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Case report: A multiple sclerosis
patient with imaging features of
glymphatic failure benefitted
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The derangement of CSF circulation impacts the functions of the glymphatic-

lymphatic system (G-Ls), which regulates solute tra�cking and immune

surveillance in the CNS. TheG-Ls failure leads to the dysregulation of clearance

of waste molecules in the brain and to an altered CNS immune response. The

imaging features of dilated perivascular spaces imply the impairment of the

G-Ls. We report on the case of a patient with primary progressive multiple

sclerosis and dilatation of perivascular spaces, who transiently improved after

CSF shunt diversions. The underlying mechanisms remain to be determined

and at this stage, it is not possible to link CSF diversion to an e�ect on MS

pathology. However, this observation provides the rationale to incentivize

research in the largely unknown area of CSF dynamic disturbances on G-Ls

failure and ultimately in neurodegeneration.
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Introduction

The glymphatic-lymphatic system (G-Ls) regulates solute trafficking and immune

surveillance in the CNS, sub-serving the flow of CSF from the subarachnoid

spaces into the perivascular spaces and subsequently into the interstitium, with

the aquaporin-4 water channels running it (Iliff et al., 2012; Louveau et al., 2018;

Nedergaard and Goldman, 2020; Mestre et al., 2022). The cerebrospinal-interstitial

fluid then passes to the venous perivascular and perineural spaces, lastly draining toxic

molecules and immune cells from the brain into meninges and deep lymph nodes.
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Derangements in intra-extracranial hydrodynamics at

various levels lead to the failure of the CSF dynamic, resulting

in G-Ls failure (Nedergaard and Goldman, 2020), which

possibly configures “G-Ls pathology” (Mestre et al., 2022).

The characteristic imaging pattern of G-Ls dysfunction is

perivascular space dilatation caused by internal congestion and

stagnation with an accumulation of cerebrospinal-interstitial

fluid (see Wardlaw et al., 2020 and references within).

The glymphatic-lymphatic system is impaired in multiple

sclerosis (MS) (Carotenuto et al., 2021). Dilated perivascular

spaces occur more frequently in patients with MS than in

controls (Wuerfel et al., 2008; Etemadifar et al., 2011; Kilsdonk

et al., 2015; Granberg et al., 2020; Wardlaw et al., 2020). In an

experimental model of autoimmune encephalitis, perivascular

aquaporin-4 localization is lost (Wolburg-Buchholz et al., 2009).

Inflammation disrupts the association of astrocytes with blood

vessels and surrounding neurons in MS (Eilam et al., 2018).

Inflammatory follicle-like aggregates in progressive MS are

located in these perivascular spaces (Lassmann, 2018). Taken

together these findings suggest that improving G-Ls flow in

an MS patient with perivascular space dilatation, forcing CSF

circulation through the diversion as described in other models

(Abolfazli et al., 2016), might contribute to the clearance of

inflammatorymediators inMS (Khaibullin et al., 2017), and thus

potentially improving the clinical picture.

Case presentation

In 2009, a 33-year-old woman progressively experienced the

onset of headaches, gait disturbances, and urinary dysfunction.

Fluid-attenuated inversion recovery images of the brain

magnetic resonance imaging (MRI), performed in 2010,

revealed diffuse hyperintense T2 nodular lesions affecting the

paraventricular and subcortical white matter; at least two of

these lesions showed gadolinium enhancement in T1-weighted

images. A coeval MRI of the spinal cord showed nodular

lesions involving the dorsal columns, at the C2 and C3 levels.

The blood tests were within physiological parameters, while

the neurophysiological examination revealed changes in visual

evoked potential and somatosensory evoked potential from the

left median nerve. Oligoclonal IgG bands at isoelectric focusing

occurred in the CSF. The clinical and paraclinical findings led to

the diagnosis of MS. Methylprednisolone provided the patient

with some improvement. Immunomodulatory treatments with

interferon-beta and glatiramer acetate were started and later

discontinued due to intolerance. After 16 months of continuous

neurological impairment, the patient was diagnosed with

primary progressive MS. An MRI performed during the same

period revealed a stable picture. She was voluntarily tested in

another hospital for cerebrospinal venous insufficiency in 2012.

A severe cerebrospinal venous insufficiency was diagnosed,

and she underwent percutaneous transluminal angioplasty at

the level of the internal jugular veins. She had about 2

years of clinical benefit after the procedure, which paralleled

normal anatomic and functional conditions of jugular veins

according to the echo color Doppler examination and stability

of MS lesions at MRI. Subsequently, her neurological condition

deteriorated gradually. Sonographic findings suggested a

recurrence of chronic cerebrospinal venous insufficiency (2014).

At the age of 38, the patient came under our observation

(Supplementary Video 1) with a disease duration of 5 years.

Her Kurtzke Expanded Disability Status Scale (EDSS) was 6.5.

T2-weighted brain MRI (Figure 1) performed in 2014 showed

enlarged perivascular spaces as linear-, ovoid-, or round-shaped

(depending on the slice direction) hyperintensities (Adams

et al., 2013), associated with typical MS lesions (Wuerfel et al.,

2008). Considering the severe progression of the disease, the

patient gave consent to undergo a program of CSF diversions

as compassionate treatment. She received two 1-day external

lumbar drainages (12–15 ml/h over 24 h) (Gallina et al.,

2018). At the end of the drainages, the patient experienced

marked clinical improvement (Supplementary Video 2) and

EDSS 3.0 a week after both procedures. This status lasted about

2 months after the first drainage and about 1 month after

the second one. Her headaches, in particular, vanished, and

she regained her gait and urinary functions. In August 2014,

signs/symptoms progressively reappeared in association with

mild cognitive impairment (Mini-Mental State Examination

score of 25), and the EDSS score reached 8.0. MRI detected a

dimensional increase of the subcortical right frontal MS lesion.

In September 2014, the patient underwent lumboperitoneal

shunt (Spetzler system, Integra LifeSciences Corp) implantation.

Once mobilized (about 24 h after the intervention), she

showed mild spastic-ataxic paraparesis with full autonomy in

gait, sphincter recovery, and headache resolution. An MRI

performed in October 2014 revealed the absence of contrast

enhancement of the brain lesions. Further improvement was

progressively observed (Supplementary Video 3), but a slow

worsening occurred 5 months after surgery. One year after the

lumboperitoneal drainage, an MRI study revealed the absence

of active MS lesions and the persistence of perivascular space

enlargement. Thirteen months after surgery, she received an

EDSS score of 7.5. An ophthalmological examination revealed

severe right optic impairment. The patient refused further

external lumbar drainage to verify the hypothesis that clinical

worsening was due to shunt failure. In October 2018, her

MRI was stable, with no signs of activity, and her neurological

conditions remained unchanged.

Discussion

Aware of the anecdotal nature, potential placebo effect,

and possibly unrelated and unknown factors, this case suggests

the effect of CSF diversions on the MS patient’s clinical
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FIGURE 1

Magnetic resonance imaging in a patient with primary progressive multiple sclerosis and features of brain interstitial space congestion. Imaging

was performed before positioning a lumboperitoneal shunt. Multiple sclerosis lesions appear as round hyperintensities on coronary T2-weighted

imaging obtained at the level of the third ventricle (black arrow). Enlarged perivascular spaces appear as linear hyperintensities crossing radially

the Corona Radiata from the cortex to the ventricles (white arrow in higher magnification below). The size of the ventricles is normal.

improvements. The mechanisms and factors underpinning the

CSF shunt-mediated improvements of theMS symptoms remain

to be determined, at this stage. CSF diversion, decongesting

perivascular spaces, may have ameliorated glymphatic

functioning and interstitial removal of proinflammatory

molecules from CSF and in so doing, downregulating local

inflammation. This is in line with the Louveau et al. hypothesis

that the modulation of CSF drainage through the meningeal

lymphatic vasculature might reduce the quantity of CNS

antigens entering the related lymph nodes, resulting in the

downregulation of the autoimmune response (Louveau et al.,

2016). Measurement of inflammatory markers before and after

CSF diversions would have clarified if the improved clearance

of inflammatory mediators underlain the clinical changes in

our patients. The observation that perivascular spaces remained

enlarged after CSF diversion is not surprising; indeed, post-

inflammatory fibrosis might make perivascular enlargement a

permanent feature (Inglese et al., 2005).

However, the hypothesis of a “hydraulic” mechanism related

to changes in intracranial hydrodynamics after CSF subtraction,
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as responsible/co-responsible for neurological improvement

cannot be excluded. Notably, the dominant signs/symptoms

in our patient, i.e., gait and urinary disturbances, cognitive

deterioration, and headache are also characteristic of normal

pressure hydrocephalus (Adams et al., 1965). As in this latter

condition, related to a failure of CSF dynamics condition,

clinical disturbances quickly improved after lumbar drainages,

which involve a momentary reduction of CSF volume (Gallina

et al., 2018), and slowly vanished due to CSF volume restoring,

once drains were removed. Moreover, it is unclear why

the benefit observed in our patient following definitive CSF

diversion was limited to months. Following insufficiency/stop of

CSF flux drainage due to shunt failure is one possibility.

This report does not suggest a new therapy for MS.

It represents an exploratory approach to neurodegenerative

diseases (Scollato et al., 2016), in which CSF flow disturbances

play a possible role in the failure of G-Ls (Nedergaard and

Goldman, 2020; Gallina et al., 2021), leading to inadequate brain

clearance of toxic molecules and immune cells (Iliff et al., 2012).
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Videos of a patient with primary progressive multiple

sclerosis imaging features of dilated perivascular spaces who

underwent cerebrospinal fluid diversions.

SUPPLEMENTARY VIDEO 1

Video obtained before external lumbar drainage positioning

demonstrating severe di�culty in walking.

SUPPLEMENTARY VIDEO 2

Video obtained within 1h after external lumbar drainage removal

showing a striking improvement of gait.

SUPPLEMENTARY VIDEO 3

Video obtained 3 months after lumboperitoneal shunting, showing

normal gait and equilibrium.
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