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Analysis of time-evolving data is crucial to understand the functioning of dynamic

systems such as the brain. For instance, analysis of functional magnetic resonance

imaging (fMRI) data collected during a task may reveal spatial regions of interest,

and how they evolve during the task. However, capturing underlying spatial patterns

as well as their change in time is challenging. The traditional approach in fMRI data

analysis is to assume that underlying spatial regions of interest are static. In this

article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective

way to summarize the variability in fMRI data collected during a task, we arrange

time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze

the tensor using a tensor factorization-based approach called a PARAFAC2 model

to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple

time windows revealing subject-mode patterns, evolving spatial regions (also referred

to as networks) and temporal patterns. We compare the PARAFAC2 model with

matrix factorization-based approaches relying on independent components, namely, joint

independent component analysis (ICA) and independent vector analysis (IVA), commonly

used in neuroimaging data analysis. We assess the performance of the methods in terms

of capturing evolving networks through extensive numerical experiments demonstrating

their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a

compact representation in all modes, i.e., subjects, time, and voxels, revealing temporal

patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in

terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA’s

performance depends on sample size, data distribution and covariance structure of

underlying networks. When these assumptions are satisfied, IVA is as accurate as the

other methods, (iv) when subject-mode patterns differ from one time window to another,

IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a

sensory motor task, and demonstrate that a component indicating statistically significant

group difference between patients with schizophrenia and healthy controls is captured,

which includes primary and secondary motor regions, cerebellum, and temporal lobe,

revealing a meaningful spatial map and its temporal change.

Keywords: PARAFAC2, independent vector analysis (IVA), independent component analysis (ICA), tensor

factorizations, spatial dynamics, evolving networks, time-evolving data
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1. INTRODUCTION

Time-evolving data analysis is crucial in terms of understanding

complex dynamic systems such as the brain. Various

neuroimaging techniques such as functional magnetic resonance

imaging (fMRI) and electroencephalography (EEG) are used

to collect temporal data in order to understand how the brain
functions. The analysis of such temporal data may capture the
underlying patterns as well as their temporal evolution revealing
the underlying mechanisms, and how those differ across different
groups of people, e.g., healthy controls vs. patients. For instance,
the relation between dynamic functional connectivity and
various disorders such as schizophrenia, autism, and Alzheimer’s
disease has been studied with the goal of finding biomarkers
(Preti et al., 2017).

Dynamic functional connectivity (also referred to as time-
varying functional connectivity) has been an important topic
of research to study brain function (Chang and Glover, 2010;
Hutchison et al., 2013a; Calhoun et al., 2014; Preti et al., 2017;
Lurie et al., 2020). The most commonly used approach for
dynamic functional connectivity analysis is the sliding window-
based method (Sakoglu et al., 2010), where correlations between
time courses corresponding to different spatial regions of interest
are used to construct a connectivity matrix for each time
window. Functional connectivity patterns from each window are
then analyzed using various methods such as graph mining to
understand the change in time. Often there is the simplifying
assumption that spatial regions of interest are static, and it is only
the connectivity between those static spatial regions that changes
in time. On the other hand, it has been previously shown that
there are changes in spatial regions as well even in the resting
state (during awake as well as anesthetized states; Kiviniemi et al.,
2011; Hutchison et al., 2013b; Ma et al., 2014).

Our focus here is on the analysis of fMRI signals collected
during a task with the goal of revealing spatial regions of interest
as well as the temporal evolution of those regions (i.e., spatial
dynamics; Iraji et al., 2020). Low-rank data approximations
[matrix factorizations as well as tensor factorizations (Acar
and Yener, 2009; Kolda and Bader, 2009; Comon, 2014), i.e.,
extensions of matrix factorizations to higher-order data] have
proved useful in terms of revealing the underlying patterns
in complex data in many fields including neuroscience, e.g.,
revealing spatial regions of interest/networks (McKeown et al.,
1998; Bai et al., 2017). Recently, various matrix factorization-
based approaches including independent component analysis
(ICA) and principal component analysis (PCA) have been
studied in terms of tracking functional connectivity by arranging
magnetoencephalography (MEG) signals as a connectivity by time
matrix and factorizing the matrix into temporal patterns and
connectivity patterns revealing brain networks (Tabbal et al.,
2021) with the assumption that networks relying on predefined
regions of interests stay the same in time. However, capturing
patterns evolving in time from dynamic data such as evolving
networks, evolving spatial regions or evolving communities
remains a challenging data mining problem (Rossetti and
Cazabet, 2018). Previously, ICA (Comon, 1994) was used
together with a sliding time window-based approach to study the

changes in spatial maps, focusing on the changes within default
mode networks (DMN) in time in the resting state (Kiviniemi
et al., 2011). Similarly, Ma et al. (2014) used independent vector
analysis (IVA) (Kim et al., 2006; Anderson et al., 2012), i.e., an
extension of ICA to multiple datasets, to find time-varying brain
networks during the resting state. These studies focus on resting-
state dynamics, and also are limited due to either the focus on a
single network (Kiviniemi et al., 2011), or not revealing compact
patterns in the time mode explicitly (Kiviniemi et al., 2011; Ma
et al., 2014).

As higher-order tensors are natural data representations for
temporal data, with one of the modes representing time, in this
article, through the use of fractional amplitude of low-frequency
fluctuations (fALFF), we arrange fMRI data collected during a
task as a third-order tensor with modes: subjects, voxels, and
time windows, and use a tensor factorization method called
the PARAFAC2 model (Harshman, 1972; Kiers et al., 1999),
which compactly summarizes the dynamic data by revealing the
underlying networks (spatial regions of interest), their change in
time as well as temporal patterns (see Figure 1).More specifically,
we use the PARAFAC2 model to jointly factorize multiple
matrices in the form of subjects by voxels matrices, Xk for k =

1, ...,K, corresponding to different time windows, coupled in the
subjects mode, where K denotes the number of time windows.
The PARAFAC2 model summarizes the data using low-rank
patterns in the subjects, voxels, and time windows modes, and
the patterns in the voxels mode change from one window to
another revealing the evolving patterns. Patterns in the time
windows mode correspond to temporal patterns, and patterns
in the subjects mode can be used to explore differences between
healthy controls and patients, or for patient stratification.

While the use of tensor factorizations in neuroimaging
signal analysis has been widespread (Cong et al., 2015;
Hunyadi et al., 2017), to the best of our knowledge, their
potential for revealing spatial dynamics has not been explored.
Neuroimaging data, e.g., EEG (Miwakeichi et al., 2004), fMRI
(Andersen and Rayens, 2004), MEG (Becker et al., 2012), local
field potential (LFP) (Geddes et al., 2020) signals, can be
represented as higher-order tensors. Tensor methods can reveal
interpretable patterns from such complex data disentangling
different sources as a result of their uniqueness properties
(Kolda and Bader, 2009), avoiding additional constraints on
the underlying patterns such as orthogonality or statistical
independence. For instance, multi-channel EEG signals have
been arranged as a time by frequency by channels tensor, and
analyzed using the CANDECOMP/PARAFAC (CP) (Hitchcock,
1927; Carroll and Chang, 1970; Harshman, 1970) tensor model
revealing spatial, spectral and temporal signatures of brain
activities (Miwakeichi et al., 2004; Acar et al., 2007; De Vos
et al., 2007). In the case of multiple subjects/conditions, the CP
model has similarly shown promising performance in terms of
revealing the underlying patterns (Möcks, 1988; Mørup et al.,
2006). The higher-order structure of fMRI signals has also
been studied using tensor methods, e.g., by arranging fMRI
signals as a trials by voxels by time tensor, and analyzing the
tensor using the CP model (Andersen and Rayens, 2004), or
analyzing multi-subject fMRI data in the form of a subjects
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by voxels by time tensor using tensor probabilistic independent
component analysis (PICA) (Beckmann and Smith, 2005). Such
CP-based models, for instance when analyzing multi-subject
fMRI data, extract subject-mode patterns, spatial patterns as well
as temporal patterns with the modeling assumption that subject-
mode patterns and spatial patterns are the same in all time
slices (up to a scaling) (Beckmann and Smith, 2005); therefore,
not accounting for spatial dynamics. While brain images are
unfolded and treated as vectors of voxels resulting in third-
order tensors in these studies, higher-order fMRI data as fourth
and fifth-order tensors have also been studied by preserving
the spatial structure (Chatzichristos et al., 2019). Recently, the
PARAFAC2 model, which is more flexible than the CP model,
has been used to study functional connectivity using multi-
subject fMRI signals by letting the temporal patterns change
across subjects (Madsen et al., 2017; Helwig and Snodgress,
2019) assuming common (and static) spatial patterns for all
subjects. In the context of dynamic functional connectivity, Zhu
et al. (2019, 2020) have arranged MEG signals as a time by
frequency by connectivity tensor, where connectivities rely on
predefined anatomical regions, and analyzed the tensor using
a CP model to reveal connectivity factors showing functional
networks. However, none of these studies accounts for evolving
spatial patterns or evolving networks but rather all rely on static
spatial patterns/networks.

This article is an extended version of our preliminary study
(Roald et al., 2020), where we demonstrated the promise of
the PARAFAC2 model in terms of revealing evolving networks
using simulations and real task fMRI data analysis. In this
work, we provide an extensive study comparing the performance
of the PARAFAC2 model with ICA-based approaches, in
particular, joint ICA (Calhoun et al., 2006) and IVA, in terms of
capturing evolving networks using different simulation set-ups
demonstrating the effect of sample size, similar or overlapping
networks, and differences in subject-mode patterns across time
windows. Both joint ICA and IVA are extensions of ICA to
multiple datasets but rely on different modeling assumptions.
Their use in the comparison is attractive as IVA is less
constrained than PARAFAC2 by letting subject-mode patterns
change from one time window to another and has been
previously used for capturing spatial dynamics (Ma et al., 2014)
while joint ICA is similar to PARAFAC2 in the way it models
the subject-mode patterns but differs in terms of constraints
imposed on the evolving networks. We also use our observations
from simulations to guide our analysis of multi-site multi-
subject fMRI data (Gollub et al., 2013) collected during a sensory
motor task. While our preliminary results (Roald et al., 2020)
focused on the analysis of a subset of the data from several
sites using a PARAFAC2 model, in this article, we use the data
from all sites, and study the application of all three methods to
this task-related fMRI data, and compare their performances.
Our experiments demonstrate that (i) PARAFAC2 provides a
compact representation revealing temporal patterns and evolving
spatial networks accurately, (ii) joint ICA is as effective as
PARAFAC2 in terms of revealing evolving networks but does
not reveal temporal patterns explicitly, (iii) IVA’s performance
depends on sample size. We also show its assumptions on data

distribution and covariance structure of underlying networks
in the Supplementary Material. When these assumptions are
fulfilled, IVA is as accurate as the other methods in terms of
capturing underlying networks, and in addition, (iv) IVA can
reveal evolving networks accurately when subject-mode patterns
differ across time windows, (v) in real fMRI data analysis, a
meaningful component indicating statistically significant group
difference between patients with schizophrenia and healthy
controls is captured by all methods revealing a spatial network
of potential interest as well as its change in time. Guided by the
simulations, we discuss the accuracy of estimated components
and their significance in terms of group difference.

2. MATERIALS AND METHODS

2.1. Background
We first briefly discuss modeling assumptions of the three
methods we focus on, namely, PARAFAC2, IVA, and joint ICA.

2.1.1. PARAFAC2
Given a third order tensor, X ∈ R

I×J×K , the PARAFAC2 model
represents each slice, Xk ∈ R

I×J , as follows:

Xk ≈ Adiag(c(k, :))BT
k , (1)

where A ∈ R
I×R, Bk ∈ R

J×R, R is the number of components,
and diag(c(k, :)) is a diagonal matrix with entries of the kth row
of C ∈ R

K×R on the diagonal. Additionally, Bk-matrices satisfy
the constant cross product constraint, BT

k1
Bk1 = BT

k2
Bk2 for

all 1 ≤ k1, k2 ≤ K. The PARAFAC2 model reveals unique
factors (up to scaling and permutation ambiguities) as long
as there are enough slices (K) (see Kiers et al., 1999 for a
detailed discussion on uniqueness conditions of PARAFAC2).
The traditional algorithmic approach to fit themodel is by solving
the following optimization problem using an alternating least
squares (ALS)—based algorithm (Kiers et al., 1999):

min
A,{Bk}k≤K ,C

K
∑

k=1

∥

∥

∥

Xk − Adiag(c(k, :))BT
k

∥

∥

∥

2

F
, (2)

where Bk = PkB, and PT
k

Pk = I so that the constant cross

product constraint is implicitly satisfied; I ∈ R
R×R denotes the

identity matrix, B ∈ R
R×R is common for all Bk, k = 1, ...,K,

and ‖ · ‖F denotes the Frobenius norm. Note that there may be
an additional sign ambiguity in PARAFAC2, where each entry in
diag(c(k, :)) may flip sign arbitrarily (Harshman, 1972), and one
possible solution to fix that ambiguity is to impose non-negativity
constraints on matrix C (Harshman, 1972; Kiers et al., 1999).

If Xks correspond to subjects by voxels matrices at different
time windows, PARAFAC2 reveals subject-mode patterns (A)
that are constant in time, and time-mode patterns (C) shared
between subjects. The number of components R corresponds
to the number of patterns. The PARAFAC2 model also reveals
spatial networks (Bk) that are shared between subjects but may
evolve with time (as shown in Figure 1). This is a more flexible
modeling approach than the most commonly used CP tensor
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model, which represents each slice Xk ∈ R
I×J of a third-order

tensor, X ∈ R
I×J×K , as follows:

Xk ≈ Adiag(c(k, :))BT, (3)

where B ∈ R
J×R representing spatial networks are assumed to

be the same (more precisely, they can only change up to a scalar)
across different time windows. We have previously demonstrated
that the CP model fails to reveal underlying networks accurately
when analyzing data generated using evolving network patterns
while PARAFAC2 achieves to reveal the underlying networks as
well as their change in time (Roald et al., 2020). Similar to CP,
tensor PICA (Beckmann and Smith, 2005) also relies on (3),
with the additional constraint that columns of B, e.g., spatial
networks, are statistically independent. Therefore, both CP and
PICA assume that spatial networks are the same across time
slices, i.e., they do not account for evolving spatial networks as the
PARAFAC2 model does by introducing Bks that allow for spatial
networks to change more than a scalar factor.

Determining the number of components in tensor
factorizations is a challenging task. There are various diagnostic
approaches that can potentially be used to determine the number
of components for PARAFAC2 such as the core consistency
diagnostic (Kamstrup-Nielsen et al., 2012), and split-half analysis
(Harshman and De Sarbo, 1984); both of which are also used to
determine the number of components when fitting a CP model.
However, a good practice is to use such diagnostic methods while
taking into account also the factors and residuals (Bro and Kiers,
2003; Kamstrup-Nielsen et al., 2012). Note that uniqueness
conditions of the PARAFAC2 model may also limit the number
of components. For instance, one of the uniqueness conditions

indicates that K ≥
R(R+1)(R+2)(R+3)

24 , where K and R denote
the number of slices and components, respectively. This is a
sufficient (not necessary) condition for the uniqueness of the
model, and other studies have reported uniqueness using much
fewer slices in practice (Kiers et al., 1999).

While the use of PARAFAC2 is not as widespread as the
CP model, it has shown promising performance in applications
from different disciplines, e.g., chemometrics (Bro et al., 1999),
text mining (Chew et al., 2007), electronic health record analysis
(Afshar et al., 2018; Yin et al., 2020), and neuroimaging data
analysis (Madsen et al., 2017; Helwig and Snodgress, 2019). The
use of PARAFAC2 in time-evolving data analysis, on the other
hand, has been limited, where the model is used to analyze
temporal data by letting the patterns change across subjects
(Timmerman and Kiers, 2003; Madsen et al., 2017), or across
channels (Weis et al., 2010) but not revealing dynamic networks.

2.1.2. Independent Vector Analysis (IVA)
Similar to PARAFAC2, IVA also jointly analyzes multiple
matrices. However, unlike PARAFAC2, IVA (Kim et al., 2006;
Anderson et al., 2012; Adali et al., 2014) extracts statistically
independent components (sources) from each matrix while
taking into account the dependence across the datasets. In many
applications using ICA and IVA, reducing the dimensionality of
the observed dataset prior to analysis, i.e., identifying a signal
subspace where to perform the decomposition enables better

generalization performance decreasing the effect of noise and
artifacts, also improving stability of the decompositions (see, e.g.,
Li et al., 2007). This is typically achieved using a PCA step, where
the dimensionality of the observationmatrixX ∈ R

I×J is reduced
from X ∈ R

I×J to X̄ ∈ R
R×J where R ≤ I.

GivenK dimension-reduced observationmatrices X̄k ∈ R
R×J ,

for k = 1, ...,K, IVA models each dataset as a linear mixture of R
independent sources:

X̄k = ĀkSk, (4)

where Āk ∈ R
R×R corresponds to the nonsingularmixingmatrix,

and Sk ∈ R
R×J denotes the samples of independent sources

for the kth matrix1. Corresponding components in Sk matrices
form, the source component vectors (SCV), which are shown as
matrices assuming a given set of observations, in Figure 1. IVA
estimates the demixing matrices Wk to recover source estimates
through Yk = WkX̄k by maximizing independence across the
SCVs through mutual information minimization (Adali et al.,
2014), which can be shown to be equivalent to maximum
likelihood (ML) estimation. The estimated mixing matrices
are then back reconstructed in the original dimensionality as
explained in Jia et al. (2021), which implies that we effectively
have the generative model shown in Figure 1. Thus, here, we
show the IVA and joint ICAmodels in the original dimensionality
to allow easier comparison with the PARAFAC2 model, which
does not involve such a dimension reduction stage.

By modeling the multivariate probability density function
(pdf) of an SCV, IVA takes the statistical dependence across
the datasets into account, and depending on the chosen pdf,
either, only second-order statistics (SOS), or all-order statistical
information can be taken into account. In this work, we use
IVA-L-SOS where a full multivariate Laplacian pdf model, also
computing the scatter matrices is used (Bhinge et al., 2019b),
hence taking all-order statistics into account. As fMRI sources
tend to be super-Gaussian in nature (Correa et al., 2007;
Calhoun et al., 2013), IVA-L-SOS provides a good match to
their properties.

It can be shown that IVA has very general conditions for
the identifiability of the model. For the case we consider where
sample dependence is not taken into account and all-order
statistics are used, the model is uniquely identifiable as long as
the covariance matrices Rl and Rm of any two SCVs, l and m,
are multivariate Gaussian and do not satisfy Rl = DRmD where
D is any full rank diagonal matrix (Anderson et al., 2012; Adali
et al., 2014). When only a subset of Gaussian components satisfy
the equality, a subspace of their mixtures is identified and not the
specific Gaussian components.

When Xk matrices represent subjects by voxels matrices at
different time windows, IVA captures subject-mode patterns
(Ak) for each time window, and spatial components/networks,
Sk, changing from one window to another. Rows of Sks are
related across the time windows through SCVs in such a
way that mutual information within each SCV, i.e., statistical

1Both ICA and IVA are traditionally introduced using random variable/vector

models. Here to keep the discussion simple across the three models, we use

observations for all three models.
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FIGURE 1 | Illustration of modeling time-evolving data in the form of a subjects by voxels by time tensor using PARAFAC2, IVA and joint ICA. Following the notation in

the literature on ICA/IVA, we use Sk , for k = 1, ...,K, to denote the factor matrix in the voxels mode for joint ICA and IVA, where Sk = BT
k .

dependence, is maximized. Hence, the desire to capture the
relationship among components in different Sks makes IVA
another candidate approach for capturing evolving networks.
IVA has been previously used to study dynamics in multi-subject
resting-state fMRI data (Ma et al., 2014; Bhinge et al., 2019a,b;
Long et al., 2021). For instance, Ma et al. (2014) arranges the data
in a specific time window from a subject as a matrix in the form
of time samples by voxels. Subject-specific temporal and spatial
patterns are identified on a per window basis. This allows study
of both temporal and spatial patterns of dynamics, however, the
complexity of themodel grows with the number of timewindows,
which negatively affects the performance of IVA (Long et al.,
2020). Our approach in this article makes use of the synchrony
across subjects in the task, and decreases the dimensionality of
the problem by collapsing the time dimension through the use
of fALFF as features for each time window (see section 2.2.4 for
more details). As such, this provides an attractive formulation for
dynamic analysis using IVA (Hossain et al., 2022).

2.1.3. Joint Independent Component Analysis
Another approach to jointly analyze multiple matrices, Xk ∈

R
I×J , for k = 1, ...,K, is to concatenate different time windows,

and then analyze the constructed matrix using an ICA model,
which is called the joint ICA (Calhoun et al., 2006) method.
We again write the model using dimension-reduced observations
matrices X̄k ∈ R

R×J , such that we have

[X̄1 X̄2 . . . X̄K] = ĀS, (5)

where Ā ∈ R
R×R corresponds to the non-singular mixing

matrix that is common for all time windows, and S ∈

R
R×JK represents the source signals corresponding to the spatial

networks concatenated in time. Source signals, i.e., rows of S,
are assumed to be statistically independent. ICA reveals unique
components and mixing matrices, up to scaling and permutation
ambiguities (Comon, 1994). When only non-Gaussianity is used
as signal diversity ignoring sample dependence, any signal except
multiple Gaussians can be identified with the model (Cardoso,
2001; Adali et al., 2014). Among various algorithmic approaches,
in our experiments, we use an ICA algorithm based on entropy
bound minimization (ICA-EBM), which uses a flexible pdf
model, and hence can effectively model sources from a rich class
of distributions (Li and Adali, 2010).

Again in Figure 1, we show the model for joint ICA following
back-reconstruction where Xk and A are brought to their
original dimensionality following ICA. Then, with Xk matrices
corresponding to subjects by voxels matrices at different time
windows, joint ICA reveals subject-mode patterns, A, shared by
all time windows, and different spatial components/networks for
each time window, i.e., S = [S1 S2 . . . SK].

For ICA and IVA, a common approach for determining
the number of components is the use of information theoretic
criteria (ITC) such as minimum description length based on
a PCA formulation (Wax and Kailath, 1985). ITC are based
on a likelihood formulation based on the multivariate Gaussian
assumption for the mixtures (a good match to the ICA/IVA
mixing model). Since fMRI data exhibits sample correlation,
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usually a corrected version of the criteria are commonly
employed as in Fu et al. (2014).

2.1.4. PARAFAC2 vs. IVA vs. Joint ICA
Here we recap the modeling assumptions of different methods,
specifically focusing on our application of interest, where Xk

matrices correspond to subjects by voxels matrices at different
time windows k.

• Subject-mode patterns (i.e., Ak): Joint ICA extracts patterns
that are the same in each time window, i.e., Ak = A, for
k = 1, ...,K; PARAFAC2 reveals patterns that are the same
up to a scaling in each time window, i.e., Ak = Adiag(c(k, :))
while IVA is the most flexible one with no constraints on Aks.

• Spatial components (i.e., BT
k
or Sk): In IVA, Sks are more

constrained than PARAFAC2 and joint ICA. In the IVAmodel,
in each Sk, the components are statistically independent, and
across different Sks, the components are related through the
SCVs; in PARAFAC2, there is the constant cross product
constraint, BT

k1
Bk1 = BT

k2
Bk2 for all 1 ≤ k1, k2 ≤ K, while in

joint ICA, there is the assumption of statistically independent
components, and no relation between different Sks except that
the sources in corresponding rows are all assumed to come
from the same distribution.

• Temporal components (i.e., C): Among the three methods, the
PARAFAC2 model is the most compact and reveals temporal
patterns in addition to subject-mode and voxel-mode patterns
while joint ICA and IVA only reveal patterns in subjects and
voxels modes. In joint ICA and IVA, further postprocessing,
possibly with additional assumptions, is needed to reveal
temporal patterns.

2.2. Experiments
By using both real and simulated time-evolving data, we
demonstrate the performance of PARAFAC2, IVA, and joint ICA
in terms of capturing evolving networks. In simulations, we assess
the performance of the methods in terms of how well they reveal
the underlying ground truth. In the analysis of multi-subject
fMRI data collected during a sensory motor task from patients
with schizophrenia and healthy controls, the performance of
the methods is assessed in terms of revealing meaningful
components indicating statistically significant group differences.

2.2.1. Implementation Details
All experiments were performed usingMATLAB. Both simulated
and real data are in the form of third-order tensors consisting
of K frontal slices. The PARAFAC2 model is fit using the
implementation in the PLS_Toolbox 8.6.2 (by Eigenvector
Research Inc., WA, USA). In order to handle the sign ambiguity
in PARAFAC2, non-negativity constraint is imposed in the time
windows mode. For IVA, we first performed rank reduction
on each frontal slice using the true (or given) number of
components, and then used IVA-L-SOS (Bhinge et al., 2019b) to
find the demixing matrices. For joint ICA, the third-order tensor
is unfolded in the first mode. Following rank reduction of the
unfolded data using the given number of components, an ICA

algorithm based on entropy bound minimization (ICA-EBM)2

(Li and Adali, 2010) is used. We fit every method using multiple
random initializations, and use the solution corresponding to the
minimum cost value.

2.2.2. Performance Evaluation
We assess the performance of the methods using the
following approaches:

• Factor similarity score: In order to quantify how well the
spatial components extracted by the methods match with
ground truth components, we use a similarity score defined
as:

SimB =
1

K

K
∑

k=1

1

R

R
∑

r=1

Bk(:, r)
TB̂k(:, r), (6)

where Bk(:, r) and B̂k(:, r) denote the true and estimated rth
column of the factor matrix in the voxelsmode corresponding
to the kth time window, respectively (after fixing the
permutation and scaling ambiguity in the methods). Similarly,
similarity scores for the first and third mode are computed
as follows:

SimA =
1

R

R
∑

r=1

A(:, r)TÂ(:, r), SimC =
1

R

R
∑

r=1

C(:, r)TĈ(:, r)

(7)
Due to different modeling assumptions of each method, all
methods can only be compared in terms of SimB. In addition,
we report SimA and SimC for PARAFAC2, and SimA for
joint ICA.

• Two-sample t-test: Using two-sample t-test on each column
of the factor matrix corresponding to the subjectsmode, i.e., A
in PARAFAC2 and joint ICA, and Ak, for k = 1, ...,K in IVA,
we identify the statistically significant subject-mode factor
vectors in terms of revealing group differences, allowing for
unequal variances for healthy and patient groups.

2.2.3. Simulated Data and Experimental Set-Up
We simulate time-evolving data arranged as a third-order tensor
X ∈ R

I×J×K , with K time slices, with the following underlying
structure (using R = 3 components):

• Subject-mode patterns, i.e., A ∈ R
I×R, are generated such that

one column of A discriminates between two subject groups
each containing I

2 subjects. Entries corresponding to subjects
from different groups are sampled randomly from uniform
distributions with differentmeans. Other columns have entries
randomly sampled from the standard normal distribution. All
columns are normalized to unit norm. The same A with I =

250 is used in the experiments (Figure 2A), where the two-
sample t-test gives the following p-values: 0, 0.88, and 0.35.

• Evolving networks/components are generated as the columns
of Bk ∈ R

J×R (or rows of Sk ∈ R
R×J). We generate

2The implementation of IVA_L_SOS and ICA_EBM in MATLAB are available at:

http://mlsp.umbc.edu/
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FIGURE 2 | True factors used to generate simulated data. (A) Subject-mode factors, where ar indicates the columns of A, for r = 1, 2, 3, and (B) Temporal patterns,

where cr indicates the columns of C, for r = 1, 2, 3. Time, here, is in the resolution of time windows, but may also correspond to time samples depending on

the application.

R = 3 evolving networks: The first one is a network that is
shifting and increasing in density, the second is increasing in
density, and the third one is a random network as shown in
Figure 3A. All columns are normalized to unit norm. See the
Supplementary Material for more details on the generation of
evolving components.

• Temporal patterns, i.e., C ∈ R
K×R, are generated as (i)

a random pattern with uniformly distributed entries, (ii)
an exponential decay pattern, and (iii) a pattern following
a sinusodial function (see Figure 2B). All columns are
normalized to unit norm.

Once factor matrices are generated, the tensor X ∈ R
I×J×K is

constructed based on (1), and a noisy tensor Xnoisy is generated
as follows:

Xnoisy = X + ηN
‖X ‖F

‖N ‖F
, (8)

where N ∈ R
I×J×K has entries randomly drawn from the

standard normal distribution, and η indicates the noise level.
In the experiments, we use η = 0.5. We use PARAFAC2,
IVA, and joint ICA to analyze Xnoisy using the correct number
of components, i.e., R = 3, assuming that it is known, and
assess their performance in terms of revealing the evolving
networks as well as capturing the group difference in the
subjects mode. We modify the underlying factor matrices
for different experimental set-ups of interest and study the
relative performance of the methods in the following cases
(see the Supplementary Material for additional experiments not
specifically focusing on evolving networks):

• Case 1 (Different sample sizes, different network types): Here,
we study the effect of sample size as well as overlapping and
similar networks. In Case 1a, we analyze Xnoisy generated
using different number of dimensions in the voxels mode, i.e.,

J, demonstrating the effect of sample size on the performance
of the methods. We use J = 10, 000 and downsampled
versions with a downsampling factor of 20 (i.e., J = 500) and
60 (i.e., J = 167). Using the same set-up, we also study the
effect of the number of time slices, i.e., K = 20 and K = 50. In
Case 1b, with J = 10, 000,K = 50, we assess the performance
of the methods when evolving networks are overlapping as in
Figure 3B. Finally, in Case 1c, we consider evolving networks
with similar structures, i.e., two of the components are shifting
and increasing in density as in Figure 3C. Matrix A and C are
as in Figure 2.

• Case 2 (Different subject-mode matrices): In this scenario, we

study the effect of different subject-mode patterns in different

time slices. Each Xk matrix is constructed using a different

Ak ∈ R
I×R matrix in (1). More precisely, Ak = A +

γ Nk
‖Ak ‖F
‖Nk ‖F

for odd values of k ≤ K, where γ denotes

the noise level and is set to γ = 0.3, and Nk ∈ R
I×R

is the noise matrix with entries randomly drawn from the
standard normal distribution. For even values of k ≤ K, Ak

are random matrices with entries drawn from the standard
normal distribution. This set-up violates assumptions of joint
ICA and PARAFAC2 in the subject-mode, and is of interest
especially when different subject-mode patterns are possibly
expected in different slices, e.g., task vs. rest windows or
different tasks. Matrices Bk ∈ R

J×R are as in Figure 3A,
downsampled by a factor of 10, i.e., J = 1, 000, and matrix
C ∈ R

K×R with K = 50 is generated in a similar way as
in Figure 2B.

• Case 3 (Strong discriminating component): Compared with
other cases, in this set-up, the main difference is omitting
the normalization of the columns of factor matrices A and
C resulting in higher 2-norm, i.e., a factor of 4, for the
component revealing the group difference. As the evolving
components, we use the Bk matrices in Figure 3A but only the
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FIGURE 3 | True evolving components (R = 3), where each component corresponds to a column of Bk , for k = 1, ..., 50, used to generate simulated data with (A)

evolving networks, (B) overlapping networks, (C) similar networks.

first 15 time slices to match with the number of time slices in
real data.

2.2.4. Real fMRI Data
As a real dataset, we analyze images from the MCIC collection
(Gollub et al., 2013), a multi-site multi-subject collection
of fMRI images from healthy controls and patients with
schizophrenia, collected during various tasks. In particular,
we use data from the sensory motor (SM) task collected
at four research sites: the University of New Mexico, the
University of Minnesota, Massachusetts General Hospital,
and the University of Iowa. During the SM task, the
study participants were equipped with headphones and
instructed to listen for sounds of increasing pitch, with
a fixation period between each sound. The participants
were instructed to press a button whenever they heard
a tone. To ensure that conditions were consistent across
scan sessions and sites, the MCIC consortium performed
meticulous cross-site calibration. For example, the sites had
matching button press devices, the intensity of the auditory
stimuli were calibrated and the quality assurance procedures
recommended by the Biomedical Informatics Research Network
for multi-center fMRI studies (Friedman et al., 2006, 2008)
were followed.

Based on the blood-oxygenation-level-dependent signal from
the SM task, we extracted fALFF (Zou et al., 2008) in sliding time
windows, which yields a time-evolving measure of brain activity
within each voxel. Note that this approach—using the synchrony
across subjects during the task—collapses the time dimension
into time windows using fALLF as a feature representing the
activity in each time window for each voxel for each subject
allowing us to align signals from multiple subjects. The fALFF
is calculated by first discarding the high- and low-frequency
components to remove noise and signal from the vasculature
system. Then, the amplitudes of the frequency components
are computed to get the low-frequency fluctuation which is
divided by the total amplitude of all frequencies in the time
window to obtain the fALFF. To compute the fALFF, we used
the REST software v1.8_130615 (Song et al., 2011). We set the

window size and stride length to 16 seconds, corresponding to
precisely one rest- or task-block in each time window, with no
overlap. The low- and high-frequency cutoff for fALFF were
set to 0.01 and 0.15, respectively. To construct the data tensor,
we used the fALFF values for voxels that correspond to gray
matter as feature vectors for each time window and each subject.
Each such feature vector has 67,747 elements, leading to a
data tensor of size 253 subjects by 67,747 voxels by 14 time
windows. No additional preprocessing is carried out to account
for site effects (see section 3.2 for more information). Out of
253 subjects, 147 are healthy controls and 106 are patients with
schizophrenia.

3. RESULTS

Through numerical experiments, we demonstrate that
PARAFAC2 and joint ICA capture the underlying networks,
their evolution, and reveal the discriminating component
accurately irrespective of the sample size as long as the factor
matrix in the subjects mode stays the same (or differ up to a
scaling) across time windows (Case 1 and 3). For these cases,
while IVA performs well for large sample size, we often observe
that IVA reveals additional components that are statistically
significant in terms of group difference in some time windows
even though that does not match the ground truth—showing that
IVA is more prone to false-positives [i.e., identifying patterns
as potentially important (or markers) for group difference]
compared to PARAFAC2 and joint ICA. On the other hand,
if different time windows have different factor matrices in the
subjects mode as in Case 2, IVA performs better in terms of
revealing the underlying networks. Among the three methods,
PARAFAC2 is the only one that reveals compact temporal
patterns explicitly.

Our analysis of real task fMRI data demonstrates that
all methods (PARAFAC2, IVA, and joint ICA) capture a
component including both primary motor, supplementary
motor, cerebellum, and temporal regions engaged by the task.
This component is also identified as statistically significant
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FIGURE 4 | Case 1a. Evolving components (Bk or Sk , for k = 1, ...,K) captured by each method after fixing the scaling and permutation ambiguity: (A) PARAFAC2,

(B) IVA, (C) joint ICA. All methods recover the underlying evolving components accurately.

FIGURE 5 | Case 1a (K = 20). p-values obtained using the two-sample t-test on the subject-mode patterns (A or Ak ) using different methods as the number of voxels

(i.e., J) changes, where the number of time slices (i.e., K) is set to 20. Based on the true subject-mode patterns, true p-values are 0, 0.88, and 0.35 for component 1,

2, and 3, respectively. For large sample size, i.e., J = 10, 000, all methods can identify that the first component is the statistically significant one in terms of group

difference. As J decreases, in addition to the first component, IVA returns small p-values for other components in some windows corresponding to false-positive

cases while PARAFAC2 and joint ICA work well regardless of the sample size.

in terms of differentiating between healthy controls and
patients with schizophrenia. Additional components show up
as statistically significant in terms of group difference in
IVA in some time windows. However, given the results of
our simulations, where we observe small p-values for non-
discriminating components at some time windows, we discard
those components as potential false-positive markers.

3.1. Simulations
Figure 4 demonstrates the evolving components captured by the
three methods in Case 1a with J = 10, 000 voxels showing that

all methods can recover the true underlying evolving networks
accurately. Table 1 shows the similarity scores [defined in (6) and
(7)] also demonstrating that underlying networks are accurately
captured with a similarity score of 1.00 using all methods.
Furthermore, all methods perform well in terms of capturing
the component discriminating between the subject groups as
shown in the top plot in Figure 5. The first component is
the one that can separate the two subject groups, with all
methods revealing p-values around 0, and p-values for non-
discriminating components are large enough to discard them.
Note that since IVA extracts different Ak matrices, for k =
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TABLE 1 | For each case, dataset sizes (I, J,K), similarity scores (SimA, SimB, SimC) showing the accuracy of the methods in terms of capturing the underlying patterns in

the first (subject), second (network/voxel), and third (time) modes, respectively, and whether methods give false positive (FP) markers, i.e., identifying components that are

not indicating group difference as potential markers with statistically significant group difference.

PARAFAC2 IVA Joint ICA

I J K SimA SimB SimC FP SimB FP SimA SimB FP

Case 1a 250 10,000 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 10,000 20 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 500 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 500 20 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1a 250 167 50 1.00 1.00 1.00 No 1.00 No* (Supplementary Figure 1) 1.00 1.00 No

Case 1a 250 167 20 1.00 0.99 1.00 No 0.99 Yes (Figure 5) 1.00 1.00 No

Case 1b 250 10,000 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 1c 250 10,000 50 1.00 1.00 1.00 No 1.00 No 1.00 1.00 No

Case 2 250 1,000 50 0.99 0.68 0.85 No 0.98 Yes (Figure 8) 0.96 0.74 Yes

Case 3 (R = 3) 250 10,000 15 1.00 0.99 1.00 No 0.99 Yes (Figure 9) 1.00 0.99 No

Case 3 (R = 4) 250 10,000 15 1.00 0.98 1.00 Yes 0.99 Yes (Supplementary Figure 2) 1.00 0.99 No

*Indicates that even though there are no false positives, p-values get quite small.

1, . . . ,K, different p-values are obtained from each matrix and
shown as box-plots.

Sample Size. As we decrease the number of samples/voxels
(i.e., J), we observe differences in the performances of the
methods. While all methods can still capture the evolving
networks accurately (see Table 1), IVA gets smaller p-values
even for non-discriminating components in some slices while
PARAFAC2 and joint ICA can still clearly identify non-
discriminating vs. discriminating components (Figure 5).
We observe that the third component also shows up as
a statistically significant component in terms of group
difference for some time windows using IVA as a false-
positive marker. See Supplementary Material also for K = 50
(Supplementary Figure 1), where IVA performs better but still
returns smaller p-values for some components in some windows.

Different Network Types. In the case of different network
types, i.e., when we have overlapping evolving components
as in Figure 3B, or components evolving in the same way
as in Figure 3C resulting in the same covariance structure as
in Figure 6C, all methods perform equally well in terms of
capturing the underlying components (see the similarity scores
in Table 1). The motivation for having overlapping networks is
to demonstrate the performance of the methods when networks
overlap in space, i.e., voxels mode, which may be expected in
real applications. Even though the networks overlap, the average
correlation of networks, i.e., correlation between columns of
Bk averaged over K slices, is small, e.g., ≤ 0.1 in Figure 3B;
therefore, not affecting the performance of IVA and joint ICA.
Even when there is a larger overlap in space, the correlation is
still not high when network structures are different, e.g., shifting
vs. non-shifting.

Different Subject-Mode Patterns. When the assumption of
the same subject-mode patterns in different time windows is
violated, both PARAFAC2 and joint ICA do not capture the
underlying evolving components as shown in Figures 7A,C,
and with low similarity scores given in Table 1 for Case

2. On the other hand, Figure 7B shows that IVA recovers
the evolving components almost accurately with a similarity
score of 0.98. Furthermore, IVA also captures that there is
a component discriminating between the subject groups in
every other window. Figure 8 shows the p-values obtained
using the Ak matrices corresponding to each one of the
K = 50 time slices indicating the statistical significance of
the first component in terms of group difference in every
other window. For the other components, there are again
some small p-values as we have also previously observed
as a drawback of IVA in Case 1a. Nevertheless, compared
to PARAFAC2 and joint ICA, which cannot reveal subject-
mode patterns changing from one time slice to another,
IVA performs well and can capture such information in one
component.

Strong Discriminating Component. In the presence of a
strong component, which is also responsible for the group
separation, all methods successfully reveal the underlying
evolving components shown by the high similarity scores in
Table 1. In the subjects mode, Figure 9A demonstrates that
PARAFAC2 and joint ICA identify the first component as
the discriminating component successfully while IVA has one
component that is statistically significant in terms of group
difference in all windows and the two other components in
some time windows. This set-up is motivated by the real data,
where we observe a consistent spatial/voxel-mode pattern using
all methods; however, methods differ in terms of subject-mode
patterns as a result of their modeling assumptions. PARAFAC2
and joint ICA can reveal the same subject-mode patterns (up to
a scaling) in all time windows while IVA may reveal different
subject-mode patterns in every time window. In our experiments,
we observe that the flexibility of IVA hurts its performance
resulting in potentially false-positive markers. Finally, Figure 9B
demonstrates the temporal patterns captured by PARAFAC2,
revealing the underlying true patterns accurately. Neither joint
ICA nor IVA can extract temporal patterns in a compact way.
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FIGURE 6 | Covariance matrices of size K by K showing the covariance structure of true components across K = 50 time slices for (A) evolving networks, (B)

overlapping networks, (C) similar networks.

FIGURE 7 | Case 2. Evolving components (Bk or Sk , for k = 1, ...,K) captured by each method: (A) PARAFAC2, (B) IVA, (C) joint ICA. PARAFAC2 and joint ICA fail to

capture the underlying networks while IVA can reveal the evolving components accurately.

When using IVA, one can focus on how the average subject-mode
patterns change from one time window to another (Hossain et al.,
2022); however, that relies on the assumption that the average
would be representative.

3.2. Task fMRI Data Analysis
The fMRI data tensor (constructed as described in section 2.2.4)
is in the form of 253 subjects by 67,747 voxels by 14 time windows.
Before the analysis, the tensor is preprocessed by subtracting
the mean fALFF signal across the voxels mode, and dividing
each voxels mode fiber, i.e., the vector containing the tensor
entries for a fixed subject and a time window index, by its
standard deviation. The preprocessed tensor is then analyzed
using PARAFAC2, IVA and joint ICA in order to capture
patterns/networks in the voxels mode (as well as their change
in time) that can reveal group differences between healthy and
patient groups.

Figure 10A shows the spatial maps captured by a 2-
component PARAFAC2 model. These maps correspond to
columns of Bk for the first time window, i.e, k = 1. In this
article, for all methods, we only show the spatial maps for the first

time window. In order to see evolving spatial maps, we refer the
reader to the videos in the GitHub repository3. The p-values are
7.8 × 10−6 and 7.7 × 10−1 for the first and second component,
respectively. The first component is of particular interest
since it is statistically significant in terms of group difference.
Furthermore, this is a strong discriminating component with a
norm that is almost twice the norm of the second component.
Importantly, this component includes regions expected to be
engaged by the task, e.g., primary and secondary motor and
cerebellum, as well as auditory cortex. These regions have
also been implicated in schizophrenia (Friston and Frith, 1995;
Pearlson and Calhoun, 2007). In Figure 10B, we observe that
the first component has a temporal pattern that follows the task-
rest pattern. This component is consistently observed when we
change the number of components or used data from a subset of
the sites. As previously noted, it is challenging to determine the
right number of components. We fitted the PARAFAC2 model
using R = 2, 3, 4 components. While all models had a high core
consistency value, i.e., ≥ 81%, highly correlated factor vectors

3https://github.com/eacarat/TracingEvolvingNetworks
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in the subject-mode were observed using 3-component and 4-
component models with the spatial maps in Figure 10A being
split into more than one component. Therefore, we focus on the
2-component model, and the fact that the component of interest
was also captured as a statistically significant component using
a 3-component model gives more confidence in the results we
interpret. While we analyze in this article the fMRI data from the
four sites available in the MCIC collection (Gollub et al., 2013),

FIGURE 8 | Case 2. p-values obtained using the two-sample t-test on the

subject-mode patterns (Ak ) using IVA. IVA successfully captures that the first

component is statistically significant in terms of group difference in every other

window. In the other components, in some time windows, there are false

positives marked with a red arrow.

in our previous study we only focused on the analysis of two of
the sites (Roald et al., 2020) to avoid potential scanner differences
and site effects. We observe that despite site effects in the case
of four sites, the individual sites show group effects in the same
direction relying on the same patterns; therefore we get the same
consistent patterns (i.e., spatial maps and the temporal pattern) in
both studies confirming that site effects do not have a substantial
effect on the patterns of interest.

When we analyze the data tensor, i.e., multiple matrices
in the form of subjects by voxels matrices corresponding
to different time windows, using IVA, we also capture a
similar statistically significant sensorimotor component as
shown in Figure 11A, i.e., component 5 with activations
in the same areas as in component 1 in the PARAFAC2
model (Figure 10A). Since methods have different modeling
assumptions, they are not necessarily comparable using the
same number of components. We explore a wide range of
component numbers to see the performance of the methods
using different number of components and compare their best
performances. Regardless of the number of components, i.e.,
R = 2, 10, and R = 40, IVA reveals this component as
a statistically significant component in all but one or two
time windows. Here, we report the results using R = 40
(see the Supplementary Material for the spatial maps extracted
using R = 2, which are also very similar to R = 40
in terms of the component of interest). Only one out of
40 components is statistically significant in most of the time
windows, and that is component 5 in Figure 11A (as also
shown in Hossain et al., 2022 on the same dataset). Figure 11B
shows that except for one time window, component 5 has
a p-value ≤ 0.05. Figure 11A shows component 12, which
seems to match with the second component in PARAFAC2 (see
Figure 10A—Component 2). However, this component is not

FIGURE 9 | Case 3. (A) p-values obtained using the two-sample t-test on the subject-mode patterns (A or Ak ) using different methods. Based on the true

subject-mode patterns, true p-values are 0, 0.88, and 0.35 for component 1, 2 and 3, respectively. All methods identify the first component as the component

differentiating between the subject groups. While PARAFAC2 and joint ICA identify the second and third components as not statistically significant in terms of group

difference, IVA wrongly identifies them as statistically significant in some windows. (B) Temporal patterns, i.e., columns of factor matrix C, extracted from the time

mode using PARAFAC2. True patterns are shown using dashed lines. PARAFAC2 correctly captures the true temporal patterns.
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FIGURE 10 | PARAFAC2 analysis of task fMRI data. (A) Spatial components, i.e., columns of Bk . Here, we plot columns of only B1 corresponding to the first time

window. The corresponding p-values are 7.8× 10−6 for component 1, and 7.7× 10−1 for component 2. The first component includes primary and secondary motor

and cerebellum, as well as auditory cortex expected to be engaged by the task. Spatial maps are plotted using the patterns from the voxels mode as z-maps and

thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over patients, and blue voxels indicate an increase in patients over controls. (B) Temporal

patterns, i.e., columns of matrix C.

FIGURE 11 | IVA analysis of task fMRI data. (A) Spatial components, i.e., rows of Sk . Here, we only plot two of the rows of S1 corresponding to the first time window.

Spatial maps are plotted using the patterns from the voxels mode as z-maps and thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over

patients, and blue voxels indicate an increase in patients over controls. (B) p-values for the two components in each time window. While component 5 is statistically

significant in all but one time window (i.e., time window 3), component 12 is not in any of the time windows.

statistically significant in terms of group difference in PARAFAC2
or IVA4.

When joint ICA is used to analyze the fMRI tensor, as
Figure 12 shows, the sensorimotor component is again captured.
Here, we include the joint ICA results using R = 2 components.
The p-value for the first component is 1.1 × 10−4 while
the p-value for the second one is ≥ 0.05. As we increase
the number of components (e.g., R = 5, 10), joint ICA
still reveals the sensorimotor component as the statistically
significant one in terms of group difference and no other
important component shows up while p-values get higher (results
not shown). Using higher number of components, e.g., R =

4The sign of the test statistic is used to fix the sign ambiguity in the models. Both

component 2 in PARAFAC2 and component 12 in IVA have a small test statistic;

therefore, the uncertainty in the signs and mismatching colors in the maps.

40, we observe that the component of interest splits into
several components.

Note that while we report p-values for comparing
how the methods perform in terms of identifying
potential components of interest, we do not claim that
one is better than the other based on how low the
p-values are.

Based on the results of our experiments on simulated data, we
know that (i) all methods capture the discriminating component
when subject-mode patterns do not change from one time
window to another, (ii) IVA often reveals some components that
are statistically significant in terms of group difference in few
windows—which correspond to false-positive markers. We make
the same observations in our real fMRI data analysis. In order to
see if the same or similar subject-mode patterns are available in
task and rest windows, we analyze only the task windows (i.e., a
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FIGURE 12 | Joint ICA analysis of task fMRI data. Spatial components, i.e., rows of Sk . Here, we only plot rows of S1 corresponding to the first time window. Spatial

maps are plotted using the patterns from the voxels mode as z-maps and thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over patients,

and blue voxels indicate an increase in patients over controls. The p-values are 1.1× 10−4 for component 1, and 1.4× 10−1 for component 2.

FIGURE 13 | PARAFAC2 analysis of (A) only task windows: Spatial components, i.e., columns of Bk , for k = 1, as well as the temporal patterns, i.e., columns of C.
The p-values are 2.1× 10−4 for component 1, and 2.7× 10−1 for component 2. (B) Only rest windows: Spatial components, i.e., columns of Bk , for k = 1, as well as

the temporal patterns, i.e., columns of C. The p-values are 6.6× 10−3 for component 1, and 8.5× 10−1 for component 2. The first component shows statistical

significance in terms of group difference in both task and rest windows; therefore, supporting the modeling assumptions of PARAFAC2 and joint ICA. Spatial maps are

plotted using the patterns from the voxels mode as z-maps and thresholding at |z| ≥ 1.5 such that red voxels indicate an increase in controls over patients, and blue

voxels indicate an increase in patients over controls.

tensor of size 253 subjects by 67,747 voxels by 7 time windows,
for K = 1, 3, 5, ..13) as well as only the rest windows (i.e., a
tensor of size 253 subjects by 67,747 voxels by 7 time windows,
for K = 2, 4, ..14). Figures 13A,B show the spatial maps captured

using a 2-component PARAFAC2model from the task tensor and
the rest tensor. We observe that the sensorimotor component
is statistically significant in terms of group difference in both
tensors; therefore, supporting the argument for similar or same
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subject-mode patterns in different time windows, and making
PARAFAC2 and joint ICA suitable approaches for analyzing such
time-evolving data.

4. DISCUSSION

Overall, all three methods show promising performance in
temporal data mining as long as their modeling assumptions
are satisfied. Our focus here on addressing the problem of
capturing spatial dynamics through the analysis of task fMRI data
falls under a temporal data mining problem, where we expect
similar group differences (in other words, similar subject-mode
patterns) in different time windows. Therefore, PARAFAC2
presents itself as a suitable model providing a compact summary
revealing underlying networks, their change in time as well
as the temporal patterns in the data. In other scenarios, for
instance, when the goal is to analyze multi-task fMRI data,
where different slices correspond to fMRI signals collected
during different tasks (rather than different time windows),
if each task cannot reveal the same group differences, such
data may rather follow the modeling assumptions of IVA
(Lehmann et al., 2022).

One remaining challenge as a future study is the sensitivity
of the methods to the selection of number of components.
In simulations, we have assumed that the true number of
components is known. While there are various approaches
for determining the number of components, often in real
applications, the number of components is overestimated. In our
real data analysis, we have therefore focused on a component that
is consistently observed regardless of the number of components
avoiding the sensitivity problem. In order to see the effect of
overfactoring, for Case 3, we have fitted PARAFAC2, IVA, and
joint ICA using R = 4 components, where the true number
of components is 3. As shown in Table 1, all methods reveal
the evolving networks accurately. However, their performance
differs in terms of how well they identify the discriminating
component. As we have previously observed in Case 3 when
using the true number of components, IVA still identifies
additional components as statistically significant in terms of
group difference in some slices resulting in many false-positives.
In the case of overfactoring, PARAFAC2 also wrongly identifies
the additional component as statistically significant in terms
of group difference. Joint ICA performs well without any
false-positive components. These experiments demonstrate the
sensitivity of the methods to the number of components. Note
that when the number of component is misspecified, how we
select the best run (e.g., the one giving the minimum function
value out of multiple initializations) also needs to be studied
further, and with the current best run selection approach, the
PARAFAC2 model might benefit from regularization in order to
prevent overfitting.

There are several other computational aspects that need more
research. First, the scalability of the algorithms for fitting the
PARAFAC2 model to large-scale data needs to be studied further
for dense datasets. The scalability of PARAFAC2 has previously

been studied for large-scale sparse data (Perros et al., 2017; Afshar
et al., 2018). Another key issue in terms of using PARAFAC2
for time-evolving data analysis is the PARAFAC2 constraint, i.e.,
constant cross-product constraint. In many applications, that
constraint does not have an application-specific justification.
We intend to relax the PARAFAC2 constraint, and incorporate
additional constraints that will make the analysis time-aware in
future studies. While PARAFAC2 ALS algorithm is not flexible
enough to incorporate constraints on the evolving patterns,
recent work introduces an alternating direction method of
multipliers (ADMM)-based algorithm for fitting the PARAFAC2
model enabling imposing constraints in all modes (Roald
et al., 2021). It is also worth mentioning that regardless of
these advances in computational and modeling aspects of the
PARAFAC2 model, the model—as it is—has the potential to
reveal time-evolving connectivity patterns if it were to be used
in previous connectivity studies assuming static networks (Zhu
et al., 2019, 2020).

In this article, we have used different modeling approaches
to reveal evolving maps in time and provided them as videos.
While such videos show the spatial dynamics to some extent,
further work is still needed to quantify and/or better characterize
the temporal change from one time window to another—which
may be achieved using a postprocessing step or by incorporating
relevant constraints into the model.

5. CONCLUSIONS

Analysis of time-evolving data is challenging especially when the
goal is to extract the underlying patterns as well as their evolution.
Such analysis is crucial to improve our understanding of complex
systems such as the brain. In this article, we study a tensor
factorization-based approach called the PARAFAC2 model in
comparison with joint ICA and IVA in terms of analyzing time-
evolving data and capturing the underlying evolving patterns.
Through simulations, we study the performance of these three
methods showing that when subject-mode patterns across
different time slices are the same, PARAFAC2 and joint ICA
perform better in terms of capturing the underlying patterns
and are less prone to false-positive markers. On the other
hand, if subject-mode patterns differ (more than a scaling
factor) from one time window to another, IVA performs the
best. In our analysis of real task fMRI data, we observe
that all methods capture one consistent component, that is
also statistically significant in terms of differentiating between
healthy controls and patients with schizophrenia. IVA identifies
additional components as statistically significant in terms of
group difference; however, those are discarded as potential
false positives. Compared to other methods, PARAFAC2
reveals a compact temporal pattern showing the task-rest
pattern clearly.

Methods studied in this article are of interest in not only
neuroscience but also other fields such as metabolomics to
understand the temporal change in human metabolome (i.e.,
the complete set of small biochemical compounds in the body).
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For instance, through the analysis of longitudinal metabolomics
data as well as data from other sources, it may be possible to
capture early signs of diseases (Price et al., 2017). Recently, tensor
factorizations have been used to analyze dynamic metabolomics
data (Li et al., 2022) but how to capture evolving patterns from
such data is yet to be studied.
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