tasks. A technical approach to general artificial intelligence

aims to break the limitations that remain studied. In this

regard, many methods have been proposed, including SNN

(Maass, 1997), which is regarded as the third generation

of neural networks. SNN uses spiking neurons primarily

of the leaky-Integrate-and-Fire (LIF) type (Lapicque, 1907),

which exchange information via spikes. Due to its accurate

modeling of biological neural network dynamics, SNN is the

most popular brain-inspired AI approach (Tan et al., 2020).

There have been extensive studies of SNN-derived neural

networks, such as full connected SNN (Diehl and Cook, 2015),

deep SNN (Illing et al., 2019; Tavanaei et al., 2019) and

convolution SNN (Kheradpisheh et al., 2018). The learning

mechanism of SNN includes supervised learning (such as

spike backward propagation) (Kulkarni and Rajendran, 2018;

Wang et al., 2020), unsupervised learning (such as spiking

timing-dependent plasticity) (Tavanaei and Maida, 2016; Nazari

and faez, 2018), and reinforcement learning (Mozafari et al.,

2018).

However, SNNs have not yet achieved the performance

of DNNs in many tasks. One of the most effective

training algorithms is to transfer the trained weights

of DNNs to SNNs with the same structure (Cao et al.,

2015; Sengupta et al., 2019; Kim et al., 2020; Rathi et al.,

2020). Establishing an effective SNN training algorithm

or transformation mechanism is a challenging task.

The fundamental question on the relationship between

the second and third-generation neural networks is

unclear.

The major contributions of this paper are as follows:

• The parameter mapping relationship between the Linear

LIF neuron model and the ReLU-AN model is established.

• Inspired by the perspective of biology as well as the

proposed equivalence, the ReLU activation function is

proved to be the bridge between SNNs and DNNs.

• Experiments conducted on MNIST and CIFAR-10 datasets

demonstrate the effectiveness and superiority of the

proposed SNN composed of the Linear LIF model.

The experimental validation under various simulation

conditions is presented to prove the equivalence.

The rest of the paper is organized as follows. Section 2

explains the motivation of this study. Section 3 summarizes

the related studies on ReLU-AN and the LIF model. Section

4 defines equivalence and presents the mapping relationship

between Linear LIF model and ReLU-AN model. Simulations

and analyses from single neuron to deep neural networks are

carried out in Section 5. Finally, we make a brief conclusion and

state the future opportunities in Section 6.

2. Motivation

2.1. Bridge the Gap between ANN and
SNN

Brain science and cognitive neuroscience have been one of

the essential sources of inspiration for artificial intelligence (Bear

et al., 2007; Marblestone et al., 2016). From this perspective,

we want to establish the relationship between ANNs and SNNs,

which may bridge artificial intelligence and computational

neuroscience. We believe that ANNs, the most powerful AI

in real applications, and SNNs, the most biologically plausible

technology, can learn from each other.

The biological neural model’s complex dynamics and non-

differentiable operations make SNNs lack scalable training

algorithms. In this paper, we focus on the mechanism of

transferring trained weights of DNN into SNN. While this

method has achieved good results in target classification tasks,

it has relatively strict limitations on pre-trained DNN, especially

bias transformation. In the SNN conversion toolbox (SNN-

TB) (Rueckauer et al., 2017), the bias is represented as a

constant input current or an external spike input of constant

rate proportional. However, we believe that bias in neuron

model can be reflected in the biological neuron model, which

we will show in the following simulations. In addition, the

thickness and length of the axon of a neuron are different, and

the neuron model parameters should also be different. This is

not reflected in SNNs while some DNN-to-SNN algorithms use

dynamic spiking threshold.We intend to establish the equivalent

relationship between spiking neurons and artificial neurons and

then the transformation mechanism of ANN.
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2.2. A biological explanation of ReLU

DNNs use many layers of nested nonlinearity to fit massive

amounts of data and perform better in machine learning tasks

with ReLU. We focus on the nonlinearity and sparsity of ReLU,

but we do not have a deep understanding of why the ReLU

performs better than the other activation function. Glorot et al.

(2011) indicates that ReLU can bridge the gap between the

computational neuroscience model and the machine learning

neural network model. But under what conditions, i.e. coding

algorithms and parameters, RELU can be equivalent to the

biological model, and what is the mathematical mapping

relationship between the two models. This is still a fundamental

question in biologically inspired AI that remains unanswered.

2.3. A new approach of unsupervised
learning

The unsupervised learning mechanism employed in SNN

has a good biological basis and emphasizes the causal relations

between the signals, which complements conventional machine

learning. Unsupervised learning is generally regarded as a

representation learning that estimates a model representing

the distribution for a new input xn given previous inputs

x1, x2, . . . , xn−1, expressed as P
(

xn | x1, x2, . . . , xn−1
)

(Ghahramani, 2003). Computational neuroscience has provided

a new idea for unsupervised learning mechanisms. Spiking

Time Dependent Plasticity (STDP) (Abbott and Nelson, 2000;

Song et al., 2000; Caporale and Dan, 2008; Tavanaei et al., 2018;

Falez et al., 2019), is a temporally asymmetric form of Hebbian

learning and is the most widely used unsupervised learning

mechanism in SNN. In the temporal dimension, the relation

between the presynaptic action potential and the postsynaptic

action potential regulates the neurons’ weights, which is a

feature unique to SNN. Suppose we want to migrate such a

natural learning mechanism in the time domain from SNNs to

DNNs. In that case, we first need to establish a mathematical

mapping relationship between SNN’s neuron model and DNN’s

neuron model.

2.4. Inspire the development of artificial
intelligence

SNN has its unique advantages in information transmission

and learning mechanisms. Although ANN is historically brain-

inspired, ANN and SNN are entirely different. First, SNN

uses event-driven characteristics to reduce power consumption.

SNN transfer and process the information via spike train

(Tavanaei et al., 2019), while DNN uses scalars to represent

the neural signals. For the same task, e.g., image and voice

recognition, the human brain typically consumes 10–20 watts

(Jeong et al., 2016), compared to hundreds of thousands of watts

for DNNs running on a computer. Secondly, the neurokinetic

calculation is not a conventional von Neumann architecture

but adopts an integrated structure of storage and calculation,

storing information in neurons. Themechanism of time-domain

processing in spike trains and Hebbian learning-based synaptic

plasticity are considered potential routes to a more advanced

artificial intelligence (Hebb, 1949; Song et al., 2000; Denham,

2001).

3. Related work

3.1. ReLU artificial neuron

Artificial Neuron (AN) is a mathematical function that can

model a biological neuron. McCulloch and Pitts proposed the

Artificial Neuron model in 1943. It is also known as the M-P

model and is still used today. As the basic unit of the neural

network, it receives input signals from previous layer units or

perhaps from an external source. Each input has an associated

weight ω, which can be adjusted to model the synaptic plasticity.

Through an activation function f ( ), the unit converts the

integrated signal, i.e., the weighted sum of all the inputs, to

obtain its output

yi = f (
∑

j

ωijxj + bi) (1)

Here, ωij is the weight from unit j to unit i, bi is the bias of

unit i, and f ( ) is the activation function. For the M-P model,

the form of activation function is the Heaviside step function.

The working model of neurons has two states, activation (1) and

inhibition (0). The main idea of deep learning is still very similar

to the perceptron proposed by Frank Rosenblatt many years ago,

but the binary Heaviside step function is no longer used. Neural

networks mostly use the ReLU activation function.

ReLU activation function has been developed for a long

time. Cognitron (Fukushima, 1975) is considered the first

artificial neural network using a multi-layered and hierarchical

design. This paper also proposed the initial form of ReLU,

i.e., max(0, x), shown in Figure 1. The activation function,

a rectification nonlinearity theory, applies to the Symmetric

Threshold-Liner network dynamics (Hahnloser et al., 2003).

Pinto and Cox proposed a V1-like recognition system, in which

the outputs of the Gabor filter will pass through a standard

output nonlinearity—a threshold and response saturation (Pinto

et al., 2008). Jarrett and Kavukcuoglu have proved that rectified

nonlinearities are the single most crucial ingredient for deep

learning (Jarrett et al., 2009). ReLU was then introduced

to enhance the ability in the feature learning of restricted

Boltzmann machines. Compared with the sigmoid function,
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FIGURE 1

Rectified Linear Unit and softplus activation functions.

it has achieved better image classification accuracy (Nair and

Hinton, 2010). Glorot et al. (2011) showed that neurons

with ReLU activation function have a better performance than

hyperbolic tangent networks and analyzed the advantage of

sparsity. In the deep learning era, ReLU was crucial to the

training of deep neural networks.

The critical characteristics of ReLU are: A. Nonlinearity:

Introducing nonlinearity is critical for deep neural networks.

With the simple rectification, it provides the fundamental

nonlinearity required for data fitting. B. Sparsity: Nearly half of

the neuron’s outputs are suppressed. This mechanism is similar

to lateral inhibition in biological neural networks (Amari, 1977)

and increases the neural network’s sparsity.

3.2. LIF neuron model

In this subsection, we present the development of biological

neuron models and analysis of LIF model’s dynamic properties.

3.2.1. Development of the biological neuron

Research on biological neuron models can be dated back to

the 1900s, referred to Lapicque model (Lapicque, 1907; Abbott,

1999), which is employed in the calculation of firing times. The

Lapicque model is considered the earliest form of the “integrate-

and-fire model,” and it becomes the LIF model after adding an

attenuation term. The LIF model is one of the most popularly

used models for analyzing the nervous system’s behavior (Diehl

and Cook, 2015; Kheradpisheh et al., 2018). Unlike the neuron

models used for computing, some neuron models have also

been created and applied to simulate real neuron propagation

potentials. The Hodgkin–Huxley model (HH model) (Hodgkin

and Huxley, 1952) was proposed by analyzing the electric

current flow through the surface membrane. We call it a

simulation-oriented neuronmodel. However, it is not practically

applied in general neural networks due to its computational

complexity. For computational feasibility, simplified models

have emerged, referred to as computation-oriented models.

Izhikevichmodel (Izhikevich, 2003) is a simplification of the HH

model based on the theory of dynamic systems. In this paper, we

focus on the dynamic properties of the LIF model and analyze

its equivalence with ReLU.

3.2.2. The dynamic of LIF neuron model

The LIF model can be modeled as a circuit composed of a

resistor and a capacitor in parallel, which, respectively, represent

the leakage and capacitance of the membrane (Tuckwell,

1988). The integrate-and-fire neuron model is described by the

dynamics of the neuron’s membrane potential (MP), V(t),

Cm
dV(t)

dt
+

V(t)− V0

Rm
= Iinj, (2)

where Cm and Rm denote the membrane capacitance and

resistance, respectively. V is the membrane potential of LIF

model, V0 is the resting potential, and Iinj is the current injected

into the neuron. The driving current can be split into two

components, I(t) = ICm + IRm (Gerstner and Kistler, 2002).

The first part on the left of Equation (2) represents the current

passing through the capacitor during charging. According to

the definition of capacitor C = Q/U (where Q is the charge

and U is the voltage), we find that the membrane capacitance

current ICm = CmdV/dt. The second part represents the

leak of the membrane through the linear resistor Rm, and the

membrane time constant τm = CmRm of the “leaky integrator”

is introduced (Burkitt, 2006).

Given the initial value of membrane potential and injected

current Iinj, we can use themethod of integrating factors (Maday

et al., 1990) to solve the differential equations which define the

change of membrane potential, and the simplified equation can

be expressed as

V (t) = e
−

t−t0
τm

[

∫ t

t0

Iinj
(

t′
)

Cm
e
t′−t0
τm dt′ + V (t0)

]

(3)

where V(t0) is the membrane potential at the initial time t0,

and we take the reset potential to be Vreset = 0 for the sake

of simplicity. When the neuron has no input, i.e. Iinj = 0, the

integral term in Equation (3) is 0, and the membrane potential

decays exponentially on the basis of the initial potential V(t0);

when there is input, the input current is integrated into the

post-neuronal membrane potential.

To explore a self-consistent neuron model, neurons’ input

and output forms should be the same. The input current, Iinj(t),
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is defined as the weighted summation of pre-synaptic spikes at

each time step,

Iinj(t) =
nl

∑

i=1

ωi ·

n
∑

j=1

δ(t − tj) (4)

where nl indicates the number of pre-synaptic weights, n is

the number of spikes of pre-synaptic spike train, ωi gives the

connection weights between the pre-synaptic neuron i and post-

synaptic neuron, and δ is the Dirac function. The top of Figure 2

shows the dynamics of membrane potentials of an LIF neuron

with multiple input spikes.

Assuming that a spiking input signal with a period of T

(frequency f = 1/T and tj = j/f ), the value of MP can be

described as:

V(nT+) =
ω

Cm
·
1− e−nT/τm

1− eT/τm
(5)

The membrane potential accumulates with the presence of

inputs I(t). Once the membrane potential V(t) exceeds the

spiking threshold Vth, the neuron fires an action potential, and

the membrane potential V(t) goes back to the resting potential

V0. The LIF model is a typical nonlinear system. Three discrete

equations can describe the charge, discharge, and fire of the LIF

model:

H(t) = f (V(t − 1), I(t))

S(t) = 2(H(t)− Vth)
(6)

where the H(t) is the membrane potential before spike, S(t) is

the spike train and f (V(t − 1), I(t)) is the update equation of

membrane potential.

4. The mapping relationship
between LIF neuron model and
ReLU-AN model

Converting CNNs into SNNs is an effective training

method that enables mapping CNNs to spike-based hardware

architectures. Many scholars believe that the theoretical

equivalence between the spiking neuron model and the artificial

neuron model is the basis of the transformation method. This

section presents a mapping relationship between the Linear LIF

model and ReLU-AN model.

Many differences exist between the neural network models

used in machine learning and those used in computational

neuroscience. Glorot et al. (2011) shows that the ReLU activation

function can bridge the gap between these two neuron models,

including the sparse information coding and non-linear. Mainly

based on changing the activation function from tanh() to

HalfRect(x) = max(x, 0), which is named ReLU and is

nowadays the standard model for the neuron in DNNs. Cao

et al. (2015) proposed a method for converting trained CNN

to SNN with slight performance loss. However, the theoretical

groundwork of converting basic principles is lacking, and

related research only shows the similarity between the LIF

neuron model and the AN model. Rueckauer et al. (2017)

present a one-to-one correspondence between an ANN unit

and an SNN neuron and an analytical explanation for the

approximation. Han et al. (2020) proposed a loss-less ANN-

SNN conversion method using “soft reset” spiking neuron

model, and an illustration of ReLU-IF mapping. On this

basis, this paper further presents an exact correspondence

between the parameters of LIF neuron model and ReLU-AN

model.

4.1. Linear leaky-integrate-and-fire
model

Once the membrane potential reaches the spiking threshold,

an action potential will be exceeded. Then the membrane

potential will be reset: Reset-to-Zero, used, e.g., in Diehl and

Cook (2015), reset the membrane potential to zero. Linear-Reset

retains the attenuation term that exceeds the threshold:

V(t) =

{

H(t) · (1− S(t)) Reset-to-Zero

H(t) · (1− S(t))+ (H(t)− Vreset) · S(t) Linear-Reset

(7)

The LIF neuron model with “Linear Reset” is named Linear

LIF model. Diehl et al. (2016) and Rueckauer et al. (2017)

analyzed the difference between these two MP reset modes and

chose the Linear LIF model for simulation. We analyze the two

models from the perspective of physics and information theory

and determine the advantages of the Linear LIF model. The

membrane potential of the Reset-to-Zero LIF model does not

satisfy the law of conservation of energy. There are two parts

of membrane potential attenuations: “leaky”, the attenuations as

the form of conductance in the circuit which keeps the nonlinear

dynamic properties. The other part is that when the action

potential is exceeded, the membrane potential exceeding the

spike threshold will be lost directly, resulting in energy non-

conservation. From the perspective of information, the Linear

LIF neuron model maintains the nonlinearity and retains the

completion of information to the greatest extent. The Linear LIF

model’s membrane potential is shown in Figure 2 compared with

Reset-to-Zero LIF model under the same input. More detail can

be seen in Supplementary material 1.1.
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FIGURE 2

Comparison of membrane potential changes between Reset-to-Zero LIF model and Linear LIF model. (TOP) Reset-to-Zero LIF model, the

membrane potential will be reset to zero (Vreset = 0 mV). The subfigure shows the input action potential, membrane potential change, spiking

threshold and output action potential from bottom to top. (Bottom) Linear LIF model, membrane potential will subtract the spiking threshold at

the time when it exceeds the threshold.

4.2. Information transmission between
LIF neuron models

The linear LIF neuron model has two steps in information

transmission. The information is integrated by connection

weight ω, and then the data is processed and transmitted, as

shown in Figure 3. We can see that the LIF model and Linear

LIF model are the same for subthreshold membrane potential

changes in Figure 2. However, the resulting simulation proves

that Linear LIF model is more similar to ReLU-AN model than

LIF model.

4.3. Information coding

Neuronal coding is a key step of the simulation. Neurons

use sequences of action potentials, which can be considered as

a point process, to carry information from one node to another

in the brain. This spiking train can be considered an element of

neural coding. The shape and duration of the individual spikes

generated by a given neuron are very similar, so we think that

the spike train can be described as a train of one-or-none point

events in time (Kostal et al., 2007).

The information received by the LIF neuron is a series of

spike sequences, so the original data needs to be encoded into a

spike train (Richmond, 2009). Many coding methods are used in

biological neuron models, such as one-dimensional coding and

sparse coding mechanism. We assume that the neuron encodes

the information as a spike frequency and encodes it according to

the following rules:

Iil = ωi ·

n
∑

j=1

δ(t −
j

xi
),

n

xi
<= Tw (8)

where xi (xi ∈ [0, 1]) is the input.We encode the input as a series

of spike sequences with a fixed frequency, which is proportional

to the input data. The encoding time (time window) is Tw,

sampling frequency is the maximum frequency of encoding

Rmax = 1/1t. In our experiment, we set the minimum time

unit 1t as 0.01s and the time window Tw as 3s. That is, a pixel is

encoded into a sequence with a length of 300 (time steps).

4.4. Mapping relationship between linear
LIF model and ReLU-AN model

This subsection presents the mapping relationship between

the Linear LIF model and the ReLU-AN model from three
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FIGURE 3

Information transmission of Linear LIF model. (A) All inputs are encoded as a spike train, multiplied by a weight. This is the information

integration shown in the left part of the figure. (B) Add all input spikes to get the input spike sequence of the neuron. (C) The output action

potential is obtained according to the input spike sequence through the LIF neuron’s information processing mechanism.

aspects, i.e., weights, bias, and slope of the ReLU activation

function. In comparison, the parameters of the linear LIF

neuron are more biologically plausible, including the membrane

capacitance Cm and the membrane resistance Rm. Here we give

the parameter mapping we established in Table 1, which will be

discussed in detail later in this paper. A more detailed derivation

process is shown in Supplementary material 1.2.

4.4.1. Mapping of the weights

We assume that the spiking frequency of the input signal is

fj and the amplitude is 1, and then the signal can be expressed as:

Il =

nl
∑

i=1

ωi ·

n
∑

j=1

δ(t − j
1

fi
) (9)

The ωi is the synaptic weight between presynaptic neuron i and

post-synaptic neuron, nl represents the number of neurons in

layer l, j represents the jth action potential in the input spike

train, n is the number of action potentials and T is the time

windows of simulation.

Compared with the weight integration process in ANNs, we

integrate the input signal Il in the time window [0,Tw] and

obtain:

∫ Tw

0
Ildt =

nl
∑

i=1

ωi ·

n
∑

j=1

∫ Tw

0
δ(t − j

1

fi
)dt = T ·

nl
∑

i=1

ωifi (10)

This information integration mechanism is similar to the

ReLU-AN model (f =
∑

ωx), except that for time-domain

signals, the weight is reflected in the amplitude of the input

action potential. We encode the weights in the amplitude of the

spiking train but not in the Linear LIF model’s conductance.

Note that the encoding mechanism and information integration

mechanism play a vital role in the network’s information

transmission process.

4.4.2. Mapping of the bias

The bias is an additional parameter in the ReLU model used

to adjust the output along with the weighted sum of the inputs.

Moreover, a learnable bias allows one to shift the activation

function to either the right or the left. The neuron model’s

bias has a similar role with the threshold, determining whether

the input activates the output. Based on Equation (1) and the

activation function, we know that the output of the neuron is

equal to 0 if
∑n

i=1 wixi < −b.

Similarly, it cannot be fired if the input frequency is less than

a threshold. According to the spike excitation rules of Linear LIF

neurons, the action potential is generated when the membrane

potential reaches the spiking threshold. If the integrated spike

train can excite an action potential within the time window Tw

(set to 4s in the simulation here), it should satisfy
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TABLE 1 Parameter mapping between ReLU-AN model and Linear LIF model.

Parameter of ReLU Params of linear LIF

Symbol Description Symbol Description

ω Connection weight ω Synaptic weight

b Bias −
∑

ω/RmCm · ln(1−
∑

ω/(VthCm))

k Slope of activation function 1/VthCm

V(Tw = n/fin) > Vth (11)

where Tw refers to the time window, and n is the number

of action potentials within the time window at the current

frequency. According to Equation (5), we can get the relation

between the number of action potentials and the other

parameters.

nl
∑

i=1

ωifi >
−

∑nl

i=1 ωi

τm · ln(1−
∑nl

i=1 ωi/(VthCm) · (1− e−T/τm ))
(12)

The Linear LIF model can excite the action potential in the

time window only if the inequality is satisfied, that is when

the input frequency is greater than a value determined by the

parameters of the Linear LIF model. This mechanism has the

same effect as the bias, which filters the input signal before

the information processing. Bias of the ReLU-AN model also

can be expressed as a function of membrane resistance Rm

and membrane capacitance Cm. The existence of membrane

resistance Rm endows the Linear LIF model with nonlinearity,

which is very important for neural networks.

4.4.3. Mapping of activation function

The activation function determines the relationship between

input and output after integration. We focus on the non-

negativity and linear relationship of ReLU. For non-negativity,

the Linear LIF model’s output is based on the number of

action potentials, a non-negative value. So, for the input-output

relationship where the input is greater than 0. The relationship

between integrated input and output spike frequencies of the LIF

neurons can be expressed as

fo =
fin

⌊n⌋
{n | V(n/fin) ≥ Vth} (13)

where fin is the frequency of input signal, fo is the frequency

of the output signal, and n is the minimum number of input

spikes capable of firing an action potential within a time window,

defined by Equation (5).

We rounded up the number of input spikes and

approximated the relation between the input and output

frequency as

fo = τm[
[(VthCm)/

∑nl

i=1 ωi](1− e−1/fiτm )

1− [(VthCm)/
∑nl

i=1 ωi](1− e−1/fiτm )
] (14)

Based on the action potential frequency in biological

neurons, we assume that the input frequency fin satisfies

−1/(fiτm) ≈ 0. According to the approximation formulas

ln(1 + x) ≈ x and ex ≈ 1 + x, the above formula can be

simplified to

fo =
1

VthCm
·
∑

i

ωnl

i=1fi (15)

The input frequency fi is proportional to the output

frequency fo, as shown above. If 1/(VthCm) = 1, we can

conclude that this function is equivalent to the ReLU, in the

case of the same input frequency. No matter how the parameters

of the LIF model change, this proportional relation remains

true. Given the spiking threshold, the LIF model introduces

nonlinearity into the network. Simultaneously, because of

frequency coding, the input frequency cannot be less than 0,

which increases the sparsity of the network. We conclude that

the LIF model can be equivalent to the ReLU under certain

parameter mapping principles.

4.5. Definition of model equivalence

In this subsection, we define the equivalence in two aspects,

i.e., structural equivalence and behavioral equivalence (shown in

Figure 4):

• Structural equivalence is mainly reflected in the structures

of the ReLU-AN model and LIF model. The parameters

of the two models should have a mapping relationship

represented by a transformation function R. R can be

described as a binary relation satisfying reflexive (xRx),

symmetrical xRy ⇒ yRx), and transitive properties ((xRy∧

yRz) ⇒ xRz).We will present a perfect parameter mapping

between Linear LIF/SNN (model A) and ReLU/ANN

(model B) in Section 4.4.

• Behavioral equivalence focuses on the functional

equivalence of the two models, requiring that model A can
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FIGURE 4

Equivalence between Linear LIF/SNN model and ReLU/ANN: structural equivalence and behavioral equivalence.

complete the functions of model B, and vice versa. We

define behavioral equivalence as: “Model A and Model B

have the same output if run under identical experimental

conditions. Given a parameter mapping rule, there always

exists a small error bound ε that
∥

∥FA(x)− FB(x)
∥

∥ ≤ ε can

be guaranteed for any valid input x, where FA,FB denotes

the function of model A and model B.”

5. Experiments and analysis

In this section, we demonstrate the equivalence of LIF/SNN

and ReLU-AN/DNN model and the advantages of the Linear

LIF model compared to the Reset-to-Zero LIF model. As shown

in Figure 5, it mainly includes: 1. Verify the structural and

functional equivalence of LIF/SNN and ReLU/DNN through

simulation. 2. Reduce the simulation error by increasing

the sampling frequency and coding time, demonstrating a

convergence toward ideal conditions.

The simulation experiment in this section is mainly divided

into two parts:

1. Simulation 1: Proof of structural equivalence

(a) Compare the Linear LIF model with the ReLU-AN model
(with bias) when the input signal frequencies are the same.

2. Simulation 2: Prove of behavioral equivalence

(a) Compare the Linear LIF model and the ReLU-AN model

(with bias) under the condition that the two input signal

frequencies are different.
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FIGURE 5

The framework of the proof of equivalence between Linear LIF model and ReLU model. (A) Nonlimiting conditions. (B) Ideal conditions.

FIGURE 6

The structure of the simulation. The whole structure consists of three neurons, two of which are used for information coding and serve as

presynaptic neurons; the third LIF neuron is used to process the input of the first two neurons and produce an output spike train. There are two

synaptic structures in this structure.

(b) Compare the Linear LIF model and the ReLU-AN model

(with bias) under the condition that the input signal

frequencies are different.

(c) Compare LIFNN and DNN (without bias) based on

face/motor data set and MNIST and CIFAR10 data set.

5.1. Simulation1: Proof of structural
equivalence

In this subsection, we examine the dynamics

of the Linear LIF model for verifying the proposed

parameter mapping. The simple structure consists

of a single LIF neuron and two synaptic, shown in

Figure 6.

Firstly, we consider the simplest case, and the LIF model

has two input spike trains from the presynaptic neurons with

the same frequency. When calculating the output of the Linear

LIF model and the Reset-to-Zero LIF model, we transfer the

weights and obtain the values of membrane capacitance and

membrane conductance according to the mapping relationship,

so that the input and output relationship of the Linear LIFmodel

is the same as the ReLU model. The parameters setting is shown

in Table 2.

We recorded the output frequency/pixel of ReLU-AN

model, Linear LIF model, and Reset-to-Zero LIF model under

the same input, shown in Figure 7. Figure 7A shows that the

output of Linear LIF model is almost equal to the output

of ReLU-AN model, but Reset-to-Zero LIF model has a gap

when the input frequency is large. The slope of the relationship
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TABLE 2 Parameters setting of simulation 1.

Params fin ω b gl Cm Vth

Value [1, 30] Hz [0.3, 0.2] –2.16 3.0 1.0 1.0

between input and output, which is calculated by 1/(CmVth), is

equal to that of ReLU-AN model. Besides, the minimum input

frequency that can excite an action potential is consistent with

the bias of ReLU-AN model.

Figure 7B shows the relationship between the membrane

conductance gl and the bias. Apparently, the gl is proportional

to the minimum input frequency which can excite the action

potential and good agreement with the Equation (12). By

changingmembrane capacitanceCm and fixing other simulation

parameters, we can get the relationship between the slope of

activation function and membrane capacitance Cm. Figure 7C

illustrates the relationship between Cm and input-output slope

of Linear LIF model (green) with respect to Reset-to-Zero LIF

model (red). As the Equation (15), the slope of LIF model is

1/(VthCm). When we set the spiking threshold Vth = 1mV , the

relationship between Cm and the slope should be an inversely

proportional function. We can see that the Linear LIF model

is more consistent with Equation (15), while there is an error

between the LIF model and the derivation.

Based on this simulation, we verified the mapping

relationship between Cm and the slope of input-output curve,

gl, and the bias. So that the structural equivalence is proved that

the parameters of Linear LIF model and ReLU-ANmodel can be

one-to-one corresponded.

5.2. Simulation2: Proof of behavioral
equivalence

In this subsection, we prove that the behavioral equivalence

is valid under various conditions. If the difference between the

Linear LIF model and the ReLU-AN model is within the error

range, we believe that the behavioral equivalence is valid. In

this simulation, we get the structural equivalence, that is, the

parameter mapping relation is applicable in all the above cases.

5.2.1. Experiments for two input spike trains

We use the same structure and coding algorithm as Section

5.1. We map the parameters of ReLU-AN model to the Linear

LIF model according to the parameter mapping relationship.

When the input spiking trains have different frequencies, the

output signal of Linear LIF model is not a periodic spiking

train. So we count the number of action potentials in the output

spiking train and divide it by the time windows to get the output

frequency. The params of the simulation are given in Table 3.

The output of ReLU-AN model, Linear LIF model, and

Reset-to-Zero LIF under the same condition, as shown in

Figure 8A. The Linear LIF model’s output can fit well with the

output of ReLU-ANmodel, while there is an error between it and

Reset-to-Zero LIFmodel.We perform additional experiments to

explore the relationship between gl and bias. Figure 8B illustrates

the bias change of the ReLU-AN model (blue) with respect to

the minimum frequency of the Linear LIF model. We observe

that the minimum frequency fits well with the bias, which

indicates the correctness of behavioral equivalence. Figure 8C

shows the relationship between Cm and slope of the input-

output curve, where the blue line represents the Linear LIF

model and the orange line represents the Reset-to-Zero LIF

model. According to the mapping relationship, the slope of

the input-output curve should be inversely proportional to the

membrane capacitance Cm. We can conclude that the Linear

LIF model is more consistent with the Equation (15), and the

slope of the input-output function can be adjusted to 1 through

parameter tuning.

Lastly, we discuss the behavioral equivalence of the Linear

LIF model and ReLU-AN model under the condition that the

model has three input signals with different frequencies. As

shown in Figure 9, the output of Linear LIF is the same as the

output of ReLU-AN model within a certain margin of error.

In this case, we proved that the behavioral equivalence is valid

under this condition.

5.3. Experiments for fully connected
architectures

In this section, we will analyze a case of a three-layer neural

network. one is a pre-trained ANN based on training dataset,

and another is the weights converted linear LIF neural network

(LLIFNN) based on the pre-trained ANN. We will analyze

the middle-layer output, the classification accuracy of the test

dataset, and the influence of parameters on the neural network.

We established an equivalent LLIFNN according to the

proposed parameter mapping. We set the parameters of the

Linear LIF neurons to fixed values, such as the membrane

capacitance Cm and spiking threshold Vth, and mapping the

weights of trained networks to LLIFNN. Since the bias of nodes

in ANN is set to zero, so we also set the membrane capacitance

Cm to a fixed value. We use the frequency coding and mark

the subscripts of the node with the most action potentials in

the output layer as the label. The structure and information

processing algorithm are shown in Figure 10.

The structural equivalence and behavioral equivalence

constitute the equivalence between networks.We use correlation

coefficient (Meng et al., 1992) to quantify the functional
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FIGURE 7

(A) The output of ReLU, LIF, and Linear LIF when the input signals have the same frequency. The abscissa is the input frequency and the ordinate

is the output frequency. The blue point represents the output of ReLU, the orange represents the output of the Reset-to-Zero LIF model, and the

green point represents the data of the Linear LIF model. (B) The relationship between min frequency and membrane conductance. (C) The

relationship between slope of activation function and membrane capacitance.

TABLE 3 Parameters setting of simulation 2.

Params fin ω b gl Cm Vth

Value [1, 60] Hz [0.3, 0.2] –2.16 3.0 1.0 1.0

equivalence of the network, which is also the most common

indicator of similarity. The correlation coefficient is introduced

as a metric of the similarity of neural information. It is used in

statistics to measure how strong a relationship is between two

random variables. The correlation coefficient between x and y is

ρx,y =
n(

∑

xy)− (6x)(6y)
√

[n6x2 − (
∑

x)2][n6y2 − (6y)2]
(16)

5.3.1. Face/motorbike dataset

We firstly evaluate LLIFNN based on the face andmotorbike

categories of the Caltech 101 dataset, including 400 training

pictures and 464 test pictures. We unified the image size

to 130∗80 pixels. We trained and tested a three-layer fully

connected neural network without bias by presenting 20 epoch

training set. The data of size 130∗80 is stretched into a 10,400-

demensional vector and input to the neural network. The 600

neurons in the hidden layer integrate the input data of the input

layer and pass them to the classification layer (of 2 neurons)

through the ReLU function. The structure of LLIFNN is the

same as ANN. Take the output of ANN as the label of test data,

classification of LLIFNN based on face-moto dataset can achieve

99.75%. The confusion matrix is shown in Table 4.

5.3.2. MNIST dataset

The MNIST dataset is a large database of handwritten digits

that contains ten object categories. It has 60000 training images

and 10000 test images. The MNIST dataset is a good benchmark

to show and prove the behavioral similarity between LLIFNN

and ANN. We use the network with the same structure as

the network in Section 5.3.1. We will analyze the behavioral

similarity from two aspects: the output of the middle layer and

output layer, respectively.

Here we show the output spike trains of the middle

layer and mark the change of membrane potential and the

action potentials. In Figure 11A, the gray lines represent the

change of membrane potential and the red lines represent the

action potential. When the membrane potential reaches the

spiking threshold, the post-synaptic neuron will excite an action

potential.

Firstly, we compare the output of the middle layer based on

the correlation coefficient analysis. The framework of calculating

the correlation coefficient is shown in Figure 11B. We convert

the 60 series (the number of nodes in themiddle layer) of spiking

trains in the middle layer of LLIFNN into a 60∗1 vector, named

vector A. The output calculation method of Linear LIF is the

same as the method mentioned in the previous chapter. With

the middle layer of ANN, a 60∗1 vector named vector B. We

can calculate the correlation coefficient of the two vectors to

quantitatively analyze the correlation between the two outputs.

Figure 12A shows the correlation coefficients for 20 groups

of data, where the abscissa is the data table and the ordinate is

the correlation coefficient. If the correlation coefficient is set to

greater than 0.8, it can be determined that the two variables are

strongly related. The orange line is the change in the correlation

coefficient of the output signals of two models based on 50

groups of data, and the blue dotted line is the average value of

the correlation coefficient. We mark in the image shows that the

maximum correlation coefficient is 0.97, the minimum is 0.90,

and the average is 0.94. It quantitatively validates the similarity

between the outputs of middle layer.

We assume that the behavioral equivalence of neural

networks can be reflected in two aspects: 1. For the same data,
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FIGURE 8

(A) The output of ReLU-AN model, Reset-to-Zero LIF model and Linear LIF model when the input signals have di�erent frequencies. (B) The

relationship between membrane conductance gl and the bias. (C) The relationship between membrane capacitance Cm and slope of activation

function.

FIGURE 9

The relationship between output of ReLU-AN model and Linear

LIF model when the three input signals have

di�eren frequencies.

the outputs of ANN and SNN interneurons are equivalent. 2.

The output of the neuron at the same location is equivalent

under different data input situations. Figure 12B shows the

correlation coefficient matrix in data dimension and neuron

dimension, corresponding to the two aspects, respectively. The

two correlation coefficient matrices are Symmetric Matrices and

can be divided into four quadrants with the center point as the

origin of the Darwin coordinate system.

We denote by x the output of the DNN, by y the output of

the SNN, and by ρ(x, y) the correlation coefficient. Based on 20

groups of test data, the correlation coefficient matrix between

the output of the Linear LIF model and the output of the ReLU

model in the middle layer is shown on the left side of Figure 12B.

The first quadrant is the correlation coefficient matrix ρ(x, x) of

ReLU vs. ReLU among different data, the second quadrant shows

the correlation coefficient matrix ρ(x, y) between the output

of the LIF model x[600,20] and the output of the ReLU model

y[600,20], and the third quadrant is the correlation coefficient

matrix ρ(y, y) of LIF vs. LIF among different data. We call

this the data-dimension correlation coefficient matrix. In other

words, for a single data, the output of LIF is more similar

to the output of ReLU under the same input than the output

of the ReLU model under different inputs. Next, we analyze

the neuron-dimension correlation coefficient. We analyze the

correlation coefficient matrix ρ(xi,j, yi,j), where i is the subscript

of the data and j is the subscript of the neuron, shown in the

right part of Figure 12B. Because there are two LIF neuron that

did not fire an action potential in all the test data, its variance in

20 sets of data is 0, which will cause an error in the calculation of

the correlation coefficient matrix. So we ignore this neuron and

only consider 19 neurons. The first quadrant is the correlation

coefficient matrix of ReLU vs. ReLU, the second quadrant shows

the correlation coefficient matrix of Linear LIF vs. ReLU, and the

fourth quadrant is the correlation coefficient matrix of Linear

LIF vs. Linear LIF, but all for different neurons. We can see that

the features represented by an Linear LIF neuron are equivalent

to the features extracted by the corresponding ReLU neuron.

Through the calculation of the correlation coefficient

matrix, we have illustrated the behavioral equivalence of the

hidden layer. To further illustrate the behavioral equivalence of

network, we calculated the classification accuracy of LIF/SNN,

using the output label of ANN as the benchmark. Based

on the classification accuracy of MNSIT dataset, not only

the equivalence of the output layer can be verified, but also

the equivalence of the entire network can be proved. We

used the subscript of node with the largest number of action

potential as the final classification label. A confusion matrix

of the SNN network classification results against that of the

DNN classification results is depicted in Figure 13A. The

overall accuracy reaches 99.38%, indicating that under the

proposed parameter mapping, the LIF/SNN can achieve similar

classification results as its equivalent ReLU/DNN.
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FIGURE 10

The structure of LIF-SNN. The network structure of SNN is the same as that of ANN, and the nodes are replaced by Linear LIF model. The

subscript of the node with the largest number of action potentials in the output layer is taken as the output of the network.

TABLE 4 Confusion matrix of face/motorbike dataset.

Confusion matrix
Predict

Face Moto

Real
Face 200 0

Moto 1 199

The LIF model is widely used in other articles focus on

SNN, and the Linear LIF model is modified based on the LIF

model. With an understanding of the difference between LIF

model and Linear LIF model, we further explore the advantages

of Linear LIF model in the network. We change the following

two parameters and analyze the gap between the classification

accuracy of the two networks MNIST to quantitatively compare

the two models:

• The range of coding frequency. We know that the data

range of MNIST is [0, 1]. Based on the frequency coding

algorithm, we can encode the real number into a spike

train within the coding time. Since the weight which is

transformed from ANN is small (the maximum value is

around 0.1), we give a parameter to map the coding range

to [0, k].

• Membrane conductance. In the parameter mapping

relationship, gl maps to the bias of ReLU, but in this ANN

we set the bias to 0. The parameter gl determines the

membrane potential attenuation of the LIF and Linear LIF

models in the time domain, so we also make it as a variable

to compare the LIF model and the Linear LIF model.

Figure 13B shows the trend of network classification

accuracy based on the two models with the range of coding

frequency. We can see that as the range of coding frequency

increases, the recognition accuracy of the two networks is

increasing. However, under the same parameters and weights,

the recognition accuracy of the LIFNN is 7% higher than that of

LIFNN. At the same time, as gl increases, the accuracy of the two

networks also increases, as shown in Figure 13C. The theory in

Section 4.4 proves that the nonlinearity of Linear LIF model is

consistent with ReLU-AN model and better than Reset-to-Zero

LIF model. This has also been verified in the simulation, and the

similarity between the weight-converted SNN with Linear LIF

model and ANN is significantly better than that with Reset-to-

Zero LIF model, especially in the part with high input frequency.

However, there are still some remaining problems. For

example, according to the parameter mapping relationship,

the smaller the membrane conductivity parameter, the higher

the equivalence between the Linear LIF model and the ReLU

model. For the network structure built by multiple Linear LIF

models, the larger the film capacitance parameter, the higher

the classification accuracy compared to ANN. We believe that

membrane conductance has a complicated relationship with

the frequency coding range. We will explore in the follow-up

work and believe that the convolutional SNN will eliminate this

problem after adding bias.

Through the comparison of middle layers of LIF-SNN and

ANN, the comparison of classification accuracy of MNIST data

set, and the comparison of the classification effect of Linear

LIF-SNN and LIF-SNN, we proved that LIFNN and ANN are

behavioral equivalents at the network level, which confirms
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the behavioral equivalence of Linear LIF model and the ReLU

model.

5.4. Experiments for convolutional
architectures

The previous section proved the behavioral equivalence

based on fully connected neural networks (FCNNs). However,

FCNNs with a large number of parameters require a longer

training time and overfit the training dataset. Compared

with FCNNs, convolutional neural networks (CNNs) are quite

effective for image classification problems and have been applied

for various learning problems. The convolutional layer, the main

component of CNNs, is different from full-connection layers. To

bridge the gap betweenDeep learning and SNNs, we verified that

SNNs with the convolutional structure could also complete the

task of CNN, based on the equivalence between the Linear LIF

model and ReLU-AN model.

5.4.1. Spiking convolutional layer

Convolutional layers are the major building blocks used in

CNNs. Through the convolution operation, the convolutional

layer encodes the feature representation of the input at multiple

hierarchical levels. Establishing the spiking convolutional layer

is very important for building a deep SNN. The connections in

convolutional layers and between the layers are similar to those

in the CNN architecture. Suppose we perform a convolution

operation on the output of the upper layer network, thus the

input of convolutional layer can be expressed as a matrix

S[l−1] with size (S[l−1]
H , S[l−1]

W , S[l−1]
C ,T). The convolutional

layer passes a series of filters ω[l] over our image and gets the

feature map. And the filters should have the same number of

channels with input S[l−1]. The convolutional layer is summed

up in Figure 14 and the number of filters is n
[l]]
c . In this

simulation, we add padding around the input with zero spike

trains in order to maker the output size is the same as the input

size (when stride = 1). Linear LIF models receive the spike train,

which is the sum of elementwise multiplication of the filter and

the subcube of input spike trains. This yields :

conv(S,ω)x,y =
nH
∑

i=1

nW
∑

j=1

nC
∑

k=1

Sx+i−1,x+j−1,k,Tωi,j,k (17)

where ω is the filter with the size of (nH , nW , nC). We insert the

spike train into the membrane (Equation 5) and solve for the

output spike train.

5.4.2. Spiking max-pooling layer

Most successful CNNs use max-pooling, typically added

to CNNs following individual convolutional layers, to reduce

computational load and overfitting. Cao et al. (2015) used the

lateral inhibition to select the winner neuron and completed the

function ofmax-pooling layer. However, the winner neuronmay

not be the neuron with the largest output. Here we propose a

simple method to complete the operation of the max-pooling

layer. For a set of spike trains let Il,h denote the output of

neuron. l ∈ {1, ..., L} and h ∈ {1, ...,H} represent the row and

column of neuron, respectively. Considering that we use the

frequency encoding, we integrate the input spike sequences in

the time domain firstly. The number of spikes N of neuron nl,h
is computed as:

Nl,h =

∫ T

o
Il,h(t)dt (18)

where T is the time window. And the we adopt the neuron with

the largest number of spikes in the time window as the output

neuron of the max-pooling layer, shown in Figure 15.

5.4.3. Datasets and implementation

We set a group of experiments based onMNIST and CIFAR-

10 datasets. We convert the supervised-trained weights of CNN

into an SNN with the same structure and verify the gap between

CNN and SNN in the test dataset.

A ConvNet with two convolution layers (Conv.12 5 × 5 -

Conv.64 5 × 5), ReLU activations, and two max-pooling layers

are trained on the MNIST dataset. The structure of networks is

the same as architectures used by authors in Diehl et al. (2015)

and shown in Table 5. In the experiment, we select the best-

performing model after the verification accuracy has converged,

and directly transform it into LIF-SNN. The LIF-SNN uses

frequency coding and sets the parameters of each Linear LIF

neuron to be equivalent to the ReLU-AN model.

Verified by experiment, a shallow convolutional net can

achieve high performance on the MNIST dataset. A more

complex model should be performed to evaluate the equivalence

in a deep structure.We use the AlexNet architecture (Krizhevsky

et al., 2012) and VGG-16 (Simonyan and Zisserman, 2015)

architecture for the CIFAR-10 dataset. In the simulation, we

did not use image pre-processing and augmentation techniques

and kept consistent with the AlexNet and VGG-16 model

architecture. And all the CNNs in the experiment did not

use bias. Because the conversion between bias and membrane

conductance needs to limit the weight of the neural network, see

Section 4.3 for details. The equivalence between neuron models

with bias has been proved in the previous chapter through

formulas and simulation experiments, see Section 5.2.

By verifying the similarity between CNN and LIF-SNN,

we proved the equivalence of the Linear LIF model with
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FIGURE 11

(A) The membrane potential of LIF neurons. The left curve shows the state of 16 LIF neurons. The first heat map on the right shows the number

of spikes of LIF neurons as arranged in a map. Each data corresponds to the LIF membrane potential data on the left. The other heat map is the

same but for the ReLU neurons. (B) The framework of calculating the correlation coe�cient.

FIGURE 12

(A) Correlation of the output of the two models for di�erent data. (B) The correlation coe�cient matrix along data dimension (left) and neuron

dimension (right).

FIGURE 13

(A) The confusion matrix between the output of the network built by LIF/SNN and the predicted value of ReLU/DNN. (B) Comparison of

classification accuracy of MNIST between LIFNN and LIFNN by changing the range of coding frequency. (C) Comparison of classification

accuracy of MNIST between LIFNN and LIFNN by changing membrane conductance.
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FIGURE 14

The structure and information flow of spiking convolutional layer.

FIGURE 15

The structure and information flow of spiking max-pooling layer.

the ReLU-AN model. However, we are not aiming at the

highest performance of CNNs under supervised learning, so

we don’t use regular operations like image pre-processing, data

augmentation, batch normalization, and dropout.

5.4.4. Experiments for ConvNet architectures

The network used for the MNIST dataset is trained for

100 epochs until the validation accuracy stabilizes, and achieves

98.5% test accuracy. For LIF-SNN, we set the time window of

simulation as 2s and normalized values of the MNIST images to

values between 0 and 10. Based on the algorithm of information

coding, spike trains between 0 and 10 Hz were generated

and presented to the LIF-SNN as inputs. The input trains are

processed by convolutional layers and max-pooling layers, and

finally are vectorized and fully connected to ten Linear LIF node

as the output. We counted the number of spikes in output spike

trains, used the node with the highest frequency as the output of

LIF-SNN.

Figure 16 shows the comparison between ReLU-based

ConvNet and LIF-SNN, and the confusion matrix. We use the

number of spikes to represent the spike trains. The comparisons

of feature maps between ReLU-based ConvNet and LIF-SNN are

shown in the left figure in Figure 16. By comparing the upper
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TABLE 5 CNN baseline model for MNIST dataset (with softmax output

layer).

Layer Details

Input layer 28× 28× 1 in [0.0, 1.0]

Convolution 1 1× 5× 5 kernels, ReLU,12 output maps of 28× 28

Pooling 1 2× 2 max-pooling, 12 output maps of 12× 12

Convolution 2 12× 5× 5 kernels, ReLU,64 output maps of 12× 12

Pooling 2 2× 2 max-pooling, 64 output maps of 6× 6

Flatten 1 Flatten, ReLU, 3,136 output maps of 1× 1

Fully connected 1 Fully connected, ReLU, 100 output neurons

Fully connected 2 Fully connected, ReLU, 10 output neurons

and lower figures, we can obtain that the original images have

undergone convolutional and pooling operations, which are the

same as the information represented by spiking convolutional

and spiking max-pooling operations after frequency encoding.

Ideally, that is, the encoding time is infinite and the sampling

frequency is infinite, the image in the bottom row should be the

same as the image in the top row. The right figure in Figure 16

shows the confusion matrix of MNIST data, the actual labels are

the outputs of CNN, and the predicted labels are the outputs

converted LIF-SNN. We selected 2,000 sets of images from the

test dataset for testing. Compared with the output of CNN,

the accuracy of LIF-SNN reached 100%. Under the structure of

the convolutional and pooling layers, the two neuron models

can also maintain high behavioral equivalence. The experiments

also proved the equivalence of the ReLU-AN model and the

CLIF model in the convolutional neural network composed of

convolutional and max-pooling layers.

5.4.5. Experiments for deep convolutional
architectures

In this subsection, a more thorough evaluation using

more complex models (e.g., VGG, AlexNet) and datasets

(e.g., CIFAR that includes color images) are given. Since the

main contribution of this work is establishing the mapping

relationship and not in training a SOTAmodel. In the training of

AlexNet and VGG-16 based on the CIFAR-10 dataset, we did not

use data augmentation and any hyper-parameter optimization.

Although the classification accuracy based on the existing

training mechanism is not the best, it is already competitive.

The AlexNet architectures network with five convolutional

layers, ReLU activation, 2 × 2 max-pooling layers after the

1st, 2nd, and 5th convolutional layer, followed by three fully

connected layers was trained on the CIFAR-10 dataset. The

AlexNet network is created based on PyTorch and trained on

2 GPUs with a batchsize of 128 for 200 epochs. Classification

Cross-Entropy loss and SGD with momentum 0.9 and learning

rate 0.001 are used for the loss function and optimizer. We

selected the best-performance model and convert the weights to

the LIF-SNNwith same structure. The best validation accuracies

(all the test data) of AlexNet for the CIFAR-10 dataset we

achieved were about 80.23%. The simulation process is the same

as the simulation of the MNIST dataset. Figure 17 shows the

comparison of the feature map and the confusion matrix. Based

on the equivalence of Linear LIF model and ReLU-AN model,

the outputs of LIF-SNN are infinitely close to the outputs of

CNN. Besides, in order to quantitatively analyze the equivalence

of LIF-SNN and CNN after weight conversion, we compared the

classification accuracy of the two models and drew a confusion

matrix. We verified all the test samples and used the output of

CNN as the label. LIF-SNN achieved 99.46% accuracy on the

CIFAR-10 dataset.

The experiment of the VGG-16 structure network is based

on the proposal outlined by the authors in Sengupta et al.

(2019). Sengupta made effort to generate an SNN with deep

architecture and applied it to the VGG-16 network. Similarly,

we trained a VGG-16 network based on the CIFAR-10 dataset.

The best validation accuracy we achieved is about 88.58%. We

only replace the ReLU-ANmodel with the Linear LIFmodel. For

800 images of the test dataset, LIF-SNN obtained a test accuracy

rate of 99.88%, and the accuracy rate is calculated in the same

way as Section 5.3.2. Besides, with the Spike-Norm proposed

by Sengupta et al. (2019), the algorithm allows conversion of

nearly arbitrary CNN architectures. The way to combine it

with parameter mapping needs to be explored to minimize the

accuracy loss in ANN-SNN conversion.

Table 6 summarizes the performance of converted LIF-

SNN on MNIST and CIFAR-10 datasets. We list the results

of some ANN-to-SNN works and compare them based on

the error increment between CNN and SNN as an indicator.

Error increment refers to the gap between the classification

accuracies of ANN and SNN. At the same time, we also give the

network structure and parameters for reference in Table 6. The

transformation based on model equivalence achieved the best

performance. For the shallow network, we can achieve error-free

transformation, and for the deep network, we can minimize the

error to 0.08%.

Through the simulation of neural networks with different

structures, including shallow and deep networks, we proved the

equivalence of the Linear LIF model and the ReLU-AN model.

And it is verified that the conversion from CNN to SNN can also

be completed in convolutional structures, deep networks, and

complex data sets.

5.5. Error analysis

There is still a gap between the LIF/SNN and ReLU/DNN.

We believe that the main reason for the error is that the ideal

simulation conditions are not achieved. Under ideal conditions,

we have infinite encoding time and infinite sampling frequency.

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2022.857513
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lu and Xu 10.3389/fnins.2022.857513

FIGURE 16

Performance of SNN with ConvNet architecture. The left figure shows comparison of feature maps between ReLU-based ConvNet and LIF-SNN.

The top figure shows the test image, feature map of convolutional layer, and feature map of max-pooling layer. The images in the bottom rows

show the spikes count of output of LIF-SNN. The right figure shows the confusion matrix of LIF-SNN relative to the output of CNN.

FIGURE 17

Performance of SNN with AlexNet architecture. The left part of figure shows the comparison of feature maps of convolutional layers and

max-pooling layer between ReLU-based CNN and LIF-SNN with same input and connection weights. The right part of figure shows the

confusion matrix for CIFAR-10 classification.

However, considering the demand for computing power, our

simulations are compromised between accuracy and computing

power consumption. Besides, the mapping relationship we

proposed is established under the condition that multiple inputs

with the same frequency. While in more general conditions,

there are still errors.

Here we explore the relationship between coding time and

error. We define the output of the Linear LIF model as:

f ′ =
N

T
(19)
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TABLE 6 Classification error rate on MNIST and CIFAR-10 dataset.

Dataset Architecture Preprocess Synap. ANN SNN Error

MNIST
7-layered ConvNet [ours] None 0.33M 98.5 98.5 0.0

7-layered ConvNet (Diehl et al., 2015) Normalization 0.33M 99.14 99.12 0.02

CIFAR-10

AlexNet [ours] None 12.98M 80.23 80.12 0.11

8-layered ConvNet (Cao et al., 2015) Input data preprocessing 7.4M 79.12 77.43 1.69

6-layered ConvNet (Rueckauer et al., 2017) Parameter normalization 23M 91.91 91.85 1.06

8-layered Network (Hunsberger et al., 2016) None - 83.72 83.54 0.18

VGG-16 [ours] None 33M 88.58 88.46 0.12

VGG-16 (Sengupta et al., 2019) Spiking normalization - 91.7 91.55 0.15

FIGURE 18

Comparison of theoretical error and actual error.

where N is the number of action potentials of spike train within

the coding time, and T is the coding time. Then we assume that

our expected output frequency is f , then:

N = ⌈f · T⌉ (20)

Then the error between the expected output frequency and

the true output frequency is:

∣

∣f − f ′
∣

∣ =

∣

∣

∣

∣

f −
N

T

∣

∣

∣

∣

=

∣

∣

∣

∣

f −
[f · T⌉

T

∣

∣

∣

∣

<
1

T
(21)

We explore the L2 norm as the error under the same

frequency input condition. Figure 18 shows the relationship

between simulation error and the theoretical error of LIF-AN.

We can see that the actual error is consistent with the theoretical

error trend, and we can reduce the error by increasing the

encoding time. When the coding time is 10s, LIF-SNN achieves

an error of less than 1% in the moto/face and MNIST data sets.

6. Conclusion and discussion

6.1. Brief summary

Despite the great successes of DNN in many practical

applications, there are still shortcomings to be overcome.

One way to overcome them is to look for inspiration from

neuroscience, where SNNs have been proposed as a biologically

more plausible alternative.

This paper aims to find an equivalence between LIF/SNN

and ReLU/DNN. Based on a dynamic analysis of the Linear

LIF model, a parameter mapping between the biological neuron

model and the artificial neuron model was established. We

analyzed the equivalence of the two models from the aspects

of weight, bias, and slop of activation function, and verified

it both theoretically and experimentally, from a single neuron

simulation to a neural network simulation. It shows that such an

equivalence can be established, both the structural equivalence

and behavioral equivalence, and the Linear LIF model can

complete the information integration and the information

processing of the linear rectification.

This mapping is helpful for the combination of an SNN

with an artificial neural network and increasing the biological

interpretability of an artificial neural network. It is the first

step toward answering the question of how to design more

causal neuron models for future neural networks. Many scholars

believe that interpretability is the key to a new artificial

intelligence revolution.

At the same time, the equivalence relationship is the bridge

between machine intelligence and brain intelligence. Exploring

new neuron models is still of great importance in areas such

as unsupervised learning. As brain scientists and cognitive

neuroscientists unravel the mysteries of the brain, the field

of machine learning will surely benefit from it. Modern deep

learning takes its inspiration from many areas, and it makes

sense to understand the structure of the brain and how it works

at an algorithmic level.
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6.2. Future opportunities

The architecture of SNN is still limited to the structure of

DNN. Compared with DNN, SNN only has the synaptic

connection weights which can be trained, while the

weights, bias and activation function (dynamic ReLU,

Microsoft Chen et al., 2020) can be trained in DNN.

Therefore, we expect Linear LIF model and the parameter

mapping relationship can bring innovation to SNN from

those aspects.

6.2.1. A new way to convert ANN to SNN

With the new approach of converting pre-trained ANN

to SNN, we will have a better expression of bias in SNN.

Most conversion methods restrict the structure of ANN and

directly map the weight. However, bias is also an important

parameter in the deep learning network, and we can convert

bias into membrane conductance gl based on parameter

mapping relationship. In this way, SNN and ANN can

maintain high consistency and improve the effect of some

tasks. Especially in the convolutional neural network, the

connectable region of neurons is small, which is more conducive

to the conversion of bias into the parameters in the Linear

LIF model.

6.2.2. Parameters training of linear LIF model

All the parameters of LIF model can be trained or

transformed, which is the fundamental difference from other

SNN. Based on the parameters mapping relationship, we can

map the trained parameters of DNN to the biological parameters

of LIF model, to ensure that each node in SNN has its own

unique dynamic properties. At the same time, we know the

meaning of each parameter, and we can also carry out the

direct training of parameters. In biology, it is also worth

investigating whether other parameters of neurons, besides

weights, will change.

6.2.3. Dynamic activation function

As the number of layers in the network increases, the

number of spikes decreases. We generally adjust the spiking

threshold to solve this problem. But we know that the shape of

the action potential is essentially fixed, and the spiking threshold

of neurons does not change. The membrane capacitance

represents the ability to store ions, that is, the opening and

closing of ion channels. So, when the number of spikes is

low, we can reduce the membrane capacitance and increase

the membrane capacitance instead. In parameter mapping, it is

similar to dynamic ReLU.
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