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A surrogate gradient spiking
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Artificial neural networks (ANNs) are the basis of recent advances in artificial

intelligence (AI); they typically use real valued neuron responses. By contrast,

biological neurons are known to operate using spike trains. In principle, spiking

neural networks (SNNs) may have a greater representational capability than

ANNs, especially for time series such as speech; however their adoption has

been held back by both a lack of stable training algorithms and a lack of

compatible baselines. We begin with a fairly thorough review of literature

around the conjunction of ANNs and SNNs. Focusing on surrogate gradient

approaches, we proceed to define a simple but relevant evaluation based

on recent speech command tasks. After evaluating a representative selection

of architectures, we show that a combination of adaptation, recurrence and

surrogate gradients can yield light spiking architectures that are not only able to

competewith ANN solutions, but also retain a high degree of compatibility with

them in modern deep learning frameworks. We conclude tangibly that SNNs

are appropriate for future research in AI, in particular for speech processing

applications, and more speculatively that they may also assist in inference

about biological function.

KEYWORDS

spiking neurons, physiologically plausible models, deep learning, signal processing,
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1. Introduction

Recent years have seen the success of artificial neural networks (ANNs) in speech

processing technologies. The neurons traditionally used in these modern networks take

real numbers as inputs and produce real-valued outputs. In biological neurons, the

information is transmitted in the form of binary sequences of events, called spike

trains. The neurons in ANNs can be seen as an instantaneous firing rate approximation

of biological spiking neurons, so that the information about the individual timings

of the spikes is neglected. Several neuroscience studies suggest that precise spike

timings are important in transmitting information, especially in the visual cortex and

in auditory neurons (Mainen and Sejnowski, 1995; Van Rullen and Thorpe, 2001;

Butts et al., 2007; Gollisch and Meister, 2008). With the idea of simulating brain-

like networks to process information, this firing rate interpretation of spikes can be
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improved to spiking neuron models. Physiologically plausible

mathematical models have been developed to describe the

neuronal dynamics (Gerstner and Kistler, 2002; Izhikevich,

2007). The resulting spiking neurons constitute the building

blocks of spiking neural networks (SNNs), and have been called

the third generation of neural network models (Maass, 1997).

The temporal dimension of spike trains make them naturally

adapted to sequential input data, such as speech, for which,

SNNs in principle may have a higher representation capability

compared to traditional ANNs (Kasabov, 2019). In current

practice however, only rarely do SNNs outperform ANNs (Leng

et al., 2018; Moraitis et al., 2020). Another motivation toward

SNNs is that the sparsity of spikes over time can allow energy-

efficient hardware implementations (Davies et al., 2018; Roy

et al., 2019; Dellaferrera et al., 2020; Panda et al., 2020),

stimulated by event-based sensors, resulting in portable, low-

powered devices. As pointed out by Pfeiffer and Pfeil (2018),

this constitutes an advantage over conventional ANNs that rely

on energy consuming high-end GPUs. Recent work by Jeffares

et al. (2022) has shown that spike-based techniques can not only

improve the ANN efficiency but also its task performance.

ANNs are most commonly trained using stochastic gradient

descent (SGD), which relies on the chain rule of derivatives.

During the forward pass, a batch of input examples is passed

through the network, and a loss function is applied to the final

outputs. During the subsequent backward pass, the network

trainable parameters are updated to minimize the loss. The

network gradually adapts to the task at hand by repeating

this operation over a data set of prepared examples. SNNs

are not directly compatible with gradient descent owing to

their non-differentiable threshold behavior. Different methods

have been developed to alleviate the problem. In particular,

the surrogate gradient approach allows SNNs to be trained like

recurrent ANNs using the Back-Propagation Through Time

(BPTT) algorithm, which is a generalization of gradient descent

to process sequential data. Recurrent neural networks (RNNs)

have proven to be efficient on speech recognition tasks. In

general, the reported performance of SNNs is inferior to that

of the best ANNs (Wu et al., 2018, 2020; Cramer et al., 2020;

Yin et al., 2020, 2021; Shaban et al., 2021; Yao et al., 2021),

even if the gap is gradually closing. There is in fact theoretical

(Maass, 1997; Moraitis et al., 2020; Perez-Nieves et al., 2021) and

recent experimental (Moraitis et al., 2020) evidence that SNNs

can outperform ANNs.

With this work, we aim to make SNNs available to a speech

processing audience, the frameworks of which are currently

dominated by ANNs. For this reason, we first include a

quite thorough review-like introduction to the spiking neuron

concepts that are compatible with these ANN frameworks.

Subsequent experiments on speech command recognition

are sufficient to define an appropriate framework and tools

to demonstrate the utility of SNNs, whilst clearly being a

prerequisite for more involved speech processing tasks. We

also discuss potential energy advantages for integration into

low-powered devices. Our first aim is therefore,

1. To identify which SNN training techniques are compatible

with successful modern ANN frameworks, and establish a

method that is able to compete with the ANN performance,

whilst retaining the advantages of energy efficiency.

More generally, we aim

2. To assess the general capability of SNNs, and how they might

represent an attractive alternative to standard ANNs.

3. To use a physiologically plausible approach to provide some

insights on how the corresponding biological mechanisms in

humans might be functioning.

Spiking versions of the Heidelberg Digits (SHD) and Google

Speech Command (SSC) datasets have recently been released

using physiological models of the cochlea (Cramer et al.,

2020). We use these as well as their respective non-spiking,

traditional versions (HD and SC) to conduct experiments with

both SNNs and ANNs. Using a recovery current instead of

the more conventional moving threshold formulation of Bellec

et al. (2018), our implementation of adaptive neurons seems

to convincingly improve upon previous efforts on similar tasks

(Yin et al., 2020, 2021; Salaj et al., 2021; Shaban et al., 2021), as

we achieve new state-of-the-art results with SNNs. Furthermore,

a comparison with gated recurrent ANNs shows that our spiking

baseline is capable of achieving competitive results, even without

resorting to recurrent connections, showing the strength of a

physiologically plausible approach.

We will start by introducing the mathematical models used

to describe spiking neurons in Section 2.1. We will then show

howANNs are typically implemented (Section 2.2), to then build

an equivalent forward pass for SNNs (Section 2.3). We will then

focus on the trainingmethods for SNNs in Section 2.4 and define

our selected approach using surrogate gradients. To complete

the description of our spiking networks, the loss function, and

readout layer will be defined in Section 2.5. We will then explain

the different speech perception tasks on which we conduct the

experiments in Section 2.6, and finally present and discuss our

results in Sections 3 and 4.

2. Materials and methods

2.1. Single spiking neuron models

The neuron models presented below will be used as building

blocks of potentially deep spiking neural networks. In order to

achieve a satisfying degree of compatibility with the modern

frameworks developed for machine learning, our analysis will

focus on single neuron models that rely on a limited number

of parameters and are not excessively expensive in terms

of computations.
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2.1.1. Leaky integrate and fire

The simplest and most widely used single neuron model

is the leaky integrate and fire (LIF), the origin of which dates

back to the beginning of the twentieth century with the work

of Lapicque (1907). The dynamics of a single neuron are

described by the membrane potential u(t), which evolves in

time as a function of some input current I(t). In the absence

of stimuli, i.e., when I(t) = 0, the membrane potential u(t)

decays exponentially to some resting value urest with a time

constant τu ≈ 10ms. When I(t) 6= 0, the membrane potential

u(t) integrates the incoming stimuli and increases or decreases

accordingly. As presented by Gerstner and Kistler (2002), the

dynamics in continuous time follow the differential equation,

τu u̇(t) = −
(

u(t)− urest
)

+ R I(t) , (1)

where R is the membrane resistance. In order to have spikes, a

threshold value ϑ must be added to the model, so that when

the potential reaches the critical value, a spike is emitted and the

potential is reset to a new value ur < ϑ .

if u(t = tf ) ≥ ϑ then s(tf ) = 1

and lim
δ→0;δ>0

u(tf + δ) = ur . (2)

2.1.2. Adding an adaptation variable

Although widely used, the LIF model is not sufficient to

reproduce many of the various firing patterns observed in

biological neurons, such as adaptive, bursting, transient, and

delayed (Gerstner and Kistler, 2002). The idea of a second

equation to describe an adaptation (or accommodation) variable

between threshold and subthreshold voltage can be traced back

to Hill (1936). The work of Treves (1993), Izhikevich (2001), and

Brunel et al. (2003) have notably lead to its modern formulation,

in which a recovery variable w(t) is linearly coupled to the

membrane potential u(t) in the subthreshold regime, and a

mechanism is used for spike-triggered adaptation. The resulting

more complex neuronal dynamics of an adaptive, linear LIF

model (adLIF) follow the differential equations,

τu u̇(t) = −
(

u(t)− urest
)

− Rw(t)+ RI(t)

−τu (ϑ − ur)
∑

f

δ(t − tf ) (3)

τw ẇ(t) = −w(t)+ a
(

u(t)− urest
)

+ τw b
∑

f

δ(t − tf ),(4)

where the adaptation current typically evolves more slowly than

the potential, i.e., with a longer time constant τw ≈ 100 ms

compared to τu ≈ 10 ms. When the potential reaches a peak

value u(t) = ϑ , its displacement is considered large enough

to represent a spike, which defines the firing time tf = t. The

potential is then reset, u(tf ) = ur and the recovery variable

pushed by an amount b, w(tf ) = w(tf ) + b, which was

here directly included in the differential equations using delta-

functions. The resulting adaptive neurons exhibit subthreshold

adaptation characterized by the parameters a and τw, and spike-

triggered adaptation, regulated by the jump size b. It is worth

noting that this form of adaptation does not include a moving or

dynamic threshold (Fuortes and Mantegazzini, 1962; Chacron

et al., 2003; Badel et al., 2006; Jolivet et al., 2006).

2.1.3. Adding a nonlinearity

Using a nonlinearity instead of the linear relation to the

membrane potential in Equation (3) transforms the strict

voltage threshold into a more biologically plausible smooth

spike initiation zone (Brette and Gerstner, 2005). For such

adaptive, nonlinear LIF models, the complete dynamics can be

represented by a trajectory
(

u(t),w(t)
)

on a 2D-plane. Before

receiving any stimuli, the neuron is at equilibrium on a stable

fixed point. Depending on the model’s parameters (a, b, ur , urest,

R, τu, and τw), a particular set of incoming spike trains can cause

the trajectory to go through a bifurcation and form a limit cycle,

resulting in repetitive firing. The neuron model of Izhikevich

(2003) uses a quadratic function,

f (u) = −
(

u(t)− urest
)(

ϑ − u(t)
)

, (5)

and the adaptive exponential integrate and fire model (AdEx)

of Brette and Gerstner (2005) uses a combination of linear and

exponential functions,

f (u) = −
(

u(t)− urest
)

+ 1 exp
[

−
ϑ − u(t)

1

]

. (6)

This last neuron model seems to be the most physiologically

plausible in terms of fitting with naturalistic pyramidal-neuron

voltage traces (Badel et al., 2008).

2.1.4. Discrete time formulation

Let us come back to the linear adLIF model presented in

2.1.2. By assuming urest = ur and making the changes of

variables u →
u−urest
ϑ−urest

, w → Rw
ϑ−urest

and I → RI
ϑ−urest

,

Equations (3) and (4) can be rewritten in discrete time, using

a forward-Euler first-order exponential integrator method with

a step size of 1t = 1ms, resulting in the following forward pass

in which all quantities are dimensionless,

u[t] = α u[t − 1]+ (1− α)
(

I[t]− w[t − 1]
)

− ϑ s[t − 1] (7)

w[t] = β w[t − 1]+ (1− β) a u[t − 1]+ b s[t − 1] (8)

s[t] =
(

u[t] ≥ ϑ
)

. (9)

Here the neuron parameters have been redefined as a →

R a ∈ [−1, 1], b → R b
ϑ−urest

∈ [0, 2], α : = exp(−1t/τu) ∈

[0.60, 0.96], β : = exp(−1t/τw) ∈ [0.96, 0.99], ϑ →
ϑ−urest
ϑ−urest

=

1 and ur →
ur−urest
ϑ−urest

= 0 based on physiologically plausible
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ranges of values. In Equations (7) and (8), the first term describes

the leak, the second the excitation, and the third the effect of

having spiked at the previous time step. Equation (9) produces

a 0 or a 1 when the membrane potential is below or above

threshold. The LIF model can then be viewed as a simplification

of the adLIF with a = b = 0, so that there is no recovery current

w[t] = 0 = constant, and the only tunable neuron parameter

is α.

2.2. Artificial neural networks

The vast majority of neural networks used in modern

machine learning tasks are organized in layers of artificial

neurons from the second generation as defined by Maass (1997).

Here we are interested in networks that can process sequential

inputs, in particular speech. Starting from some discrete signals

y0j ∈ R
T of length T and time step 1t, j = 1, . . . ,N0, a standard

ANN processes the information layer by layer, as follows. In

the l-th layer, a single non-spiking artificial neuron i receives

inputs from neurons j = 1, . . . ,Nl−1 of the previous layer. If

recurrent connections are enabled, neuron i also receives inputs

from all neurons k = 1, . . . ,Nl in the same l-th layer. The overall

stimulus of neuron i in layer l at time step t is then computed as,

Ili[t] =

N l−1
∑

j=1

Wl
ji y

l−1
j [t]+

N l
∑

k=1

V l
ki y

l
k[t − 1]+ bli , (10)

where Wl and V l are the trainable feedforward and recurrent

weight matrices respectively, and bl is a trainable bias vector.

The network is called a multilayer perceptron (MLP) if only

feedforward connections are implemented, i.e., V = 0, and

a recurrent neural network (RNN) when additional recurrent

connections are present, i.e.,V 6= 0. In both cases, the sequential

output of the neuron yli ∈ R
T is simply computed using a

nonlinear activation function g(·),

yli[t] = g
(

Ili[t]
)

, (11)

which produces real-valued signals. Using a sigmoid activation

function g(x) =
(

1 + e−x
)−1

for instance, the analog neuron

output y ∈ [0, 1] can be interpreted as the firing rate of a spiking

neuron (over some arbitrary period of time).

The most successful recurrent architectures are based on

the long short-term memory (LSTM), defined by Hochreither

and Schmidhuber (1997), in which gates are used to filter

out irrelevant information and tackle the vanishing/exploding

gradient problem. Each gate uses its own distinctive feedforward

and recurrent weights, which increases the total number of

trainable parameters. The gated recurrent unit (GRU) of Cho

et al. (2014) and the light GRU (liGRU) of Ravanelli et al. (2018)

constitute gradual simplifications of the LSTM with fewer gates

in an effort to reduce the size of recurrent units. Very recently,

the authors have derived a probabilistically interpretable version

of the liGRU called light Bayesian recurrent unit (liBRU)

that showed slight improvements over the liGRU on speech

recognition tasks (Bittar and Garner, 2021). We will implement

MLPs, RNNs, liBRUs, and GRUs, which will serve as an ANN-

baseline to compare with our SNNs.

2.3. Spiking neural networks

In a spiking neural network, a single neuron i in the l-th layer

receives pre-synaptic inputs from neurons j = 1, . . . ,Nl−1 of

the previous layer in the form of spike trains sl−1
j ∈ {0, 1}T . If

recurrent connections are enabled, it also receives spike trains

sl
k
from all other neurons k = 1, . . . ,Nl, k 6= i in the same l-

th layer. The overall stimulus of neuron i in layer l can then be

written as

Ili[t] =

N l−1
∑

j=1

Wl
ji s

l−1
j [t]+

N l
∑

k=1;k6=i

V l
ki s

l
k[t − 1]+ bli , (12)

where the weight matricesWl andV l correspond to the strength

of the synaptic connections, and the bias bl to heterogeneous

resting values of the membrane potential among neurons. The

excitatory and inhibitory connections between physiological

neurons are here represented by positive and negative weights,

respectively. After firing, a biological neuron enters a period of

refractoriness so that it cannot immediately fire a second spike.

In order to maintain this physiological feature of self inhibition,

the diagonal elements of V can be set to 0 in Equation (12),

as positive diagonal weights would act against refractoriness.

The latter can be then modeled via the reset of the membrane

potential to a value ur after spiking. Alternatively, negative

diagonal elements could be used to directly decrease the value

of the membrane potential. With Equations (10) and (12), we

see that the stimulus of a spiking neuron can be computed in the

exact same way as for a standard artificial neuron.

The forward pass through an SNN is then defined by

vectorizing Equations (7)–(9) and looping them over layers

and time. The main difference with ANNs is therefore that

the dynamics of the membrane potential, combined with the

threshold behavior replace the simple activation function of

Equation (11) and produce binary signals sl ∈ {0, 1}T×N l
instead

of analog ones yl ∈ R
T×N l

. As pointed out by Neftci et al.

(2019), such dynamics can be viewed as a nonlinear activation

function which makes SNNs a special case of RNNs. In this

paper, however, the term RNN describes a purely non-spiking

recurrent network, as defined in Section 2.2.

In reaction to a given stimulus I[t], different sets of values

for the neuron parameters α, β , a and b will lead to different

firing patterns, which is an important particularity of SNNs. In

ANNs, since the same activation function is typically applied
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to all neurons, as written in Equation (11), two neurons

receiving the same stimulus will always produce the same

output. As demonstrated by Perez-Nieves et al. (2021), the

introduction of heterogeneity in the spiking neuron parameters

can considerably improve the network performance, especially

for tasks that have a rich temporal structure. This form of

neural heterogeneity therefore seems to represent a theoretical

advantage of SNNs over standard ANNs on such tasks, as it

may allow superior representations of the temporal information.

As reviewed by Apicella et al. (2021), trainable or adaptable

activation functions have also been used inside ANNs, and

are known to improve their accuracy. In this paper however,

we do not attempt to additionally cover this large field. The

above review points out that the enabled improvements can

usually be replicated using a more conventional non-trainable

homogeneous activation function, and simply more neurons

or layers. Also with the idea of being representative of the

currently established standard practice in the field, our ANNs

use a homogeneous activation function as defined in Equation

(11). As our own ANN implementations sometimes outperform

those of the literature (De Andrade et al., 2018; Cramer et al.,

2020), we believe that they form an adequate ANN baseline for

comparing with SNNs.

With the objective of assessing the capabilities of spiking

neurons compared to standard artificial ones, we must define

equivalent architectures, that only differ in the type of neurons

that they employ. As we will see in 3.5, even though the spiking

neuron parameters α, β , a, and b can be made trainable, the

total number of trainable parameters in a network remains

largely dominated by the amount of connecting weights. This

means that in terms of the total number of trainable parameters,

SNNs with and without recurrent connections are comparable

to RNNs and MLPs respectively. On the other hand, state-

of-the-art gated RNNs remain considerably larger and do not

have any direct spiking equivalent in this study. It is also

worth mentioning that even though purely feedforward SNNs

do not have recurrent connections, they still include a form

of unit-wise recurrence from Equations (7) and (8), where a

dependence to the previous time step is present in the dynamics

of the membrane potential. This implies that non-recurrent

SNNs are theoretically capable of developing a form of memory,

without the need of recurrent connections, which is not the case

for MLPs.

2.4. Training methods for SNNs

Biological neurons exhibit activity-dependent synaptic

plasticity characterized by long term potentiation and

depression. This behavior can be modeled using a form of

spike timing dependent plasticity (STDP), as defined by Dan

and Poo (2006). Without the need of labeled examples, this

form of unsupervised Hebbian learning is sufficient to detect

correlations in the input stimuli and learn encodings of real-

world data. However, in order to perform motor tasks, STDP

must be combined with a form of global reward-based learning

that involves neuromodulators in the brain (Schultz et al., 1997;

Schultz, 2007, 2010; Frémaux and Gerstner, 2016).

Artificial neurons, on the other hand, are most commonly

trained using stochastic gradient descent (SGD). This technique

compares the model predictions to desired outputs on a batch

of examples via a loss function. The error of the whole batch is

then back-propagated through the network using the chain-rule

of derivatives, and the trainable parameters of the entire network

are updated accordingly. This form of supervised, global and

offline learning is however highly biologically implausible

(O’Reilly and Munakata, 2000). In comparison, the weight

adjustment with STDP happens online, i.e., each time a spike

is emitted, and has only a local dependence on the pre- and

post-synaptic neurons. Nevertheless, SGD represents the most

successful training algorithm used in ANNs. With the aim of

evaluating the compatibility of SNNs within ANN frameworks,

we will focus on training SNNs with gradient descent.

Using SGD with SNNs is challenging because the derivative

of the spike function in Equation (9) with respect to the

membrane potential is zero in the subthreshold regime (when

no spikes are emitted, i.e., almost everywhere) and undefined

when threshold is reached and a spike is produced. Moreover,

small perturbations of the synaptic weights can either lead

to considerably different output spike trains, or produce no

change at all. The numerous discontinuities caused by the

threshold mechanism make the search of a global optimum

particularly difficult. This problem is especially visible when

training multi-layered architectures with SGD. Nevertheless,

training SNNs with SGD can still be achieved through a variety

of approaches that can be grouped into the following three

general categories:

1. Using a hybrid ANN-SNN model

2. Using a differentiable model

3. Using surrogate gradients.

2.4.1. Hybrid ANN-SNN models

The first category, which has been reviewed by Abbott

et al. (2016), circumvents the problem of training SNNs by

using conventional rate-based ANNs instead. The resulting

architectures do exhibit a spiking behavior during the forward

pass, but the spike timings are ignored in the learning rule.

Recently, Wu et al. (2021) have managed to ensure an

efficient gradient based back-propagation by coupling an SNN

with an ANN through layer-wise weight sharing. During the

forward pass, the SNN computes the exact spiking neural

representations, and the ANN the corresponding approximate

spike counts (or firing rates). During the backward pass, the

error is backpropagated through the ANN via SGD and the

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.865897
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bittar and Garner 10.3389/fnins.2022.865897

weight updates are transferred to the SNN. This tandem learning

technique allows fast and efficient learning with multi-layered

architectures and has notably proven to be successful on speech

recognition tasks (Wu et al., 2020). Nevertheless, one could

argue that the information about the timings of the individual

spikes is still reduced to a rate-based approximation during the

backward pass. Moreover, this approach so far neither includes

adaptive neuron models nor recurrent connections.

2.4.2. Di�erentiable neuron models

The second category, which has been reviewed by Neftci

et al. (2019), involves soft-threshold models (Hodgkin and

Huxley, 1952; FitzHugh, 1961; Morris and Lecar, 1981; Huh

and Sejnowski, 2018), probabilistic models (Jang et al., 2019),

spike train convolution models (Lin et al., 2017; Lin and Shi,

2018; Wang et al., 2019) as well as single-spike timing-based

models (Bodyanskiy and Dolotov, 2013; Mostafa, 2017; Comsa

et al., 2020). These neuron models are interesting, but beyond

the scope of this paper, that focuses on the non-differentiable

models presented in 2.1.

2.4.3. Surrogate gradient methods

Also presented by Neftci et al. (2019), the problem of

the non-differentiable threshold behavior can be solved using

surrogate gradients. During the backward pass, the Heaviside

step function of the spike generation is smoothed into a suitable

differentiable function. With this approach, the threshold

operation is only approximated during the backward pass, and

remains a step function inside the forward computations. The

derivative has notably been approximated using a rectifying

linear unit (Bohte et al., 2002), a sigmoid derivative (Schrauwen

and Van Campenhout, 2006; Zenke and Ganguli, 2018), an

exponential function (Shrestha and Orchard, 2018), a piecewise

linear function (Bellec et al., 2018; Panda et al., 2020), a Gaussian

(Yin et al., 2020), a multi-Gaussian (Yin et al., 2021) and a

boxcar function (Kaiser et al., 2020). An SNN can then be

considered as a special case of a recurrent neural network

(RNN) and the error Back-Propagation Through Time (BPTT)

algorithm becomes applicable. Nevertheless, the sparsity in

time of non-zero gradients, combined with the problems of

exploding/disappearing gradients remain. This third and last

category of SGD-based training methods is rather versatile

compared to the first two (2.4.1 and 2.4.2), as it is not limited to a

specific neuron model and allows the use of the different spiking

neuron models described in 2.1. We will therefore concentrate

our analysis on the surrogate gradient approach, but still include

a comparison with the tandem method of Wu et al. (2021)

presented in 2.4.1.

In an SNN as defined in Section 2.3, by exploiting auto-

differentiation inside the deep learning framework PyTorch

(Paszke et al., 2017), one can manually replace the undefined

FIGURE 1

Di�erent surrogate gradient functions to approximate the
derivative of the step-function responsible for spike generation.

gradient of the step function in Equation (9) with a surrogate,

and make the backward pass and therefore gradient descent

possible for the whole network. Different choices of surrogate

gradients illustrated in Figure 1 can be considered. For the

purpose of this paper, the boxcar method, previously used

by Kaiser et al. (2020), is chosen by default based on ad-hoc

experiments. It is defined as,

∂s[t]

∂u[t]
=







0.5 if |u[t]− ϑ | ≤ 0.5

0 otherwise
(13)

and is quite inexpensive in terms of computations.

2.5. Loss function and readout layer

In order to use an SNN as a classifier that can be trained

inside a typical ANN framework, we choose a cross-entropy loss

function to be applied to the outputs of the final layer L of the

architecture. Instead of a sequence of spikes, this readout layer

must output one value oi per neuron i = 1, . . . ,NL that indicates

its level of activity over time. During inference, the neuron with

the highest activity will be chosen. We considered four different

methods for the readout layer,

1. a spiking layer using the spike count, oi =
∑T

t=1 s
L
i [t]

2. a non-spiking layer using the last potential value over time,

oi = uLi [T]

3. a non-spiking layer using the maximal potential value over

time, oi = maxt=1,...,T uLi [t]

4. a non-spiking layer using a cumulative sum of the potential

over time, oi =
∑T

t=1 softmax(uLi [t]) .

In ad-hoc experiments (see Table 1), the last technique gave

the best performance and is what is used in all presented results.
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TABLE 1 Results on the SHD dataset for SNNs with di�erent types of readout layer.

Network Cumulative sum (%) Spike count (%) Last potential (%) Max potential (%)

LIF 3× 128 87.27 87.45 62.45 77.99

LIF 3× 512 89.94 87.27 67.74 79.46

adLIF 3× 128 93.06 90.35 90.07 88.56

adLIF 3× 512 93.93 93.52 90.53 89.61

Bold values indicate the best performing type of readout layer.

Non-spiking LIF neurons with no recurrent connections are

used inside the readout layers of all presented models.

For the non-spiking baseline, the readout layer of RNNs was

first defined as a recurrent layer, and the same cumulative sum

used for SNNs was applied to its output sequence. Even though

this might appear as the best choice for comparison with the

SNN technique, we found that applying the cumulative sum

in the penultimate (L − 1) layer instead, followed by a final

linear layer gave better results, which is what is used for all

reported RNN, liBRU, and GRU results in the manuscript. For

non-recurrent ANNs, the cumulative sum is simply applied to

the final output sequences.

All models take inputs of size (N,T, F) and return outputs

of size (N,C), where N is the batch size (i.e., the number of

examples in one batch), T the number of time steps, F the

number of input features/channels and C the number of classes

(labels). The ground truths are given as a vector y of size (N)

containing the label indexes. The cross-entropy loss is then

computed as,

L = −
1

N

N
∑

n=1

log
exp

(

o[n, y[n]]
)

∑C
c=1 exp

(

o[n, c]
)
. (14)

The Adam optimizer (Kingma and Ba, 2015) is used for all

experiments with initial learning rates of 0.01 and 0.001 on the

spiking and non-spiking datasets, respectively. A scheduler is

also defined to reduce the learning rate by a factor 0.7 if there is

no improvement on the validation set accuracy during 10 epochs

in a row. This approach proved to be suitable for both SNNs and

ANNs and is employed in all presented networks.

The general network architecture, used for all SNNs in this

work, is presented in Figure 2. We will now explain the tasks on

which they will be evaluated.

2.6. Speech perception tasks for SNNs

This research focuses on the bio-inspired processing of

auditory information, leading to the formation of appropriate

representations and the extraction of relevant features that

can then be used for different tasks. The long-term objective

is to perform automatic speech recognition (ASR) using a

physiologically plausible approach that includes waveform to

spike conversion followed by processing of the information via

spiking neural networks.

However, ASR is a complex task; modern approaches

involve end-to-end deep networks, whereas previous techniques

needed to solve a series of subtasks, typically feature extraction,

phoneme recognition and decoding. In the field of SNNs, it

appears that one could benefit from first focusing on the simpler

task of speech command recognition to better understand

spiking networks. Whilst retaining the processing of auditory

information, this more elementary task neither involves too

many components in the pipeline, nor requires very deep

networks and therefore constitutes a first necessary step in the

direction of efficient ASR with SNNs.

We will start by giving a short summary of the biological

processes involved in speech perception. We then review

LAUSCHER, a bio-inspired model to convert audio waveforms

into spike trains, and some resulting, newly available spiking

datasets.

2.6.1. From waveform to spikes

A speech utterance arrives at the ear in the form

of air vibrations. From the eardrum it travels via the

ossicles to the cochlea, hence the basilar membrane

and the organ of Corti, ultimately stimulating hair

cells that convert the physical movement into electrical

signals. The signals take the form of spike trains on

the auditory nerve. Many conventional ASR “filterbank”

front-ends are rough analogs of this process, notably

modeling the logarithmic response to frequency and

to amplitude.

Cramer et al. (2020) have developed LAUSCHER, a

biologically plausible cochlear model to convert audio

waveforms into spike trains. A cochlear model, based on the

models developed by Sieroka et al. (2006) is used to calculate

the hydrodynamic shallow water basilar membrane response

to the input waveform. The output of the cochlea then goes

into a transmitter pool-based hair cell model, derived from

the work of Meddis (1986, 1988). Finally, a layer of auditory

neurons called bushy cells convert the signal to spike trains

using LIF dynamics.
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FIGURE 2

SNN model architecture with F input features, two recurrent layers with H hidden units each, and a final readout layer for the C classes.
Feedforward and recurrent connections are represented with solid and dotted arrows respectively. An input unit is simply the value of that
feature at the given time step. Each hidden unit integrates the incoming stimuli from feedforward and recurrent connections at time step t with
Equation (12). The membrane potential is updated and a spike is emitted if threshold is reached. A readout unit integrates the purely feedforward
incoming stimuli, updates its membrane potential (without spiking) and accumulates it over time using the softmax function. After passing the
whole sequence through the network, the outputs then go into a cross-entropy loss function. Back-Propagation is made possible via the use of
a boxcar surrogate gradient.

Such a framework allows a direct conversion from

audio waveforms into spike trains, whilst solely relying on

physiological processes. In order to train SNNs on speech data,

the general and most commonly used alternative is to extract

acoustic features from the waveform and interpret them as firing

rates to produce spike trains via Poisson processes. Even though

the latter approach still shows some physiological plausibility,

a single firing rate value is used to produce spikes during the

length of a frame (typically 25ms). This concession comes from

the need of using datasets that were originally designed for

ANNs, i.e., rate-based approximations of SNNs.

2.6.2. Spiking datasets

In order to rectify the absence of free spike-based benchmark

datasets, Cramer et al. (2020) recently released two spiking

datasets using LAUSCHER:

• The Spiking Heidelberg Digits (SHD) dataset contains

spoken digits from 0 to 9 in both English and German (20

classes). The recordings are from twelve different speakers,

two of which are only present in the test set. The train set

contains 8,332 examples and the test set 2,088 (there is no

validation set).

• The Spiking Speech Commands (SSC) dataset is based on

the Google Speech Commands v0.2 dataset and contains 35

classes from a larger number of speakers. The number of

examples in the train, validation and test splits are 75,466,

9,981, and 20,382, respectively.

In both datasets, the original waveforms have been converted

to spike trains over 700 input channels. These spiking datasets

form an adapted benchmark and allow the investigation of SNNs

as well as the comparison of different techniques.

The current state-of-the-art on the SHD and SSC datasets is

summarized in Tables 2, 3. The SNN methods are presented in

the upper section of the tables, and in the lower sections, the

non-spiking CNN and LSTM serve as a point of comparison

with the ANN performance.

2.6.3. Non-spiking datasets

The original, non-spiking versions of the SHD and SSC

datasets are available and will also be considered in this work.

For the Heidelberg Digits (HD) and Google Speech Commands

(SC) datasets, acoustic features are extracted from the waveforms

and fed into neural networks. An input example is illustrated

in Figure 3, where the filterbank and spiking approaches
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TABLE 2 State-of-the-art on the SHD dataset.

Method Test acc. (%)

Attention (Yao et al., 2021) 91.1

Recurrent+ adaptation (Yin et al., 2021) 90.4

Recurrent+ adaptation (Yin et al., 2020) 84.4

Recurrent+ data augm. (Cramer et al., 2020) 83.2

Recurrent+ heter. time const. (Perez-Nieves et al., 2021) 82.7

Recurrent (Cramer et al., 2020) 71.4

Non-recurrent (Cramer et al., 2020) 47.5

CNN (Cramer et al., 2020) 92.4

LSTM (Cramer et al., 2020) 89

Bold values indicate the best performing network of its category (ANN or SNN).

TABLE 3 State-of-the-art on the SSC dataset.

Method Test acc. (%)

Recurrent+ adaptation (Yin et al., 2021) 74.2

Recurrent+ heter. time const. (Perez-Nieves et al., 2021) 57.3

Recurrent (Cramer et al., 2020) 50.9

Non-recurrent (Cramer et al., 2020) 41.0

CNN (Cramer et al., 2020) 77.7

LSTM (Cramer et al., 2020) 73

Bold values indicate the best performing network of its category (ANN or SNN).

are compared. The second version of the original Speech

Commands (SC) dataset introduced by Warden (2018) has the

same number of examples as its spiking version (SSC), but

different training, validation, and testing splits of 84,843, 9,981,

and 11,005 examples, respectively. The SSC has a 70/10/20%

partition instead of 80/10/10% for the SC. This makes a direct

comparison impossible between the accuracies on the two tasks,

as the SC has considerably more training data. For the HD and

SHD datasets however, the splits are the same. We were not able

to find state-of-the-art results on the non-spiking HD dataset,

however, for the SC dataset, the state-of-the-art is presented in

Table 4. Note that certain approaches, such as that of Pellegrini

et al. (2021), use the first version of the SC dataset. Others, like

Zhang et al. (2017) or Rybakov et al. (2020) do use the second

version of the dataset, but only 12 labels instead of 35, by using

an “unknown” category that includes some of the remaining

words. This explains the absence of some of the literature inside

the state-of-the-art table, as their results unfortunately cannot

directly be compared with ours. In all state-of-the-art tables, the

best test accuracies by SNNs and ANNs are written in bold.

3. Results

We present results for the LIF and adLIF neuron models

defined in Sections 2.1.1 and 2.1.2. Themore complex, nonlinear

Izhikevich and Adex models defined in Section 2.1.3 did not

bring improvements over the linear adaptive LIF and are left out

of this analysis. We also distinguish between models with and

without recurrent connections, in the form of a weight matrix

V applied to a layer-wise feedback as defined in 2.3, so that

SNNs without recurrent connections are considerably lighter in

terms of number of trainable parameters. The hidden size of

a network corresponds to the number of neurons in each of

the hidden layers. Although different hidden layers can have

different sizes, we focused on hidden layers of the same size in

this study. The number of layers is the number of hidden layers

plus one (the readout layer). Networks of increasing size and

depth were investigated by varying the hidden size from 128

to 1,024 neurons per layer, and the number of layers from 2

to 5. Overall, three-layered architectures appeared as the best

compromise between size and performance and are used in all

presented results (with both SNNs and ANNs). Nevertheless,

increasing the number of layers showed that the training of

the networks was robust to considerable depth. The chosen

approach was therefore able to discard scalability limitations of

SNNs on these four tasks, which is very encouraging for the

compatibility of SNNs with modern deep learning frameworks.

In the following sections dedicated to each of the four tasks, the

results with SNNs will be presented in the upper region of the

tables.We distinguish between the following types of network:

1. tandem: non-recurrent network of non-adaptive IF neurons

(no leak) trained with tandem learning rule.

2. LIF: non-recurrent network of non-adaptive LIF neurons

trained with a surrogate gradient.

3. adLIF: non-recurrent network of adaptive linear LIF neurons

trained with a surrogate gradient.

4. RLIF: recurrent network of non-adaptive LIF neurons trained

with a surrogate gradient.

5. RadLIF: recurrent network of adaptive linear LIF neurons

trained with a surrogate gradient.

Based on ad-hoc experiments, all presented surrogate gradient

SNNs use (i) trainable neuron parameters within fixed ranges of

values (α for LIF and α, β , a and b for adLIF neurons as defined

in Section 2.3), (ii) a surrogate gradient with the boxcar function

as defined in Section 2.4.3, and (iii) a non-spiking readout layer

with a cumulative sum over time as defined in Section 2.5. On

the other hand, for the ANN baseline, the following types of

network will be presented in the lower section of the tables

of results:

1. MLP: a simple feed-forward network without recurrence

2. RNN: a standard recurrent network

3. liBRU: a network of light Bayesian recurrent units

4. GRU: a network of gated recurrent units

The liBRU is a probabilistic version of the liGRU with a

Softplus activation function instead of a rectified linear unit.

We show results with the liBRU instead of the liGRU, as they
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FIGURE 3

Standard representation via filterbank features (A) and spike train representation via LAUSCHER (B) of the same spoken digit (seven in English)
from the SHD dataset.

were slightly better on all four tasks. In terms of number of

trainable parameters, on the one hand, tandem, LIF, and adLIF

networks are roughly equivalent to MLPs, and on the other

hand, RLIF and RadLIF networks are comparable to standard

RNNs. By contrast, gated non-spiking networks are considerably

larger than all SNNs, since each gate includes weight matrices

of its own. With respectively one and two gates, liBRUs and

GRUs contain approximately two and three times as many

parameters as RNNs of the same size. LSTMs were also tested,

but since their performance was observed to be slightly lower

than that of liBRUs and GRUs, they are not mentioned in

our experiments. Note that although surrogate gradient SNNs

have trainable parameters inside their activation function, the

implemented ANNs only use a non-trainable homogeneous

activation function, as it is the case in current common practice.

The implemented SNNs and ANNs therefore differ with respect

to the trainability of their respective activation functions. All

presented ANNs and SNNs use dropout with p = 0.1 as well

as batch normalization (Ioffe and Szegedy, 2015). The only

hyperparameters in both artificial and spiking networks are the

dropout rate, the learning rate, and the patience and decay

factor of its scheduler. Given that we were not initially aiming

for state-of-the-art performance, a simple ad-hoc search was

carried out to tune them. Convergence curves can be found in

Supplementary material (Supplementary Figures 1–4).

3.1. Spoken digit recognition on SHD

Owing to its small size, the SHD data set allows a thorough

investigation of the best choice of architecture. On this specific

task, we show for the first time that SNNs can surpass ANNs.

TABLE 4 State-of-the-art on the SC dataset (version 2 with 35 labels).

Method Test acc. (%)

Recurrent+ adaptation (Salaj et al., 2021) 91.21

Recurrent+ adaptation (Shaban et al., 2021) 91

Transformers (Gong et al., 2021) 98.11

Attention RNN (De Andrade et al., 2018) 93.9

Bold values indicate the best performing network of its category (ANN or SNN).

Our results are illustrated in Table 5. First notice that our

best SNN results are better than the attention based SNN

state of the art of 91.1% by Yao et al. (2021) (see Table 2).

More importantly, our approach also improves upon the best

reported ANN-performance of 92.4% by Cramer et al. (2020),

which used a convolutional neural network (CNN). Our own

attempts with recurrent ANNs only reached 90.40% with GRUs.

Even using non-recurrent connections and a relatively small

network (3 × 128), we obtained an accuracy of 93.06% with

adaptive spiking neurons. This shows a remarkable ability

of SNNs to compete with much larger standard networks.

With recurrence and a higher number of neurons, our best

performing SNN even reached a test accuracy of 94.62%, which

is extremely promising for the future of spiking networks with

surrogate gradients.

We also tested the tandem approach of Wu et al. (2021)

presented in 2.4.1, which is an alternative to surrogate gradients.

This method so far does not allow recurrent connections.

Even if the results are slightly higher (62.64%) than those

with a MLP (61.63%), they are significantly lower than what

we get with the surrogate gradient approach for a network

of the same size (87.04 and 93.06% for LIF and adLIF
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TABLE 5 Results on the SHD dataset.

Network Recurrent Number Hidden Test

type connections of layers size accuracy (%)

Tandem No 3 128 62.64

1024 68.01

LIF No 3 128 87.04

1024 89.29

adLIF No 3 128 93.06

1024 93.57

RLIF Yes 3 128 89.75

1024 92.51

RadLIF Yes 3 128 92.88

1024 94.62

MLP No 3 128 61.63

RNN Yes 3 128 73.48

liBRU Yes 3 128 89.61

GRU Yes 3 128 90.40

SNN SOTA (Yao et al., 2021) 91.1

ANN SOTA (Cramer et al., 2020) 92.4

The number of successes or positives in an experiment with binary outcomes can be

modeled as a binomial distribution. The posterior of the binomial parameter is beta

distributed for trivial priors. Here, the equal tailed 95% credible intervals for a flat prior

are between ±2.1 and ±0.9% for test set accuracies between 61.63 and 94.62%. Note

that larger ANNs were also tested but only obtained slight improvements and remained

under the performance of SNNs of the same size. Bold values indicate the best performing

network of its category (ANN or SNN).

neurons, respectively). This can be seen as evidence of the

importance of using the precise spike timings inside the

training mechanism.

3.2. Spoken digit recognition on HD

In order to compare with standard methods for speech

recognition, some experiments were made on the original, non-

spiking Heidelberg digits (HD) dataset. Filterbank features were

extracted from the waveforms, and directly fed into various

networks. As illustrated in Figure 3, compared to a spiking

input generated with LAUSCHER, which is a 700 neurons ×

100 timesteps sparse binary tensor, here a non-spiking input

typically takes the form of a 40 features× 250 frames real-valued

tensor. Even though the first hidden layer receives real-valued

sequences instead of spike trains, spiking networks remain

compatible with this approach. They even outperform their

non-spiking equivalents, as presented in Table 6, where the LIF

and RLIF networks surpass the MLP and RNN, respectively.

The light Bayesian recurrent unit (liBRU) was also tested

and gave the best overall performance, although it requires

roughly twice as many trainable parameters as a RNN or RLIF

network. The accuracies reached with this filterbank approach

TABLE 6 Results on the HD dataset.

Network Recurrent Number Hidden Test

type connections of layers size accuracy (%)

LIF No 3 128 98.40

RLIF Yes 3 128 99.35

MLP No 3 128 96.99

RNN Yes 3 128 99.13

liBRU Yes 3 128 99.96

GRU Yes 3 128 99.91

Here the equal tailed 95% credible intervals are between ±0.5 and ±0.1% for test set

accuracies between 96.99 and 99.96%. Bold values indicate the best performing network

of its category (ANN or SNN).

are considerably higher than the ones on the spiking dataset.

Most investigated models were able to reach a test accuracy

close to 100%, which is why we only show a few relevant

results. This seems to indicate that some information is lost

when performing the conversion from waveform to spikes with

LAUSCHER, compared to the extraction of acoustic features.

Here the conversion from filterbank features to spike trains

happens in a trainable fashion inside the neuronal dynamics

of the first hidden layer. Moreover, the initial (non-trainable)

transformation of the audio waveforms into filterbank features

is fast enough to be performed during training, so that our

approach with the non-spiking data sets does not require any

preliminary processing of the audio, and could be suitable for

low-powered hardware implementations.

3.3. Speech command recognition on
SSC

The SSC dataset is roughly ten times bigger than the SHD

and has 35 labels instead of 20. It already represents a more

complicated classification task to solve for a neural network.

Our results are presented in Table 7. Here, we managed to

close the gap between the SNN and ANN performances by

reaching a test accuracy of 77.4% with an SNN. Even though

this already represents considerable improvements upon the

best previously reported SNN result of 74.2% by Yin et al.

(2021), our results remain slightly lower than the (non-spiking)

CNN performance of 77.7% reported by Cramer et al. (2020),

and also lower than our best ANN-performance of 79.05%

with GRUs. Nevertheless, in terms of number of trainable

parameters, if we compare SNNs to ANNs of the same

size, the LIF and adLIF networks score substantially better

(66.67 and 71.66%) than the MLP (only 29.27%), and the

RLIF and RadLIF outperform (73.87 and 73.25%) the RNN

(70.01%).
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TABLE 7 Results on the SSC dataset.

Network Recurrent Number Hidden Test

type connections of layers size accuracy (%)

LIF No 3 128 66.67

512 68.14

adLIF No 3 128 71.66

512 73.58

RLIF Yes 3 128 73.87

512 75.91

RadLIF Yes 3 128 73.25

512 76.21

1024 77.40

MLP No 3 128 29.27

RNN Yes 3 128 70.01

liBRU Yes 3 512 78.70

GRU Yes 3 512 79.05

SNN SOTA (Yin et al., 2021) 74.2

ANN SOTA (Cramer et al., 2020) 77.7

Here the equal tailed 95% credible intervals on the accuracies are all about ±0.6% due

to the large size of the test set. Bold values indicate the best performing network of its

category (ANN or SNN).

3.4. Speech command recognition on SC

Our results on the non-spiking SC dataset are presented in

Table 8. We find that our approach is able to reach even better

accuracies than the current SNN state-of-the-art of 91.21% by

Salaj et al. (2021), which also uses recurrent SNNs, but with a

different model of adaptation. We also find that the chosen SNN

approach surpasses the performance of almost all implemented

ANNs. With a similar number of trainable parameters, the non-

recurrent LIF and adLIF networks give much better results

(82.12 and 90.46%) than the MLP which only scores 48.80% on

this task. Similarly, the recurrent RLIF and RadLIF networks

achieve accuracies of 90.71 and 92.48%, respectively, compared

to 90.61% for a non-spiking equivalent RNN. For larger units, we

even observe that a non-recurrent, adaptive SNN (adLIF) is able

to outperform a conventional RNN with 93.12% against 92.09%.

This illustrates the advantage of physiologically plausible spiking

neuron models as the former is significantly lighter than the

latter in terms of trainable parameters. By adding recurrence

and a larger number of hidden units, we find that our best

performing SNN (94.51%) even surpasses the Attention RNN

approach of De Andrade et al. (2018) (93.9%), which remained

as the ANN state-of-the-art on this task for a long time. With

roughly twice as many trainable parameters, the liBRU is the

only ANN in our baseline that is able to modestly exceed the

RadLIF SNN performance. More generally, the SNN approach

appears able to compete with state-of-the-art gated recurrent

networks, whilst retaining a definitive advantage of energy

TABLE 8 Results on the SC dataset.

Network Recurrent Number Hidden Test

type connections of layers size accuracy (%)

LIF No 3 128 82.12

512 83.03

adLIF No 3 128 90.46

512 93.12

RLIF Yes 3 128 90.71

512 93.58

RadLIF Yes 3 128 92.48

512 94.51

MLP No 3 128 48.80

512 53.16

RNN Yes 3 128 90.61

512 92.09

liBRU Yes 3 128 94.55

512 95.06

GRU Yes 3 128 93.65

512 94.32

SNN SOTA (Salaj et al., 2021) 91.21

ANN SOTA (Gong et al., 2021) 98.11

Here the equal tailed 95% credible intervals are between ±0.9 and ±0.4% for test set

accuracies between 48.80 and 95.06%. Bold values indicate the best performing network

of its category (ANN or SNN).

efficiency; this is extremely encouraging for further work in

this direction.

3.5. Reducing the network size

So far in this study, we have only considered fully connected

layers as it was the most general case and allowed a direct

comparison with standard ANNs. The number of trainable

parameters can be an important limitation in energy efficient

implementations of neural networks. The contributions of the

different trainable components used in our spiking architectures

are listed here below for a layer l with Nl hidden units.

• Feedforward weights: Nl−1 · Nl

• Recurrent weights: Nl · Nl

• Biases: Nl

• LIF neuron parameters (α): Nl

• adLIF neuron parameters (α, β , a, b): 4 · Nl

We see that the main contribution to the total number of

trainable parameters comes from the weights. Imposing a lower

connectivity can therefore greatly reduce the network size. This

is especially effective in the first layer on the spiking datasets

due to the very high number of input neurons (N0 = 700).
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TABLE 9 Results on the SHD dataset for a non-recurrent adLIF

network of size 3 × 128, with a sparser connectivity in the first layer.

Sparsity Number of Test

proportion (%) trainable parameters accuracy (%)

0 109,864 93.06

10 100,904 92.83

50 65,064 92.14

90 29,224 92.33

95 24,744 92.14

99 21,160 91.59

Here a sparsity proportion p corresponds to randomly removing p% of the connecting

weights in the first layer.

TABLE 10 Results on the SHD dataset for a recurrent RadLIF network

of size 3 × 1,024, with a sparser connectivity in all hidden layers.

Sparsity Number of Test

proportion (%) trainable parameters accuracy (%)

0 3,893,288 94.62

10 3,507,035 93.80

50 1,962,024 93.57

90 417,013 92.51

95 223,886 93.20

99 69,385 90.95

Here, a sparsity proportion p corresponds to randomly removing p% of the connecting

weights (both feedforward and recurrent) in all hidden layers.

Further experiments with a sparser connectivity in the first layer

have been carried out on the SHD dataset, and are presented

in Table 9. We observe that gradually reducing the connectivity

in the first layer only hinders the accuracy by about 1.5%, even

when randomly removing up to 99% of the connections. Other

experiments presented in Table 10 were made with large RadLIF

networks. Here a portion of both feedforward and recurrent

connections was randomly removed in all hidden layers. We see

that the sparser networks are still able to achieve state-of-the-art

accuracies, and that even reducing the number of weights by a

factor of 20 only decreases the accuracy by about 1.4%.

Another way of reducing the size of the network is through

the parameters of the spiking neuron model. We distinguished

four cases in ad-hoc experiments: (i) fixed and homogeneous,

i.e., the same fixed value for all neurons in the layer, (ii)

fixed and heterogeneous, i.e., distributed but fixed values for

all neurons in a layer, (iii) trainable and homogeneous, i.e.,

having a single trainable parameter shared by all neurons in

the same layer, and finally (iv) trainable and heterogeneous,

i.e., each neuron has its own trainable parameters. We found

that the fourth case gave significantly better results and was

therefore chosen for the whole paper. As demonstrated by

Perez-Nieves et al. (2021), the heterogeneous nature of a

spiking layer allows each neuron to develop its own “activation

function,” defined by the values of its parameters. This appears

as one core advantage over conventional ANN models in

which the same activation function is shared by all units. We

believe that this neural heterogeneity contributes to the superior

representational capacities of spiking neurons when applied to

auditory sequences.

4. Discussion

4.1. Toward physiological plausibility

Different neuron models were investigated in our study. In

order of increasing complexity and physiological plausibility:

the leaky integrate-and-fire (LIF), adaptive linear LIF (adLIF),

adaptive quadratic LIF (Izhikevich), and adaptive exponential

LIF (AdEx), described in Section 2.1. As presented in the results

Section 3, adding adaptation with the adLIF model consistently

improved the performance compared to the LIF. Nevertheless,

the more physiological nonlinear AdEx and Izhikevich models

(that were left out of the presented results) did not achieve better

performances than the simpler linear adLIF model. This could

be an effect of the weaker compatibility of these inherently more

complex models with gradient descent. The spiking datasets

we use may also not be biologically plausible enough to take

advantage of those models.

In this work, adaptation is described by the discrete time

Equations (7) to (9), that are not based on a moving threshold,

but on subthreshold coupling and spike-triggered currents.

These directly stem from the continuous time formulation

of Equations (3) and (4), as defined in Gerstner and Kistler

(2002), which represent a linear version of the quadratic or

Izhikevich neuron model (Izhikevich, 2007). Moreover, Mensi

et al. (2012) have shown that depending on the type of cortical

neurons, spike-frequency adaptation was dominantly mediated

by spike-triggered currents or moving threshold. Although both

produce spike-frequency adaptation, they inherently represent

different mechanisms. A fair amount of the reported approaches

have used adaptive neurons on the studied datasets (Yin

et al., 2020, 2021; Salaj et al., 2021; Shaban et al., 2021).

However, they all employ a moving threshold formulation of

adaptation, that is similar to that of Bellec et al. (2018), in

which the dynamical threshold is specific to each neuron and

increases by a fixed amount after firing, before decaying back

to some rest value. Note that Shaban et al. (2021) actually

use a more complex version of the adaptive threshold that

includes a second time constant. Nevertheless, these are all

based on a moving threshold adaptation model. In order

to test whether the improvements came from our specific

implementation of adaptation, several experiments were made

using the moving threshold formulation. A comparison between

the two approaches is presented in Table 11.We observe that our
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TABLE 11 Comparison between our adaptation scheme and an

alternative moving threshold on the SHD and SC datasets.

Dataset Network Moving

threshold (%)

Spike-triggered

currents

SHD RadLIF 3× 128 88.79 92.87

SHD RadLIF 3× 512 90.21 93.75

SHD RadLIF 3× 1,024 89.25 94.62

SC RadLIF 3× 128 90.95 92.48

SC RadLIF 3× 512 93.61 94.51

Bold values indicate the best performing type of adaptation.

formulation of adaptation significantly outperforms the moving

threshold alternative, especially on the SHD dataset.

Coming back to Table 8, on the SC dataset, adding

adaptation had the same impact as adding recurrent

connections, even though the former requires remarkably

less trainable parameters than the latter. On the SHD dataset,

the effect of adding adaptation is even more pronounced as

the considerably lighter adLIF networks scored better than

the RLIFs (see Table 5). This shows the importance of the

neuron model and, more generally, of a physiologically plausible

approach. As pointed out by Perez-Nieves et al. (2021), the

heterogeneity of the spiking neurons is a metabolically and

computationally efficient strategy. In ANNs, as defined in

Equation (11), all neurons have the same activation function.

The resulting homogeneity in the behavior of standard artificial

neurons implies that the only source of heterogeneity lies

in the synaptic connections, that can be different for each

neuron. However, adding neurons to the network increases the

computational cost by an order of O(N2) for fully-connected

layers. With spiking neurons, the more complex neuronal

dynamics allow heterogeneous behaviors among neurons by

depending on trainable parameters that only scale with O(N),

hence the more efficient computational strategy.

In terms of the learning rule, the compatibility with deep

learning methods was favored over the biological plausibility

of the approach. Nevertheless, the surrogate gradient technique

can actually be a good candidate toward more physiologically

plausible learning algorithms. Kaiser et al. (2020) have recently

defined a deep continuous local learning rule (DECOLLE)

using random readouts at each layer. Their method still uses

surrogate gradients to allow SGD, but is closer to a form of

bio-inspired plasticity. This seems to indicate that the evaluated

compatibility of training SNNs within ANN frameworks could

lead to further improvements of the training methods, and allow

more physiologically plausible learning rules by retaining the

advantages of well-developed ANN techniques.

Finally, compared to the SNN-ANN tandem method of Wu

et al. (2021), the chosen surrogate gradient approach does not

ignore the spike timings during the backward pass. In addition

to being more flexible to easily include recurrence and different

neuron models, the latter gave considerably better results than

the former, which suggests that the precise timing of the spikes

is of importance in processing temporal information.

4.2. Toward energy-e�cient hardware

In other papers that used the spiking datasets (see Tables 2,

3), non-recurrent SNNs were always reported to perform

substantially less well-compared to their recurrent counterparts.

In this study, we managed to raise the performance of lighter,

non-recurrent SNNs. Our results with non-recurrent adLIF

models on the SHD and SC data sets were even able to

surpass those of the best previously reported recurrent SNNs

on the same tasks. This allows competitive networks with

much fewer trainable parameters, and could lead to hardware

implementations that require less space, power, and memory.

The average firing rate ν̄ of the implemented spiking

networks (over all neurons and all time steps) was observed

to consistently converge around ν̄ ≈ 0.1, which corresponds

to 10 Hz. To compare the energy consumption of SNNs

with ANNs, similarly to Panda et al. (2020), one can count

the number of accumulate (AC) and multiply-and-accumulate

(MAC) operations that are required at each time step. Here,

we consider ANNs that process sequential inputs and focus on

the case with recurrent connections, i.e., RNNs. In contrast to

Equation (10) where the matrix multiplications involve non-

zero real numbers and results in Nl(Nl−1 + Nl + 1) MACs for

RNNs, Equation (12) only requires ν̄Nl(Nl−1 +Nl + 1) ACs for

SNNs. The first energy gain therefore comes from the sparsity of

the spike trains in Equation (12), which gets rid of 1− ν̄ ≈ 90%

of the required operations as most neurons are not activated.

Even if the internal neuronal dynamics of SNNs described by

Equations (7−9) require additional operations compared to the

ANN activation of Equation (11), these only scale with the

number of hidden units Nl in the current layer l, whereas the

benefits of sparsity scale with (Nl)2.

Moreover, SNNs replace the MACs by ACs in the dot-

product computations as a consequence of the binary nature

of spike trains, which constitutes the second gain of energy. As

presented by Han et al. (2015) with a 45 nm CMOS process, a

single 32-bit integer AC operation only requires 0.1 pJ compared

to 3.2 pJ for a MAC. This reduces the energy consumption by

another factor of 32. Even if they usually lead to slightly worse

accuracies, regularizers can additionally be used to obtain even

sparser spike trains and reduce the value of ν̄. By combining the

advantages of the sparse and binary nature of the information,

a recurrent SNN without regularizers already requires roughly

320 times less energy than a non-spiking RNN of the same size.

On the ANN side, this energy gap can nevertheless

be reduced. Low footprint keyword spotting techniques
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involve network quantization (Zhang et al., 2017), a max-

pooling based loss function (Sun et al., 2016), cascaded

executions (Sun et al., 2015; Giraldo et al., 2019), compute-

in-memory architectures (Schaefer et al., 2021), and various

specialized hardware (Conti et al., 2018; Giraldo et al.,

2020; Kadetotad et al., 2020) designed to reduce the

energy consumption of RNNs. Very recently, Jeffares

et al. (2022) have notably taken inspiration from SNNs

to define a threshold based rank coding approach with

considerable speed and efficiency benefits. Even though

the efficiency superiority of SNNs can be nuanced by

taking into consideration the above ANN methods, they

inevitably play a central role in developing lower powered

neuromorphic hardware.

The main motivation for using ANNs is their task

performance, which is typically superior to that of SNNs,

especially when using sophisticated architectures such as

gates or attention. In this work however, we have seen

that SNNs consistently outperformed non-gated RNNs of

the same size. This apparent superiority can be explained

by the heterogeneous and trainable activation of spiking

neurons, which represents an advantage over the implemented

ANNs, that similarly to common practice, use homogeneous

activation functions. The higher representational capabilities

of using heterogeneous neural activations in SNNs is well-

illustrated by the fact that on all four tasks, even the much

lighter non-recurrent adaptive SNNs managed to surpass

the performance of standard RNNs. Only gated RNNs

were able to compete with SNNs and surpass them in

most cases. However, layers of liBRUs and GRUs require

two and three times more operations respectively compared

to standard RNN layers, thus expanding the energy gap

even more drastically. The sparse event-driven processing

of the information in SNNs, combined with their assessed

capabilities therefore make them extremely attractive for

reaching lower powered hardware implementations dedicated to

real-world applications.

5. Conclusion

In the introduction we set out three goals for the work.

In concluding, by carefully selecting appropriate techniques,

we have established an SNN method that, on top of being

compatible with standard deep learning frameworks, is capable

of competing with ANNs on the same speech processing

tasks, whilst conserving the advantage of energy efficiency.

This represents the main contribution of this paper, which

in fact fulfills the first goal. The chosen surrogate gradient

approach allows SNNs to be trained with gradient descent like

conventional ANNs. The resulting compatibility with modern

ANN frameworks combined with the observed scalability of

our spiking networks to relatively deep architectures point

toward further applications of this method to more advanced

tasks. In terms of energy consumption, the implemented SNNs

are drastically more efficient compared to standard ANNs of

the same size, showing promising pathways for low-powered

hardware implementations of neural networks.

At the same time, we have also achieved the second

goal of assessing the more general capability of SNNs in

comparison to conventional ANNs. We have shown that

the particular combination of adaptive spiking neurons,

surrogate gradients and automatic differentiation can actually

compete with strong ANN baselines on speech recognition

tasks. Our implementation of adaptation in the neuron

model was able to replace recurrent connections at a

considerably lower cost in terms of number of trainable

parameters. Such lighter non-recurrent SNNs were even capable

of competing with much larger, standard gated recurrent

units. Whilst the neurons inside such conventional ANNs

all share the same activation function, firing behaviors

among spiking neurons can become heterogeneous by making

the neuron parameters trainable, which appears to allow

more complex representations of the temporal information

with fewer neurons inside the network. The implemented

SNNs were indeed consistently superior to equivalent non-

spiking architectures, which further corroborates the hypothesis

of greater representational capabilities. This also points

toward further investigations of heterogeneous activation

functions inside ANNs, as they are not commonly used in

current practice.

The success of this physiologically plausible approach to

modeling neural networks indicates that our more general third

and last goal is still valid. The experiments do not attempt to

say anything about biological function. However, they show

that a representational capability, that is available to biological

entities, is capable of solving the same problems as (artificial)

networks that are known to be capable of exceeding human

performance on many tasks. This provides a strong hypothesis

for future understanding of the biological mechanisms

of the brain.

Software

In order to further encourage the development of spiking

neural networks, we make our code available open source at

https://github.com/idiap/sparch.

Data availability statement

The data presented in the study are publicly available. The
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net/datasets/ and the SC dataset at https://www.tensorflow.org/

datasets/catalog/speech_commands.
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