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Transcranial magnetic stimulation (TMS) is a non-invasive modality of focal brain

stimulation in which a fluctuating magnetic field induces electrical currents within the

cortex. It remains unclear to what extent TMS alters EEG biomarkers and how EEG

biomarkers may guide treatment of focal epilepsy. We present a case of a 48-year-

old man with focal epilepsy, refractory to multiple medication trials, who experienced

a dramatic reduction in seizures after targeting the area of seizure onset within the left

parietal-occipital region with low-frequency repetitive TMS (rTMS). Prior to treatment,

he experienced focal seizures that impacted cognition including apraxia at least 50–

60 times daily. MRI of the brain showed a large focal cortical dysplasia with contrast

enhancement involving the left occipital-parietal junction. Stimulation for 5 consecutive

days was well-tolerated and associated with a day-by-day reduction in seizure frequency.

In addition, he was monitored with continuous video EEG, which showed continued

and progressive changes in spectral power (decreased broadband power and increased

infraslow delta activity) and a gradual reduction in seizure frequency and duration. One

month after initial treatment, 2-day ambulatory EEG demonstrated seizure-freedom and

MRI showed resolution of focal contrast enhancement. He continues to receive 2–3 days

of rTMS every 2–4 months. He was seizure-free for 6 months, and at last follow-up of

17 months was experiencing auras approximately every 2 weeks without progression

to disabling seizures. This case demonstrates that rTMS can be a well-tolerated and

effective means of controlling medication-refractory seizures, and that EEG biomarkers

change gradually in a fashion in association with seizure frequency. TMS influences

cortical excitability, is a promising non-invasive means of treating focal epilepsy, and has

measurable electrophysiologic effects.
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INTRODUCTION

Transcranial magnetic stimulation (TMS) is a non-invasive
modality of focal brain stimulation in which a fluctuating
magnetic field induces an electrical current within the cortex
(Tsuboyama et al., 2020). Each pulse stimulates a small area of
tissue and can be used to probe brain states as well to influence
cortical excitability. TMS has been applied for depression and
presurgical motor and language mapping (Tsuboyama et al.,
2020), and is being investigated for its potential as a therapeutic
tool in epilepsy (Theodore, 2003; Joo, 2012; Sun et al., 2012;
Cooper et al., 2018; Starnes et al., 2019). We report a case of
a patient with focal epilepsy, refractory to multiple medication
trials and presenting with significant seizure burden, who has
experienced a remarkable period of seizure freedom after focal,
MRI-guided TMS therapy.

CASE DESCRIPTION

A 48-year-old man with focal epilepsy, intractable since onset
at age 12, presented to our institution for evaluation. His
seizures were treated with a combination of valproic acid and
carbamazepine. His typical seizure frequency was once or twice
monthly. However, starting 2 months prior to presentation,
he had experienced a persistent exacerbation of his seizure
frequency to 50–60 times daily. Seizure duration was typically
20–30 s, with semiology of feeling unwell and anxious, an illusory
auditory sensation, diplopia and oscillopsia, apraxia, and inability
to follow commands. Brain MRI showed a focal cortical dysplasia
in the left occipital lobe with surrounding cortical enhancement
(Figure 1A). CSF evaluation was negative for inflammatory
markers or the presence of neural antibodies.

He was admitted to the Epilepsy Monitoring Unit (EMU),
where focal seizures were recorded occurring 7–8 times per
hour (nearly 200 seizures per day), arising maximally from
the left occipital head region near electrode O1 (Figure 3A).
During the seizures, the patient could respond and perform
some calculations, and had no visual field impairment but

FIGURE 1 | MRI images. Pre- (A) and 6 month post-treatment MRI (B)

showing left occipital cortical thickening and blurring of gray-white junction,

implying the presence of a focal cortical dysplasia. The pre-treatment cortical

enhancement resolved at the follow-up study.

could not obey simple motor commands or mimicking
hand movements.

Medication loads with levetiracetam and lacosamide did not
improve seizures over the following 24 h, and lacosamide was
discontinued. Beginning on day three following admission (“Day
1” of treatment), he was treated with MRI-guided 1Hz repetitive
TMS (Nexstim NBS 5) targeting the left occipital region over 5
consecutive days while undergoing continuous EEG monitoring
(Figure 2). MRI-based stereotaxis assisted in precise targeting
and stimulus delivery over the 5-day period. Each day starting at
∼1 pm in the afternoon, 1,800 pulses of 1Hz stimulation were
provided over 30 mins. Stimulation intensity was determined
as a percentage of resting motor threshold (rMT). Initially,
stimulation was started at 100% of rMT. However, during the
first 10 mins of stimulation, the patient complained of 5/10 pain.
Intensity was lowered to 90% of rMT for each subsequent session,
and stimulation was well-tolerated without complaint thereafter.
There was a gradual improvement in seizure frequency and
duration over his 8-day hospitalization (Figure 3). By day 3 of
TMS treatment, seizure frequency was 0–5 per hour, and by
day 5 it was 0–4. He was discharged to home after completion
of stimulation.

After dismissal from the hospital, the patient was seizure-
free for 6 months, and was able to stop valproic acid
and levetiracetam, and reduce the dose of carbamazepine.
Ambulatory EEG on day 31 (post-stimulation) showed no seizure
activity over 24 h. One-month follow-up MRI showed resolution
of left occipital cortical enhancement. At latest follow up of 17
months, he was experiencing auras approximately every 2 weeks

FIGURE 2 | TMS targeting. Stereotactic TMS targeting using the patient’s MRI

in 3 planes (top) and 3D model (bottom). The dipole of the TMS pulses is

indicated, with the arrows indicating the direction of the induced electric field

(red cathodal, blue anodal).
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FIGURE 3 | Spectral power density and ratios. Median spectral power density and power ratios. (A) Median spectral power density across all channels. There is an

inflection point around 2Hz, with lower frequencies showing more power after stimulation initiation. (B) Ratio of slow delta activity to faster delta activity, showing a

significant increase in median power by the end of stimulation as compared to prior. (C) Broadband power, again showing a significant difference in median by the end

of stimulation therapy as compared to before. Asterisks indicate statistical significance by Wilcoxon rank-sum test as compared to prior to stimulation (day 0).

FIGURE 4 | Timeline.

without progression to disabling seizures. He has returned five
times for additional rTMS treatments, for a mean follow-up
interval of every 3.4 months (Figure 4). Subsequent treatments
are provided as 2–3 days of 1Hz rTMS with the same parameters
as the initial therapy.

DIAGNOSTIC ASSESSMENT

In addition to raw EEG review, EEG digital analysis was
performed. Seizures were automatically detected and quantified

for the entire recording using Persyst 14 (Persyst Development
Corporation, San Diego, CA) (Scheuer et al., 2021). Automated
seizure detections decreased over the course of therapy
(Figure 3). Specifically, in the 24 h following the intravenous
infusion of antiseizure medications, his seizure burden increased
by ∼20%. Following the initiation of his 5-day rTMS treatment
course, his seizure burden decreased by 5–30% per day.

For the analysis of power spectra, 256-Hz sampled EEG
segments using all 24 channels of an extended 10–20 EEG
montage taken from the first 2 h of sleep each night were used.
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FIGURE 5 | EEG and seizure frequency. EEG seizure onset and automated seizure detections. (A) EEG seizure onset on longitudinal bipolar montage. EEG settings:

low frequency filter 7Hz, high frequency filter 70Hz, sensitivity 7 uV/mm. (B) 16-h segments showing automated seizure detections (red bars) prior to stimulation; after

5 days of stimulation; and 1 month after TMS. (C) Percentage of time spent in seizure, showing an initial 22% increase after medication load, followed by day-by-day

reduction after TMS treatment began.
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The segments were comprised of N1–N2 sleep. The data were
band-pass filtered between 0.5 and 55Hz using a fourth-order
Butterworth filter; 55Hz was chosen as the low-pass filter to
avoid 60Hz artifact. Spectral density was estimated usingWelch’s
method. Median power per frequency bin across all channels was
plotted for the day prior to TMS therapy, the day stimulation
began, and on the last day of the initial TMS therapy (Figure 5A).

Based upon prior work showing that low frequency interictal
activity is a useful biomarker for localizing seizure onset
zone (SOZ) and predicting outcome of surgical intervention
(Lundstrom et al., 2019a, 2021; Baldini et al., 2020), we analyzed
delta activity (0.5–4Hz) for the sampled EEG data corresponding
to each day. Upon review of the day-by-day EEG power, we
noticed an inflection point around 2Hz; on this basis, similar to
previous research (Lundstrom et al., 2019a, 2021), we compared
the ratio of 0.5–2Hz infraslow activity to 2–4Hz delta activity
(Figure 5B). The value of this ratio showed gradual decrement
over the course of the hospitalization, with a significant difference
in median power at the conclusion of treatment as compared
to before (p < 0.0001 by Wilcoxon rank sum test). Broadband
spectral power from 2 to 20Hz was gradually decreased with
stimulation (Figure 3C), also with a significant difference in
medians by the fifth day of stimulation (p < 0.0001 by Wilcoxon
rank sum test). These changes were coincident with improvement
in seizure frequency (Figure 3). These results are consistent with
previous work showing that low frequency activity (<2Hz) is
decreased near the seizure onset zone, while higher frequency
activity (2–50Hz) is increased (Lundstrom et al., 2019a, 2021). In
this case, TMS therapy was associated with an increase in 0.5–
2Hz activity and decrease in 2–50Hz activity, thereby leading
to a power spectral signature similar to non-seizure onset zone
cortical brain regions.

DISCUSSION

Our report describes a case of refractory focal seizures with
robust response to repetitive TMS (rTMS). Low-frequency, rTMS
has emerged as a potential treatment for epilepsy. Although
potentially effective in other situations, evidence has shown that
rTMS may be particularly well-suited for cases of superficial,
cortically-based focal epilepsies that are amenable to stimulation
targeting (Tsuboyama et al., 2020), as in this case. In this
patient, EEG and imaging data were used to select a superficial
cortical target, which was confirmed using stereotaxis. The MRI
finding of cortical enhancement has been described as a peri-
ictal phenomenon (Williams et al., 2017), and the resolution
at the follow-up study is most likely related to improved
seizure frequency.

TMS influences brain states, exciting neurons and triggering
action potentials, and inducing effects which approximate long-
term potentiation or long-term depression (Huerta and Volpe,
2009). While these effects are exerted focally, TMS may influence
circuit-level patterns such as underlying network oscillations,
blood flow, as well as gene and protein regulation (Yamamoto
et al., 2002; Huerta and Volpe, 2009; Sunderam et al., 2010).
TMS also activates more than just brain tissue, inducing action

potentials in extracranial tissues, CSF “eddy currents,” and audio-
evoked potentials due to the “click” when stimulation is activated
(Conde et al., 2019) – potential confounders when interpreting
the mechanisms of TMS. TMS-EEG has been used to investigate
cortical excitability in varying brain states (Casali et al., 2013) as
well as the electrophysiologic effects of antiseizure medications
(Darmani et al., 2016).

In this patient, rTMS altered the spectral density of continuous
EEG recordings. There was a reduction in broadband frequency
power and a relative increase in infraslow delta power, along with
a reduction in seizure frequency. Other studies have shown a
similar effect of brain stimulation on spectral power (Kinoshita
et al., 2005; Lundstrom et al., 2019b; Westin et al., 2019) and
spike rate (Kinoshita et al., 2005; Sun et al., 2012; Lundstrom
et al., 2018). This change in spectral power has also been seen
in correlation with reduced frequency of interictal discharges
(Westin et al., 2019), which in turn is associated with decreased
seizure frequency in other patients undergoing brain stimulation
for epilepsy (Velasco et al., 2000; Lundstrom et al., 2018). The
increase in infraslow activity may be an EEG biomarker for
the SOZ and surgical prognostication (Lundstrom et al., 2021).
There is a growing body of evidence for the importance of very
slow EEG activity in brain network dynamics and functional
connectivity, and the impact that these fluctuations have on
a variety of neurocognitive and neuropsychiatric disease states
(Jones et al., 2012; Grooms et al., 2017; Li et al., 2019; Wirsich
et al., 2020). Patients with epilepsy have increased slow-wave
activity while in the resting state (Boly et al., 2017), and these
underlying network oscillations likely exert a strong influence on
seizure generation (Moran et al., 2013; Jirsa et al., 2014; Gregg
et al., 2020).

There is a need for biomarkers to gauge the effect of brain
stimulation and predict clinical response. While TMS may
reveal information on brain states and network dynamics, it is
remains uncertain whether these changes in electrophysiological
measurements are predictive of response to stimulation (Westin
et al., 2019). There have been reports of successful treatment
of refractory focal status epilepticus with TMS (Liu et al., 2013;
Zeiler et al., 2015). Brain stimulation impacts network variability
and dynamics, and these influences can be measured using
functional imaging modalities (Ji et al., 2017; Liao et al., 2019).
This case report suggests that they could also be measured by
EEG biomarkers

In this case, continuous EEG recording was available over a
substantial period prior to, during, and after brain stimulation,
and follow-up imaging and clinical and electrophysiological data
confirmed durable improvements in epilepsy severity and EEG
power. This report adds to evidence that brain stimulation
may exert therapeutic effects at least in part by reducing
aberrant network fluctuations and by promoting stability and
normal connectivity. These objective measurements may not
be available for every patient considering rTMS treatment
for epilepsy. Further work is needed to determine if these
measures of cortical excitability are applicable across a variety of
patient populations, and to identify other potential biomarkers
which may be more widely accessible and could predict
treatment response.
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CONCLUSION

In this patient with refractory lesional focal epilepsy, rTMS
was well-tolerated and effective in controlling seizures whereas
medications were not. TMS influences cortical excitability, is
a promising non-invasive means of treating focal epilepsy,
and has measurable effects on EEG. Further investigation is
needed to determine useful biomarkers for non-invasive brain
stimulation. From the patient’s perspective, he mentions that
although receiving this treatment was initially intimidating,
in retrospect it was the best thing that has happened in
his life aside from meeting his wife. He feels that he
has regained his life back, and he is looking forward to
new opportunities.
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