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Emotion recognition from affective brain-computer interfaces (aBCI) has garnered a

lot of attention in human-computer interactions. Electroencephalographic (EEG) signals

collected and stored in one database have been mostly used due to their ability to

detect brain activities in real time and their reliability. Nevertheless, large EEG individual

differences occur amongst subjects making it impossible for models to share information

across. New labeled data is collected and trained separately for new subjects which costs

a lot of time. Also, during EEG data collection across databases, different stimulation is

introduced to subjects. Audio-visual stimulation (AVS) is commonly used in studying the

emotional responses of subjects. In this article, we propose a brain region aware domain

adaptation (BRADA) algorithm to treat features from auditory and visual brain regions

differently, which effectively tackle subject-to-subject variations and mitigate distribution

mismatch across databases. BRADA is a new framework that works with the existing

transfer learning method. We apply BRADA to both cross-subject and cross-database

settings. The experimental results indicate that our proposed transfer learning method

can improve valence-arousal emotion recognition tasks.

Keywords: emotion recognition, transfer learning, brain region, channel selection, EEG, domain adaptation

1. INTRODUCTION

Emotions play an important role in Human-Human Interaction by creating pathways for
individuals to learn and adapt to behaviors (Ko et al., 2021). Human-computer interaction
should be designed in such a way that better interacts with users, behavior and emotions
and respond accordingly (Principi et al., 2021; Yun et al., 2021). Emotion recognition from
Electroencephalograph (EEG) signals among many other physiological methods shown to be more
advantageous in its non-invasiveness and reliability. EEG is a widely used medical instrument for
recording electrical currents generated by brain activity (Kwak et al., 2021). An affective brain-
computer interface (aBCI) presents stimuli of different kinds to subjects by taking neural signals
in a form of EEG recordings. EEG-based aBCI emotion recognition has gained research attention
recently because of its rapidly growing field with multiple interdisciplinary applications (Alarcão
and Fonseca, 2019; Torres et al., 2020). Figure 1 is an illustration of an aBCI and some of its
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applications. However, EEG signals have high inter-subject
variations and this creates problems in designing models that
generalize well across subjects. Conventionally, data are collected
individually for each subject and a classifier is trained specifically
for them rather than formulating a model with a classifier
that can generalize well on all subjects concurrently. Another
generalization problem arising from aBCI is the same subject
session-to-session variation (Zheng and Lu, 2015). Domain
adaptation (DA) methods can solve this issue (Yan et al., 2018).
In order to establish an EEG database that fully elicits human
emotions and meets a required classification task, some studies
collect data for a single subject in multiple trials or sessions.
Data collected per session can be reckoned as somewhat a
new task because of the non-stationary characteristics of EEG
signals (Shen and Lin, 2019). These require a great deal of
time-consuming and re-calibration processes (Fdez et al., 2021)
to minimize the variations in the subject-to-subject data and
the session-to-session data for a single subject. Over the years,
studies have focused on publicly available affective databases to
assist researchers in designing and modeling their own affective
state estimation methods (Koelstra et al., 2012; Soleymani et al.,
2012; Katsigiannis and Ramzan, 2018; Subramanian et al.,
2018; Zheng et al., 2019). These databases are collected using
different stimulants, equipment, experimental environments and
protocols, and target labels among many other different technical
discrepancies. These differences are unique to a particular
database but create research challenges when designing and
building models intended to adapt across databases.

Transfer learning (TL) focuses on leveraging and storing
knowledge acquired from a source domain task and applying
it to a target domain task that may be different but of a
related problem without the need to learn from scratch (Pan
et al., 2011; Niu et al., 2021). TL compensates for inter-
subject variability evidenced in EEG feature dispersion as a
covariate shift for aBCI to increase confidence in classification
performance in comparison to non-transfer learning tasks
(Saha and Baumert, 2020). The study (Lin, 2020) proposes
a TL model, robust principal component analysis (RPCA) to
Single Day (sD) and Multiple Day (mD) data dealing with
inadequate labeled data and concurrently solving inter and intra-
individual differences. Pan et al. (2011) proposed a transfer
component analysis (TCA), for domain adaptation that finds
representation from feature nodes. The study by Yan et al.
(2018) proposed a maximum independence domain adaptation
(MIDA) technique to tackle different distributions of training
and test data. Fernando et al. (2013) introduced a subspace
alignment (SA) method mapping function which aligns source
subspaces to target ones described by eigenvectors. Unlike image
processing (Su, 2021), EEG-based emotion recognition requires
a lot of time, effort, and equipment to collect data. Therefore,
in order to reduce the constraint on aBCI systems, TL is of
great importance. It has been widely used in EEG-based emotion
recognition and makes good progress in dealing with the cross-
domain scenarios problems of EEG signal (Li et al., 2021).
However, to the best of our knowledge, all existing transfer
learning methods for EEG treats all channels the same while
actually different EEG channel plays a different role. It is more

reasonable to transfer knowledge differentially according to
channel locations.

Channel selection that uses only part of the channels is a
widely used pre-processing step in EEG signal analysis (Alotaiby
et al., 2015; Boonyakitanont et al., 2020). It can reduce overfitting
which is due to the utilization of unnecessary channels. Various
channel selection methods for EEG-based emotion recognition
have been proposed, such as measuring the contribution of each
channel (Yan et al., 2020), selecting according to classification
performance (Özerdem and Polat, 2017), excluding channels
least correlated with the emotional state (Dura and Wosiak,
2021), normalized mutual information (Wang, 2019), and weight
distribution of trained neural network (Zheng and Lu, 2015).
They all select channels by analyzing EEG data or model
parameters. EEG signal for emotion recognition is usually
stimulated by visual or auditory materials. However, the prior
knowledge of brain regions for visual and auditory stimuli is
overlooked in channel selection.

In this study, we transfer knowledge from only stimulated
brain regions according to prior neuroanatomy knowledge
(Sotgiu et al., 2020) for EEG emotion recognition. Our approach
does not only improve the accuracy of emotion recognition but
provides new insight into EEG transfer learning.

Also, we show that for EEG signals, transferring knowledge
in a finer way instead of treating all the channels the same will
improve the performance.We reveal the effectiveness of applying
prior knowledge of EEG signals for channel selection, unlike
previous studies that utilized all EEG signals from channels that
may not be needed. Our proposed improved transfer learning
method not only works for cross-subject scenarios but also for
cross-database scenarios.

2. MATERIALS AND METHODS

2.1. Related Work
In this section, we review studies relating to aBCI using EEG
signals and transfer learning methods that are most related to our
proposed study. We presented studies on cross-subject, cross-
database, and EEG channel selection for emotion classification.
Moreover, we remonstrate the uniqueness of our article to
distinguish it from recently published studies.

2.1.1. Transfer Learning for EEG-Based Emotion

Recognition

2.1.1.1. Cross-Subject
The amount of available training data in an aBCI affects models’
performance. However, the statistical distribution of training
data varies across subjects as well as across trials/sessions
within subjects, thus limiting the transferability of the training
model between them (Lin, 2020). Azab et al. (2019) proposed
a novel transfer learning system that reduces calibration time
yet maintains classification accuracy by incorporating previously
recorded data from other subjects when only few subject-specific
sessions are available for training. Standard proposed methods
dealing with subjects’ differences are mostly based on common
spatial pattern (CSP) (Martin-Clemente et al., 2019) which
is a dimensionality reduction technique that linearly projects
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FIGURE 1 | Illustration of an affective brain-computer interfaces (aBCI) and its applications (Fordson et al., 2021). Source for the photo top left: Center for Human

Body Data Science, School of Electronic and Information Engineering, South China University of Technology.

training data onto directions maximizing or minimizing the
variations between them. CSP filtering methods reveal more
information about the data and result in high efficiency values.
Wu et al. (2020) proposed a TL protocol for closed-loop BCI
systems and suggests data alignment before spatial filtering
to make data from different subjects consistent and facilitate
succeeding TL algorithms. Li et al. (2020) identified the problem
of time consumption and build models for new subjects to reduce
the demand for labeled data. Their method includes source
selection and mapping destinations. They used style transfer
mapping (STM) to reduce EEG differences between source and
target data and explore mapping destination settings. The studies
of He and Wu (2020) proposed an approach to align EEG trials
from several subjects in Euclidean space by reducing variations
that improve the learning performance of new incoming subjects.
Their method aligns EEG sessions well into Euclidean space,
employs low computational cost, and exhibits the usefulness of
unsupervised classification (Rouast et al., 2021).

2.1.1.2. Cross-Database
Cross-database involves using two or more databases in building
an effective aBCI for emotion recognition. We have searched
numerous academic databases in an attempt to find works in this
regard in addition to using transfer learning methods. However,
difficult the search was, we have found some related works.
Jayaram et al. (2016) introduced a model for transfer learning
in EEG-based BCI that exploits multiple subjects and/or sessions
shared structures between training data to increase performance.
They demonstrated their method’s usefulness in limiting time
consumption and its capability of outperforming comparable

methods on identical datasets. Rodrigues et al. (2019) present a
transfer learning approach that deals with statistical variations of
EEG signals collected from different subjects in different sessions.
Their article proposed a Procrustes analysis method to match the
statistical distributions of two datasets (simulated data and real
data) using simple geometrical transformations over data points.
Cimtay and Ekmekcioglu (2020) investigated pre-trained neural
network models trained on the SEED dataset (Zheng and Lu,
2015) and tested them on the DEAP dataset (Koelstra et al., 2012)
that yields a reasonable mean prediction accuracy. The study
of Lan et al. (2019) focused on comparative studies on SEED
and DEAP datasets. They used existing domain adaptation (DA)
techniques on these datasets and reported their effectiveness in
an unsupervised setting (Fernando et al., 2013).

2.1.1.3. EEG Channel Selection
The study by Daoud and Bayoumi (2019) uses channel selection
methods to identify relevant EEG channels using a semi-
supervised approach based on transfer learning. In order to
simplify the training model, the authors of Ramadhani et al.
(2021) used integrated selection (IS) to remove irrelevant EEG
channel signals which further improved the performance of
an aBCI system. The article by Basar et al. (2020) used welch
power spectral density-based analysis to see the effects of
CSP algorithms on EEG band and channel relationship, its
neural efficacy, and emotional stimuli types. Also, Cao et al.
(2020) selected EEG channels according to Fisher criteria and
trained their model on a convolutional neural network based on
parameter transfer. The selected channel features in comparison
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with non-channel selection demonstrate a higher accuracy
performance.

The works of transfer learning and channel selection on
cross-database lack sufficient investigation even though they
relax research restraints of a typical aBCI. Previous studies on
EEG-based transfer learning do not investigate two real EEG
databases with significantly related components. They also do
not focus on investigating selecting channels that contribute
most to improving affective computing systems. They either
use simulated data vs. real data (Yan et al., 2018; Rodrigues
et al., 2019) or try to reduce components of one database to the
other (Lan et al., 2019). Also, they do not focus on stimulated
brain regions and select channels that can contribute meaningful
insight. Instead, they extract features from all channels and
follow traditional feature combination techniques in recognition
tasks. Our article utilizes two databases with a significant
focus on selecting stimulated brain regions that can affect
participant responses in emotion elicitation. Emotional responses
to videos in both databases are correlated with both employing
dimensional models of valence and arousal. The motivation
of this article is to adapt feature-space transfer learning and
parameter-space transfer learning to new subjects in one database
by decreasing variations within subject-to-subject and new
databases by also decreasing database-to-database variations.
This will in turn produce a robust classification method for
affective BCI.

2.2. Database
In this article, we utilized two publicly available databases,
MAHNOB-HCI (Soleymani et al., 2012) and DEAP (Koelstra
et al., 2012). We chose these databases because of the differences
and the similarities they share. For example, similarities,—they
are both collected with the same type of device and, differences,—
the MAHNOB-HCI contains both audio and video while the
DEAP only contains audio. As we mentioned in Section 1,
transfer learning involves creating new models by fine tuning
previously trained models and adapting knowledge learned while
solving one problem and applying it to a different but related
problem. Therefore, these two databases are different but related.
Furthermore, our study is interested in the robustness of an
applicable aBCI in a cross-database fashion. We plan to train
our model on one database with different subjects and test it on
another database with new subjects. We also intend to investigate
the possible effects of transfer learning techniques on the prospect
of heightening classification accuracy.

The MAHNOB-HCI database is recorded in response to
affective stimuli with the common goal of recognizing emotions
and implicit tagging. It consists of 30 subjects (13 men, 17
women). They were aged between 19 and 40 years (mean age
of 26.06). Unfortunately, three subjects’ data were lost due to
technical errors, thus, 27 subjects (11 men, 16 women) data were
considered for processing. The subjects watched 20 emotional
movie videos and self reported felt emotions using arousal,
valence, dominance, and predictability in addition to emotional
keywords. The database comprises 32-channel EEG signals in
accordance with the international 10-20 system. The EEG signals
were recorded using the Biosemi Active II system with active

electrodes at a 1,024 Hz sampling rate and downsampled to 256
Hz to reduce memory and processing cost.

The DEAP database is recorded for the analysis of human
affective states. A total of 32 subjects participated in this
experiment (16 men, 16 women). They are aged between 19 and
37 years (mean age of 26.9). The subjects watched as stimuli
40 1-min long excerpts of music video while their physiological
signals are being collected. After each trial, participants rated
each music video in terms of their level of arousal, valence,
dominance, liking, and familiarity. The rating values comprise
a continuous scale of 1–9 for arousal, valence, dominance, and
liking, and a discrete scale of 1–5 for familiarity. The EEG signals
were recorded with 32-channel electrodes placed according to
the international 10-20 system at a sampling rate of 512 Hz
and downsampled to 128 Hz. Table 1 sums up the important
technical specification of the two EEG databases.

2.3. Methodology
This section introduces our unsupervised transductive learning
approach to this study. We present in the sub-sections how
data are formulated, which features are extracted, and our
proposed brain region aware domain adaptation (BRADA)
method. Taking transfer learning between two databases as
examples, the illustration of BRADA is shown in Figure 2.

2.3.1. Visual and Auditory Channels
According to neuroanatomy (Sotgiu et al., 2020), we divide
the international 10-20 EEG system into five regions (the
frontal, parietal, occipital, temporal lobes, and the central
sulcus). Figure 3 gives an illustration. Among them, the
occipital lobe’s primary function is to control vision and
visual processing and the temporal lobe is related to the
perception and recognition of auditory stimuli, speech, and
memory. We call electrodes located in the occipital lobe
(PO3, PO4,O1,Oz, and O2) and electrodes located in the
temporal lobe (F7, F8, F3, F4, FC5, FC6,T7,T8,CP5,CP6, P7,
and P8) as visual and auditory channels. We only extract features
for these channels and transfer knowledge for the specific region
separately.

2.3.2. Feature Extraction
In this article, we adopt Differential Entropy (DE) (Lan et al.,
2019) and Power Spectral Density (PSD) (Fang et al., 2021;
Zhu and Zhong, 2021) features for emotion classification. These
features have been extensively used in EEG-Based emotion
recognition (Zheng et al., 2015; Arnau-Gonzalez et al., 2021;
Zhu and Zhong, 2021). The feature includes DE and PSD from
theta (4 Hz < f <8 Hz), slow alpha (8 Hz < f <10 Hz),
alpha (8 Hz < f <12 Hz), beta (12 Hz < f < 30 Hz), and
gamma (30 Hz < f ) bands of EEG signal. Therefore, for 32
electrode baseline classification, the dimension m of the feature
vector is 32 × 5 + 32 × 5 = 320 features. Specifically, for
auditory channel selection, the dimension mA of the feature
vector is 12 × 5 + 12 × 5 = 120; for visual channel
selection, the dimension mV of the feature vector is 5 × 5 +

5 × 5 = 50 features. After feature extraction, we use min-
max normalization to scale the feature value to a proper range
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TABLE 1 | Specification comparison and database content summary of MAHNOB-HCI and DEAP.

Item content MAHNOB-HCI (Soleymani et al., 2012) DEAP (Koelstra et al., 2012)

No. of subjects 27 (11 males and 16 females) 32 (16 males and 16 females)

Stimuli effect Audio and visual Audio and visual

Stimuli selection method Movie clip Music video

EEG Device Biosemi Active II Biosemi Active II

No. of channels 32 32

Sampling rate Collected at 1,024 Hz, downsampled to 256 Hz Collected at 512 Hz, downsampled to 128 Hz

Rating scales Arousal and valence Arousal and valence

Rating values Discrete scale of 1–9 Discrete scale of 1–9

No. of data collection sessions for one subject 1 1

No. of videos 20 40

Video length Between 34.9 and 117 s 63 s

FIGURE 2 | The overall framework of our method: We extracted and selected features according to auditory and visual channels on both databases. Using transfer

learning (TL) techniques, we transferred knowledge separately from the MAHNOB-HCI database and employed a feature concatenation method in an attempt to boost

performance accuracy in the DEAP dataset (EEGA,V , EEG auditory or visual data; XA,V , auditory or visual input features; ZA,V , combined auditory or visual features).

as follows:

x′ =
x−min(x)

max(x)−min(x)
(1)

where x is the original feature vector, and x ′ is the normalized
feature value.

2.3.3. Brain Region Aware Domain Adaptation
Assume Xs ∈ R

m×ns and Xt ∈ R
m×nt are respectively the

normalized source and target domain data, wherem is the feature
dimension, and ns and nt are the sample numbers of source
and target domains. Usually, data from different domains follow
different distributions. Domain adaptation (Pan and Yang, 2010)
is to find a domain-invariant subspace such that a classifier
trained on the source domain can be directly applied to the target
domain. That is to say, we want to reduce the discrepancies
between the source and target domains by transforming X =

[Xs,Xt] ∈ R
m×n to Z = [Zs,Zt] ∈ R

h×n, where h is the
dimension of the domain-invariant subspace, and n = ns + nt
is the total number of samples.

We utilize maximum independence domain adaptation
(MIDA) (Yan et al., 2018) for feature transformation of both brain
regions. Following Yan et al. (2018) and Lan et al. (2019), we

define domain features to describe the background information
of a sample and maximize the independence between the
projected features and the domain features. The domain feature
d ∈ R

md of a sample is defined by a one-hot encoding
vector with di = 1 if the sample is from subject i and 0,
otherwise. Following Lan et al. (2019), we encode the background
information with feature augmentation by concatenation. The
intention of the augmentation operation is to learn information-
specific subspaces and to deal with time varying drift. The main
difference between our method and Lan et al. (2019) is that
we augment features of audio and video channels separately.
Denote audio channel features and video channel features after
normalization as XA and XV , respectively. Then, the augmented
features are represented by

X̄A =

[
XA

D

]
∈ R

(mA+md)×n (2)

and

X̄V =

[
XV

D

]
∈ R

(mV+md)×n. (3)

Frontiers in Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 865201

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Perry Fordson et al. Knowledge Transfer From Stimulated Brain Regions

FIGURE 3 | Feature selection on electrode placement of 32 channel Electroencephalographic (EEG) according to the international 10-20 system (best seen in color)

(Alarcão and Fonseca, 2019).

For simplification, we use A/V to denote either A or V . We use
the kernel trick to project X̄A/V to the desired subspace. Denote
φ(X̄A/V ) as the mapping function. The transformed features are
represented by a linear combination of the mapped features, i.e.,

ZA/V = W̃T
A/Vφ(X̄A/V ). (4)

Following kernel dimension reduction methods (Kempfert et al.,
2020), W̃T

A/V is constructed by a linear combination of all samples

in φ(X̄A/V ). Then, we have

ZA/V = (φ(X̄A/V )WA/V )
Tφ(X̄A/V ) = W⊤

A/VKX̄A/V
, (5)

whereWA/V is the linear transformationmatrix to be determined
and KX̄A/V

= φ(X̄A/V )φ(X̄T
A/V ) is the kernel matrix of φ(X̄A/V ).

By kernel trick, we can compute KX̄A/V
with kernel function and

does not need the explicit φ function. In this article, we use the
polynomial kernel function.

As in Lan et al. (2019), we use the Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005) to measure
the dependence between ZA/V and D, which can be conveniently
estimated by

HSIC(ZA/V ,D) = (n− 1)−2tr(KZA/VHKDH), (6)

where KZA/V = (W⊤
A/VKX̄A/V

)TW⊤
A/VKX̄A/V

and KD = DTD are

kernel matrices of ZA/V and D, H = 1− n−11n1
⊤
n ∈ R

n×n is the
centering matrix, and 1n is an n-dimensional vector full of ones.

Following Yan et al. (2018) and Lan et al. (2019), we
simultaneously maximize the variance of the projected data and
their independence from the domain features. By omitting the
scaling factor, the final objective function is given by:

max −tr(W⊤
A/VKX̄A/V

HKDHKX̄A/V
WA/V )

+µ tr(W⊤
A/VKX̄A/V

HKX̄A/V
WA/V )

s.t.W⊤
A/VWA/V = I

(7)

whereµ > 0 is a trade-off parameter. Here, we add an orthogonal
constraint to the projection matrix W to ease the optimization.
The solution to (7) can be obtained in a closed form by finding
the h eigenvectors of KX̄A/V

(−HKDH+µH)KX̄A/V
corresponding

to the top-h eigenvalues.
After obtaining WA/V , we compute the features of audio and

visual channels by Equation (5). The final feature Z is then
composed of the concatenation ofZA andZV , i.e.,Z = [ZT

A ,Z
T
V ]

T .
The algorithm of our proposed brain region aware domain
adaptation is summarized in Algorithm 1. With the extracted
features and their given labels, we apply a support vector machine
(SVM) (Burges, 1998) for classification.

3. RESULTS

This section demonstrates the effectiveness of BRADA in cross-
subject and cross-database settings. We first show that BRADA
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Algorithm 1 BRADA

Input: Feature matrix of all samples X; φ(·); hyper-parameters h
and µ.
Output: Projected samples Z.
Procedure:

1: Avail domain features according to information-specific
space from both databases.

2: Utilize MIDA to transform features of both brain regions,
thus, auditory and visual channels.

3: Extract features separately into auditory and visual
components as XA and XV .

4: Combine them to obtain X features.
5: Normalize the features to obtain X′.
6: Augment the normalized features with domain features as in

(2) and (3) to obtain X̄.
7: Compute kernel matrices KZA/V and KD according to (6).
8: Optimize (7) to get W, namely the eigenvectors of

KX̄A/V
(−HKDH + µH)KX̄A/V

in accordance to the largest h

eigenvalues.
9: Z = [ZT

A ,Z
T
V ]

T .

is compatible with classical transfer learning methods, TCA
(Pan et al., 2011), SA (Fernando et al., 2013), and MIDA (Yan
et al., 2018) in both cross-subject and cross-database settings
for EEG emotion recognition, and then we conduct ablation
experiment to show the effectiveness of both brain regions,
feature normalization and augmentation, and kernel function.

Baseline denotes applying SVM to the extracted features of all
the channels directly. TCA, SA, andMIDA denote applying these
methods to the extracted features of all the channels and then
classifying the transformed features by SVM. We also replace
MIDA in BRADA with the other transfer learning methods,
denoted by “BRADA-” followed by a method name. Note that
we use a polynomial kernel in Algorithm 1, but the original
method (Yan et al., 2018) uses a linear kernel. Without confusion,
we use BRADA to denote Algorithm 1 and use BRADA-MIDA
to denote using a linear kernel. Without specification, all the
transfer learning methods adopt a linear kernel. For all the
methods, we set the trade-off parameter µ to 1, and the latent
subspace dimension h is searched through {10, 20, ..., 100}.

For MAHNOB-HCI, since data of three subjects could not be
validated, data from 27 subjects who had sufficient completed
trials were used. Physiological responses recorded with EEG of
five hundred and forty samples were collected over the database,
27 × 20 = 540 samples. In DEAP, data from all 32 subjects
were used. Physiological responses recorded with EEG of one
thousand two hundred and eighty samples were collected over
the database, 32× 40 = 1, 280 samples.

3.1. Cross-Subject Transfer Learning
For the cross-subject setting, we apply leave-one-out cross-
validation on each database, i.e., one subject is chosen as the
test set, and the remaining subjects are used for training. Each
subject constitutes a single domain, and thus, our approach is
formulated in a multi-source domain setting. Since our method

TABLE 2 | Cross-subject classification accuracy (%) on MAHNOB-HCI and DEAP.

Method MAHNOB-HCI DEAP

Arousal Valence Arousal Valence

Baseline 57.2 55.5 57.5 62.1

TCA (Pan et al., 2011) 57.6 58.3 47.8 46.3

SA (Fernando et al., 2013) 57.3 56.4 42.0 42.9

MIDA (Yan et al., 2018) 58.5 62.1 48.6 48.2

BRADA-TCA 68.3 69.1 63.1 65.7

BRADA-SA 64.6 65.2 63.0 65.6

BRADA-MIDA 69.9 69.6 63.5 69.2

BRADA 75.5 78.3 71.9 72.5

The bold values indicated the highest accuracy obtained.

TABLE 3 | Cross-database classification accuracy (%) on MAHNOB-HCI and

DEAP.

Method A→B B→A

Arousal Valence Arousal Valence

Baseline 51.2 49.3 44.7 45.4

TCA (Pan et al., 2011) 49.5 46.5 58.5 58.6

SA (Fernando et al., 2013) 41.5 40.5 48.4 53.7

MIDA (Yan et al., 2018) 52.7 55.6 49.4 50.1

BRADA-TCA 64.0 68.4 69.6 70.5

BRADA-SA 63.1 68.2 65.7 66.2

BRADA-MIDA 63.7 69.2 70.8 71.6

BRADA 73.8 75.9 76.2 78.5

The bold values indicated the highest accuracy obtained.

is unsupervised, it is not constrained by a domain number.
Thus, it can also operate in a single source domain multi-target
domain mode.

The classification accuracy of both databases is reported in
Table 2. We can see that BRADA achieves the best performance.
Compared with baseline, all transfer learning methods with all
the channels improve the results for MAHNOB-HCI. However,
for DEAP, the transfer learning methods result in a negative
transfer, i.e., result degradation. This is evident in the study
of Chai et al. (2017) which mentions negative transfer in
hindering domain adaptation methods from the successful
operation of DEAP. Nevertheless, taking these methods into the
framework of BRADA, the results are consistently improved.
BRADA can effectively improve classification accuracy by 10.4–
22.8%, suggesting that individual differences in all subjects are
significantly reduced. Statistical significance analysis performed
shows that accuracy improvements are significant (t-test, p <

0.05). This strongly suggests that the brain regions of different
functions should be separately treated and not all channels are
needed for EEG emotion recognition. We should emphasize
that performance gain is significant compared to all the other
methods.

3.2. Cross-Database Transfer Learning
The previous sub-section presents the use of domain adaptation
techniques which reduces inter-subject variations and improves
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classification performance on a single database. Here, we further
present our study in a cross-database setting, i.e., the latent
subspace is learned from all samples of both databases, and
training and testing are applied to different databases. Note that
this is a harder task because the differences between the samples
are not only from personality and experimental sessions but
also from equipment and experimental protocol. Each subject
constitutes a single domain and thus this setting is multi-source
and multi-target. For simplicity, we refer to MAHNOB-HCI as
A and DEAP as B. We report the results of training on A and

testing on B, and the reverse order in Table 3. We can see that,
under both training settings, BRADA and its variants outperform
their counterparts that take all the channels as input. Compared
to the baseline accuracies with no domain adaptation method,
BRADA can effectively improve classification accuracy by 22.6–
33.1%, suggesting that individual differences in all databases are
significantly reduced. Statistical significance analysis performed
shows that accuracy improvements are significant (t-test, p <

0.05). This again verifies that selecting channels according to the
stimuli sources can effectively reduce noise in EEG signals and

TABLE 4 | Cross-subject classification accuracy (%) comparison with single brain region on MAHNOB-HCI and DEAP databases.

Methods

Auditory channels Visual channels Auditory + Visual channels

MAHNOB-HCI DEAP MAHNOB-HCI DEAP MAHNOB-HCI DEAP

Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

TCA (Pan et al., 2011) 59.7 54.4 54.6 54.9 56.4 55.8 49.8 53.3 60.3 59.9 58.7 55.6

SA (Fernando et al., 2013) 46.5 46.2 43.2 46.7 42.7 45.6 41.1 43.7 48.2 45.9 47.2 46.9

MIDA (Yan et al., 2018) 60.3 59.1 58.3 62.3 59.6 55.7 52.9 51.0 62.3 64.0 61.5 60.2

MIDA-POLY 56.2 57.9 57.4 60.5 55.8 54.6 48.9 48.2 56.8 58.0 57.6 58.1

BRADA-TCA 65.1 66.9 61.5 60.8 59.7 58.9 62.2 61.7 68.3 69.1 63.1 65.7

BRADA-SA 63.5 63.8 60.9 59.6 58.7 59.9 60.0 59.5 64.6 65.2 63.0 65.6

BRADA-MIDA 65.6 68.1 59.9 63.2 60.6 59.8 61.7 63.1 69.9 69.6 63.5 69.2

BRADA 71.0 74.9 68.9 66.7 65.4 69.8 65.8 69.1 75.5 78.3 71.9 73.8

The bold values indicated the highest accuracy obtained.

TABLE 5 | Cross-database classification accuracy (%) comparison with single brain region on MAHNOB-HCI and DEAP databases.

Methods

Auditory channel Visual channel Auditory + Visual channels

A→B B→A A→B B→A A→B B→A

Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

TCA (Pan et al., 2011) 53.7 51.1 58.6 53.2 47.1 50.7 53.3 54.2 54.1 51.7 60.2 55.8

SA (Fernando et al., 2013) 41.3 45.5 44.4 41.9 40.9 42.2 42.6 45.0 42.7 49.6 45.1 45.3

MIDA (Yan et al., 2018) 57.7 60.8 59.6 58.8 50.2 51.0 57.8 54.5 57.5 61.4 60.7 59.2

MIDA-POLY 56.6 58.9 50.3 54.4 46.6 45.2 50.2 49.8 56.8 59.1 51.4 55.1

BRADA-TCA 55.7 53.9 60.4 56.3 50.9 55.2 58.7 60.4 64.0 68.4 69.6 70.5

BRADA-SA 51.5 53.2 56.5 54.8 50.3 53.1 51.8 57.7 63.1 68.2 65.7 66.2

BRADA-MIDA 59.6 62.5 61.8 63.9 60.0 62.5 67.8 68.1 63.7 69.2 70.8 71.6

BRADA 69.4 70.7 68.5 71.7 70.2 71.1 69.8 72.5 73.8 75.9 76.2 78.5

The bold values indicated the highest accuracy obtained.

TABLE 6 | Classification accuracy (%) of BRADA with and without normalization.

Methods

Cross-subject Cross-database

MAHNOB-HCI DEAP A→B B→A

Arousal Valence Arousal Valence Arousal Valence Arousal Valence

Without normalization 60.7 63.2 57.3 60.6 57.9 59.9 60.1 61.5

With normalization 75.5 78.3 71.9 72.5 73.8 75.9 76.2 78.5

The bold values indicated the highest accuracy obtained.
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FIGURE 4 | Sample distribution comparison of features in their original space and normalized projected spaces in the MAHNOB-HCI database, (A) is MAHNOB

original features, (B) is Unnormalized features + brain region aware domain adaptation (BRADA), and (C) is Normalized features + BRADA.

FIGURE 5 | Sample distribution comparison of features in their original space and normalized projected spaces in the DEAP database, (A) is DEAP original features,

(B) is Unnormalized features + BRADA, and (C) is Normalized features + BRADA.

FIGURE 6 | Box plots ablation experiment for valence cross-subject classification accuracy on MAHNOB-HCI and DEAP data using Gaussian, linear, and polynomial

kernel mapping functions, (A) MAHNOB-HCI, (B) DEAP.
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FIGURE 7 | Average valence performance accuracy on MAHNOB-HCI using varying projected dimensions.

transfer learning should be conducted separately for different
brain regions.

3.3. Ablation Study
In order to effectively evaluate the BRADA algorithm
and audio-visual feature combination for classification,
we perform an ablation study to better understand our
contributions and compare the effects of channel selection,
normalization/augmentation, and kernel function selection on
baseline features and existing models.

3.3.1. Effect of Channel Selection
The baseline model consists of features from 32 electrode
channels—including channels that may not be needed. In our
proposed methodology, we selected features from auditory
and visual brain regions where we believe participants are
more stimulated. The results are reported in Tables 4, 5.
Combining both brain regions with BRADA performs better
than transferring knowledge from single brain regions or through
direct concatenation.

Another trend worth mentioning is that during the
experiments, we observed that separating features into auditory
and visual components independently and combining them
together yields better performance than directly extracting
features from all brain regions together. It also enables our
algorithm in learning to adapt well and transfer knowledge
effectively.

3.3.2. Effect of Normalization
Our method handles features as random variables whose
distribution is derived from previous subjects within a database.
We introduce a procedure for normalization and augmentation
of data which reduces variations within individual subjects. We
show that normalization significantly improves the performance

across subject-to-subject and database-to-database. The results
are reported in Table 6. In our experiment, we observe that
applying domain adaptation techniques directly to original
features may result in a negative transfer.

Figures 4, 5 compare the sample distribution of unnormalized
and normalized features projected in 2D space with BRADA.
We also visualize the original data in 2D space by utilizing
principal component analysis (PCA). Here, we used four subjects
as an example. Three subjects being source data and one
subject as target data. Figures 4A, 5A show the source and
target domain features in their original space. As we can
observe, feature samples are distributed differently between
different participating subjects. Each subject as a source or target
domain operates in its own space by belonging to separate
clustered regions. This indicates a large divergence between
individual subjects. Figures 4B, 5B shows sample distribution
when data from the original space is directly applied to the
BRADA algorithm. We observe that, in both databases, there
was no significant effect in reducing discrepancies existing within
subjects. Figures 4C, 5C show the feature sample distribution
when features are normalized and augmented. Clearly, it can
be seen that discrepancies and regional own space clusters are
significantly reduced. Feature samples are better aligned on both
databases suggesting that the domain adaptation algorithm was
successful in somewhat learning structures across subjects and
adapting to their spaces.

3.3.3. Effect of Kernel Function Selection
The compared TL methods utilize linear kernel function, while
we employ polynomial kernel function. To further study the
effectiveness of the polynomial kernel function, we compare it
with the commonly used Gaussian and linear kernel functions
and show the box plots in Figure 6. From the figure, we
observe that the Gaussian kernel function approach achieves
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the lowest performance results. The polynomial kernel function
achieves significantly statistically better performance than the
linear kernel function with no overlaps seen. The polynomial
kernel obtains a higher median accuracy and also produces
a narrower box than the linear kernel indicating that the
polynomial kernel reduces variations beneficial for transfer
learning. Worth noting, we observe during the experiment that
applying a polynomial kernel improves both recall and precision
of the model’s performance on the test data in both cross-subject
and cross-database classification proving that ourmethod returns
relevant results.

4. DISCUSSION

The dimension number h of the latent space is a critical hyper-
parameter of domain adaptation methods. It is hard to determine
the optimal dimension directly because the intrinsic dimension is
affected by channel numbers and the kind of feature. To study
the effect of feature dimension, we show the average valence
classification accuracy of all BRADA variants on MAHNOB-
HCI under cross-subject settings with varying learned projected
subspace dimension h in Figure 7. The classification accuracy
increases as the dimension increases at the lower dimension
and becomes stable when the dimension is large enough. We
can see that all BRADA variants achieve the best performance
when h = 40. This implies that the feature has an intrinsic
dimension of around 40. The cross database strategy identifies
that the conventional aBCI prototype cannot be fully satisfied.
The BRADA algorithm effectively copes with domain and
technical discrepancies. This is of practical sense as it can
reduce constraints on aBCI and develop into clinical applications
and novel therapies for stress, depression, and other nervous
system disorders. Therefore, more future studies are needed on
this topic.

This article argues not all electrode channels are needed and
investigated the effects of auditory and visual channels on two
EEG databases for emotion recognition. We propose a multi-
source andmulti-target transfer learningmethod that first applies
domain adaptation to different brain regions separately and then
combines them. The method reduces inter-subject discrepancy
and demand for data calibration effectively. It also can be used
to train one database and test on a distinct but related database.
Experimental results show the superiority of our approach.
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