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Purpose: Personalized interpretation of medical images is critical for optimum

patient care, but current tools available to physicians to perform quantitative

analysis of patient’s medical images in real time are significantly limited. In

this work, we describe a novel platform within PACS for volumetric analysis

of images and thus development of large expert annotated datasets in

parallel with radiologist performing the reading that are critically needed

for development of clinically meaningful AI algorithms. Specifically, we

implemented a deep learning-based algorithm for automated brain tumor

segmentation and radiomics extraction, and embedded it into PACS to

accelerate a supervised, end-to- end workflow for image annotation and

radiomic feature extraction.

Materials and methods: An algorithm was trained to segment whole primary

brain tumors on FLAIR images from multi-institutional glioma BraTS 2021

dataset. Algorithm was validated using internal dataset from Yale New
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Haven Health (YHHH) and compared (by Dice similarity coefficient [DSC])

to radiologist manual segmentation. A UNETR deep-learning was embedded

into Visage 7 (Visage Imaging, Inc., San Diego, CA, United States) diagnostic

workstation. The automatically segmented brain tumor was pliable for

manual modification. PyRadiomics (Harvard Medical School, Boston, MA)

was natively embedded into Visage 7 for feature extraction from the brain

tumor segmentations.

Results: UNETR brain tumor segmentation took on average 4 s and the

median DSC was 86%, which is similar to published literature but lower than

the RSNA ASNR MICCAI BRATS challenge 2021. Finally, extraction of 106

radiomic features within PACS took on average 5.8 ± 0.01 s. The extracted

radiomic features did not vary over time of extraction or whether they were

extracted within PACS or outside of PACS. The ability to perform segmentation

and feature extraction before radiologist opens the study was made available

in the workflow. Opening the study in PACS, allows the radiologists to verify

the segmentation and thus annotate the study.

Conclusion: Integration of image processing algorithms for tumor auto-

segmentation and feature extraction into PACS allows curation of large

datasets of annotated medical images and can accelerate translation of

research into development of personalized medicine applications in the

clinic. The ability to use familiar clinical tools to revise the AI segmentations

and natively embedding the segmentation and radiomic feature extraction

tools on the diagnostic workstation accelerates the process to generate

ground-truth data.

KEYWORDS

artificial intelligence (AL), machine learning (ML), PACS (picture archiving and
communication system), brain tumor, segmentation, feature extraction, glioma,
BraTS

Introduction

Artificial intelligence (AI) is a powerful technology that has
significant potential impact in the development of personalized
medicine solutions in medical imaging, but only a few of these
algorithms are readily available in standard clinical practice,
regardless of whether they are FDA approved (ACR Data
Science Institute, n.d.; Benjamens et al., 2020; Garderen et al.,
2021). One of the major limitations in successful translation of
AI algorithms into clinical practice is the lack of multicenter
annotated datasets that allow sufficient training of the algorithm
to be for clinical translation. Solutions to this problem include
data sharing agreements, development of image databank
consortiums (MIDRC, TCIA, BraTS), and federated learning
(MIDRC, n.d.; Clark et al., 2013; Menze et al., 2015; Bakas
et al., 2017a,b, 2018; Sheller et al., 2020). While these methods
provide important advances for algorithm development, the
need for building large databases of individual hospital data

for algorithm translation to specific patient population that the
hospital serves still remains.

While one can retrospectively curate these databases, a more
workflow efficient method is to develop these databases in real
time. That is, to have a platform for clinically incorporated
tools that allow building of large radiologist annotated clinical
datasets. Several studies evaluated methods outside of clinical
PACS that provide potential solutions for incorporation of ML
into clinical practice, with some of the studies demonstrating
role of ML in changing clinical decisions such as administration
of contrast (Combès et al., 2021; Garderen et al., 2021;
Thakur et al., 2022). These approaches are early adapters of
ML in clinical practice and are demonstrating potential for
future approaches.

Deep learning algorithms have proven themselves to be
effective in various aspects of glioma imaging, including
tumor segmentation and classifying tumor grade and genetic
subtypes in gliomas. Central nervous system (CNS) malignancy
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is expected to be diagnosed in 24,530 patients this year,
with 18,600 patients dying from this disease (Siegel et al.,
2020, 2021). The most common CNS malignancy is glioma,
which are clinicopathologically graded as glioblastoma (IDH
wildtype, Grade 4), astrocytoma (IDH-mutant grade 4, 3, 2)
according to the World Health Organization 2021 (WHO)
grading scale (Louis et al., 2021). The glioma grade represents
the overall malignant potential of the tumor and can be
determined based on pathologic evaluation and molecular
analysis, with most recent classification describing significant
changes in 2021 (Gonzalez Castro and Wesseling, 2020; Louis
et al., 2021; Rushing, 2021). While glioblastomas are the most
aggressive tumor type with a median survival of 14.6 months
after treatment, grade 1-3 gliomas and IDH-mutant grade 4
astrocytomas have better outcomes with mean survival times
ranging 2–8 years (Claus et al., 2015; Liang et al., 2020; Poon
et al., 2020). Molecular subtypes play an important role in
response to treatment and overall survival. For instance, MGMT
mutation in GBM can improve treatment response to alkylating
agents (Hegi et al., 2005). In addition, IDH mutation is an
important prognostic factor for patients with improved survival
rates compared to IDH wildtype glioblastomas (Xia et al., 2015;
Chen et al., 2016).

Brain segmentation and radiomic feature extraction tools
have shown promising results for incorporation in clinical
practice in the field of neuro-oncology, but clinical translation
has been significantly hampered due to limited available
annotated datasets and decreased performance of algorithms on
geographically distinct validation datasets (Subramanian et al.,
2021; Cassinelli Petersen et al., 2022; Jekel et al., 2022).

Systematic reviews on application of Machine Learning in
Gliomas identified 695 studies on this area, however, none
of them described routine clinical implementation of these
tools (Subramanian et al., 2021; Cassinelli Petersen et al.,
2022; Jekel et al., 2022). While these tools have shown
promising results in tumor segmentation and generation
of high throughput quantitative data, several challenges are
preventing their integration into clinical practice (Rudie
et al., 2019). These challenges include incorporation of these
tools into clinical workflow, making them user-friendly to
radiologists, making the algorithm assessment of tumors time
efficient, and coordinating the software output with radiology
report software. To incorporate glioma segmentation tools
into existing clinical workflows, we developed automated
and efficient tumor segmentation and feature extraction
tools and integrated them into PACS that is used at our
hospital system, thus connecting an inference system which
handles calls from the PACS, and presents the segmentation
results to the attending radiologists in an easily accessible
manner within a suitable hanging protocol. This method
has potential to accelerate clinical implementation of ML
by incorporating the ML algorithm into the software that
is used by radiologists. This approach also has potential

for development of large annotated datasets during real-time
clinical practice.

Materials and methods

After IRB approval, pre-operative images were obtained
from the Yale New Haven Hospital database in adult patients
with pathologically proven gliomas grade 3 and 4. The MR
imaging was performed before surgical diagnosis of these
patients. The images were reviewed retrospectively and the
patients were grouped into high and low grade glioma. The
DICOM data was transferred, and automatically anonymized,
from our clinical PACS to our research PACS (Visage AI
Accelerator, Visage Imaging, Inc., San Diego, CA, United States)
(Lin, 2020). On the research PACS, 3D segmentation of the
whole tumor with surrounding edema was performed manually
by a board certified neuroradiologist (MSA) who was blinded
to the glioma grading and outcome (Supplementary Figure 1).
This manual segmentation served as the reference standard to
which the AI based automatic segmentation tool was tested.
Specifically, an algorithm was trained to delineate the whole
glioma portion on MRI FLAIR images. The AI network
was trained using the BraTS 2021 dataset, which contains
multi-institutional and multi-sequence MRI scans of gliomas
(Menze et al., 2015; Bakas et al., 2017a,b). The algorithm was
subsequently trained on an internal dataset from Yale New
Haven Health. For a deep-learning network architecture we
chose UNET Transformer (UNETR), which uses a transformer
in the encoder instead of a classical convolutional layer because
this has improved performance compared to other architectures
for this task (Hatamizadeh et al., 2022). The algorithm was
trained using volumetric patches of size 128 × 128 × 64 with
a spacing of 1.5 cm3

× 1.5 cm3
× 2 cm3 using trilinear

interpolation with sampling of the patches (Benjamens et al.,
2020; ACR Data Science Institute, n.d.). All preprocessing was
performed once per volume and this intermediary data was
cached to use for training.

The UNETR has a larger VRAM consumption than
the NNUNET. The NNUNET samples a patch with size
128 × 128 × 128 from the 1 mm3

× 1 mm3
× 1 mm3 image

resulting in an effective size of cropped volume of 128 mm3,
which would not fit into the available VRAM (24GB, NVIDIA
TITAN RTX). To achieve a similar volume, we resampled in the
z-direction from 1 to 2, which allowed us to reduce the patch
size to 128 × 128 × 64. The automatically segmented brain
tumor was pliable for manual modification using the existing
segmentation tools available in Visage 7.

The trained AI network was natively embedded using
Docker and the NVIDIA Triton inference platform. The Docker
container has access to the current protocol content and
processes the data retrieved from the PACS. To ensure that
the developed algorithm is deployed in a safe manner which is

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.860208
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-860208 October 11, 2022 Time: 13:37 # 4

Aboian et al. 10.3389/fnins.2022.860208

crucial in a clinical environment we adhered to the standards
described by the Open Web Application Security Project
(OWASP) (GitHub, Inc., n.d.). Their checklist includes good
practices to secure Docker containers such as frequent updates,
not exposing the docker daemon, limit user permissions and
resources usage etc. (OWASP Cheat Sheet Series, n.d.). For
preprocessing, brain extraction was performed (Isensee et al.,
2019), the cropped data was reoriented, resampled using
trilinear interpolation and the voxel intensities normalized
using z-score normalization. The preprocessed image data
was then passed to the inference platform through an HTTP
request. The platform utilized mixed precision and TensorRT to
boost inference speed. Inference was performed using a sliding
window and test-time-augmentation in the form of flipping
along each axis. The result was then passed back to the Docker
container which converted the results to an overlay visible in
Visage 7 (Figure 1). To reduce the burden on the radiologist
in these tasks, several improvements were implemented into
the Visage PACS client (Visage 7-1-18). These included a Quad
multi-planar reformat comparison layout with 3D registration
(automatic viewer registration tool) to facilitate viewing and
segmentation. Given that certain aspects of the tumor are best
segmented in specific MR sequences, it was critical to develop
the function to copy/paste segmentation masks across MR
sequences and ensure that the exact segmentation is transposed.

The resulting segmentation can be saved in PACS as a
DICOM presentation state.

In a second step, we natively embedded PyRadiomics
(Harvard Medical School, Boston, MA, United States) for
feature extraction from those segmentations (Griethuysen
et al., 2017). The algorithm utilizes both automatically and
manually delineated structures present in the viewer content and
calculates their radiomic features. Upon completion, the results
are available to the researcher in JSON format, which can be
stored locally. To validate our implementation, we compared
the extracted values to a reference implementation which used
locally stored data. The overall workflow is depicted in Figure 1.

The accuracy of the AI algorithm was measured based
on DSC (between a board certified neuroradiologist’s manual
segmentations and the AI algorithm’s result) and the correctness
of the feature extraction was measured by calculating relative
difference compared to a reference implementation.

Results

The UNETR autosegmentation algorithm was trained on
FLAIR images from the BraTS 2021 dataset, all 1251 FLAIR
series with whole tumor segmentations were used. The training
data was split into 1,151 samples for training and 100 for
validation. The test set only contained data from YNNH, which
was 73 pathologically proven high grade gliomas. Training was
stopped after 250 epochs and the model with the best mean

DSC (0.90) on the validation dataset was chosen. The model
stopped improving after the 170 epoch. On the test dataset, the
DSC was lower, but the algorithm still provided a solid baseline
segmentation with median DSC of 0.86 and a mean of 0.81.
A sample segmentation is depicted in Figure 2.

The developed model was deployed using the NVIDIA
Triton inference platform and integrated into the Visage
AI Accelerator. The average overall processing time after
activating the segmentation algorithm was 2.33 s on our system
(NVIDIA TITAN RTX, Intel(R) Core(TM) i7-6900K CPU @
3.20GHz, 64 GB RAM).

Interaction between the PACS and the algorithm, including
image retrieval and storing the resulting segmentation took
0.33 seconds, preprocessing and postprocessing (including brain
extraction, image reorientation and resampling) took 1.48 s and
the actual inference of the AI model took 0.52 s. Afterward,
the segmentation is displayed and modifiable within the client
workstation using the same, familiar tools available on the
diagnostic workstation.

The extraction of radiomic features is then started from the
same interface using the embedded PyRadiomics module, with
an average computation time of 4 s. The extracted radiomic
features can then be exported as JSON files. To confirm the
stability of the embedded feature extraction algorithm, it was
compared to a reference implementation (EK, TZ). Initially, the
features that were extracted from the demonstrated up to 1.4%
difference in absolute values with 17 features being different
among 106 features total. After inspecting each implementation,
a minor version difference was identified. Using the same
version (3.0) of the PyRadiomics module resulted in complete
agreement, bringing the absolute error to zero (Figure 3). After
confirming the correct implementation of PACS based feature
extraction, we also performed separate feature extraction on
three different time points and found zero error among those
separate extraction steps.

Overall, the integration of the glioma segmentation
algorithm and feature extraction algorithm into the standard
PACS viewer resulted in a workflow efficient and interactive way
for users to generate datasets of annotated medical images and
corresponding radiomic data. The combination of the image
viewer’s standard tools and the availability of algorithms in the
form of a button makes advanced quantitative image volume
analysis much more accessible in clinical practice.

Discussion

In this work, we demonstrate that implementation of AI
tools into PACS is feasible and provides tools for annotation of
medical images and extraction of quantitative imaging features
to radiologists in a format that is the same as the clinical
workflow. An AI-based workflow including auto-segmentation
and radiomic feature-extraction was integrated into a PACS

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.860208
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-860208 October 11, 2022 Time: 13:37 # 5

Aboian et al. 10.3389/fnins.2022.860208

platform and made available to clinicians. The radiologists can
use the same PACS interface that they use in clinical practice,
thus not requiring additional training or data export for image
analysis with ML algorithms. The set of tools interacts with the
content visible in the clinical viewer and produces annotations
which can be modified using existing tools. The workflow is fast
with a total computation time of below five seconds for running
both the automatic AI glioma 3D segmentation and radiomic
feature extraction tools and easily accessible through buttons
integrated into the workstation’s interface.

The quality of the automatically generated whole tumor
segmentations from the FLAIR sequence is good with a
median DSC 0.86 measured using gold standard segmentations
performed by a board certified neuroradiologist. The tool
produced quick baseline segmentations which can be approved
or modified by the clinician and subsequently is stored in the
PACS. The overall result is a fast and interactive pipeline of
PACS-integrated tumor segmentation and feature extraction,
which is available to the clinician immediately after opening a
study. The workflow uses familiar tools and does not require

FIGURE 1

Schematic diagram of auto-segmentation and feature extraction tools incorporated into clinical PACS on Visage Imaging platform. From the
workstation, the viewer content is passed to the Python API and the corresponding image data is retrieved from the PACS system. After
preprocessing, a request is sent to the inference platform and a segmentation is returned. The segmentation is added to the study by the Python
API and the result is displayed in the workstation. After reviewing the segmentation, the physician now has the ability to run radiomic feature
extraction on the curated dataset.

FIGURE 2

(Continued)
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FIGURE 2

Auto-segmentation tool delineates the borders of tumor and surrounding edema and is similar to manual segmentation of the tumor by
neuroradiologist (A). (B) Accuracy of segmentation measured using DICE coefficient, Jaccard index, Positive Predictive Value (PPV), True Positive
Rate (TPR), and True Negative Rate (TNR).

FIGURE 3

Accuracy of feature extraction using PyRadiomics. (A) Features extracted using PyRadiomics incorporated into PACS were compared to features
extracted using external PyRadiomic script. The version of the PyRadiomics were v3.0 and v3.0.post3.dev0+ge100f1d. (B) The error was brought
to zero after the versions of PyRadiomics were matched.

any additional software or coding knowledge. While higher
DSC scores were reported in the RSNA ASNR MICCAI
BRATS glioma segmentation challenge, our dataset is different
due to inclusion of motion degraded but clinically relevant
images. Future work will include implementation of advanced
algorithms, such as nnUNET which show higher DSC scores.

Currently machine learning in medical imaging is a hot topic
with a large spike in publications starting in 2017 (Subramanian
et al., 2021; Afridi et al., 2022; Avery et al., 2022; Bahar
et al., 2022; Cassinelli Petersen et al., 2022; Jekel et al., 2022).
Multiple works demonstrated high accuracy with use of ML for
tumor segmentation, identification of images with brain tumors
from other pathologies, glioma grade and molecular subtype
prediction, differentiation of gliomas from lymphoma or brain

metastases. These results suggest that clinical implementation
of these algorithms is imminent and will be seen in the clinical
practice in the next few years (Subramanian et al., 2021; Afridi
et al., 2022; Avery et al., 2022; Bahar et al., 2022; Cassinelli
Petersen et al., 2022; Jekel et al., 2022; Tillmanns et al., 2022).
The next frontier in neuro-oncology imaging is identification of
clinical applications of ML algorithms in clinical practice and
determining the aspects of clinical care that can be improved
with predictions that can be generated by these algorithms.
The best method to achieve adoption, is to bring the ML
tools into the hands of everyday radiologists who may or may
not have the expertise in computer science or ML, but have
extensive expertise in manipulating clinical PACS. PACS has
rapidly evolved since its implementation into clinical practice
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in early 2000s. It has changed the face of clinical practice for
radiologists and significantly affected how radiologists interact
with the referring providers and hospital staff. The toolset we
present in our paper is the first step toward this new reality in
clinical practice and will serve as the platform for data curation,
annotation/labeling, and AI algorithm implementation.

In addition to enable AI-based interactive workflows,
another goal is to develop AI which can run unsupervised on
each eligible study. While in most cases AI is not there yet,
the persistent and safe storage of segmentations, imaging and
clinical parameters in the PACS system enables building of large
libraries of datasets. The work in our laboratory is underway to
expand the training to additional studies from our institution.
Those kinds of datasets accelerate the process of developing
and validating such models. The additional information could
also already be leveraged for patient management, such as
tracking of individual lesions with existing segmentations
(Kickingereder et al., 2019).

Our paper has several limitations, which include focus
on FLAIR based segmentations for accuracy assessment. The
algorithm was originally trained on a BraTS dataset but tested
on our single institution data that consists of multiple individual
hospitals. The small dataset has been expanded to a larger glioma
dataset of 430 cases for development of clinical applications
of these tools at our hospital. Another limitation of our study
is use of only one feature extraction method (PyRadiomics),
which is one of the many methods available (Zwanenburg et al.,
2020). The strength of our system is that other feature extraction
algorithms can be incorporated in our system, based on the
needs of the algorithm that is being used and clinical service
where it is being incorporated into.

We present a novel method for implementation of AI
algorithms into clinical practice by incorporating a deep
learning algorithm for glioma segmentation and radiomic
feature extraction into clinical PACS. We validated this method
on a single institutional glioma dataset and demonstrate
reproducibility of feature extraction. This work has potential
for accelerating the translation of research concepts to
routine clinical use.
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SUPPLEMENTARY FIGURE 1

Segmentations performed on Visage Software with whole, core, and
necrotic portions of the tumor segmented. The whole segmentation (A)
included tumor core and surrounding edema and infiltrating tumor. The
core (B) segmentation included the outer margin of the enhancing
component of the tumor. The necrotic (C) segmentation included the
internal necrotic component of the enhancing portion of the tumor.
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