
TYPE Original Research

PUBLISHED 09 January 2023

DOI 10.3389/fnins.2022.867568

OPEN ACCESS

EDITED BY

Yiannis Aloimonos,

University of Maryland, College Park,

United States

REVIEWED BY

Charles Augustine,

Intel, United States

Mohsen Imani,

University of California, Irvine,

United States

*CORRESPONDENCE

Je�rey L. Teeters

jteeters@berkeley.edu

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 01 February 2022

ACCEPTED 05 October 2022

PUBLISHED 09 January 2023

CITATION

Teeters JL, Kleyko D, Kanerva P and

Olshausen BA (2023) On separating

long- and short-term memories in

hyperdimensional computing.

Front. Neurosci. 16:867568.

doi: 10.3389/fnins.2022.867568

COPYRIGHT

© 2023 Teeters, Kleyko, Kanerva and

Olshausen. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

On separating long- and
short-term memories in
hyperdimensional computing

Je�rey L. Teeters1*, Denis Kleyko1,2, Pentti Kanerva1 and

Bruno A. Olshausen1

1Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA,

United States, 2Intelligent Systems Lab, Research Institutes of Sweden, Kista, Sweden

Operations on high-dimensional, fixed-width vectors can be used to distribute

information from several vectors over a single vector of the same width.

For example, a set of key-value pairs can be encoded into a single vector

with multiplication and addition of the corresponding key and value vectors:

the keys are bound to their values with component-wise multiplication, and

the key-value pairs are combined into a single superposition vector with

component-wise addition. The superposition vector is, thus, a memory which

can then be queried for the value of any of the keys, but the result of the

query is approximate. The exact vector is retrieved from a codebook (a.k.a.

itemmemory), which contains vectors defined in the system. To perform these

operations, the item memory vectors and the superposition vector must be

the same width. Increasing the capacity of the memory requires increasing

the width of the superposition and item memory vectors. In this article, we

demonstrate that in a regime where many (e.g., 1,000 or more) key-value pairs

are stored, an associative memory which maps key vectors to value vectors

requires less memory and less computing to obtain the same reliability of

storage as a superposition vector. These advantages are obtained because

the number of storage locations in an associate memory can be increased

without increasing the width of the vectors in the itemmemory. An associative

memory would not replace a superposition vector as a medium of storage,

but could augment it, because data recalled from an associative memory

could be used in algorithms that use a superposition vector. This would be

analogous to how human working memory (which stores about seven items)

uses information recalled from long-term memory (which is much larger

than the working memory). We demonstrate the advantages of an associative

memory experimentally using the storage of large finite-state automata, which

could model the storage and recall of state-dependent behavior by brains.
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1. Introduction

Hyperdimensional (HD) computing, also known as

Vector Symbolic Architectures (Gayler, 2003; Kanerva, 2009;

Kleyko et al., 2022c,d), with origins in Holographic Reduced

Representation (Plate, 1994a, 1995), is an approach to perform

computations using vectors that contain many (in order of

at least hundreds) of components. In HD computing, each

basic concept within a domain is associated with a single

vector. A measure of similarity between vectors is specified,

for example, the Hamming distance if binary vectors are used.

The computations to be performed, such as formation of

representation of compositional concepts, are implemented

using operations on, and between, the vectors. Commonly,

three operations are defined:

• Addition (denoted as +), also called “bundling” or

“superposition,” which takes several vectors and produces

a vector similar to all of the input vectors.

• Multiplication (denoted as ◦), also called “binding,” which

takes two vectors and generates a vector dissimilar to both

input vectors. In the case of binary and bipolar vectors

(which were used in this study), the binding operation can

be reversed (“unbound” or “released”) by multiplying the

result of binding by one of the input vectors to retrieve

the other input vector. The binding operation distributes

over addition.

• A permutation operation—denoted as ρ()—which takes

one input vector and produces a vector dissimilar to it. The

permutation operation distributes over both addition and

multiplications, and it has an inverse.

A fundamental decision that must be made when designing

a system with HD computing is how wide should the vectors

be (that is, how many components should they contain)? The

vectors must be wide enough to allow the functionality (e.g.,

retrieval from the distributed vector representations) to be

performed with the desired accuracy. However, if the vectors are

too wide, then the system will be less efficient because storage

space or computations or both will be used inefficiently.

Of the three operations used in HD computing mentioned

above, the addition operation is the one that mainly determines

how wide the vectors must be. This is because a vector generated

using the addition operation (called a superposition vector)

is usually compared to other vectors stored in a codebook

(using a measure of similarity) to find those that were used

to form the superposition. The more vectors that are added

when forming a superposition vector, the wider the vectors

must be to allow high retrieval accuracy. This phenomenon was

investigated in, e.g., Plate (1994a), Gallant and Okaywe (2013),

and Thomas et al. (2021) and treated in great details by Frady

et al. (2018).

A data structure primitive that is often performed in HD

computing that makes extensive use of the addition operation

is to use a superposition vector as a memory for a set of key-

value pairs (Kanerva, 2009; Kleyko et al., 2022a). To store key-

value pairs in a superposition vector, the binding and addition

operations are used together. For example, if key-value pairs are:

(k1, v1) and (k2, v2) these can be encoded into a superposition

vector (s) by setting s = (k1 ◦ v1) + (k2 ◦ v2). The releasing

operation can be performed by multiplying s with the inverse

of a key, which is the key itself for binary and bipolar vectors.

For example k1 ◦ s, to return a vector with a high similarity

to the matching value (v1). Sequences can also be stored in a

superposition vector using the same method, with each key set

to vector that is generated from the position of the item in the

sequence. For instance, the key can be formed by permuting a

particular vector by the number of times corresponding to the

position (Plate, 1992; Kanerva, 2009).

To enable storage of key-value pairs in this way (using

a superposition vector), the system must have a memory

containing the possible vectors that are read out in order to find

the one most similar to the result of releasing. This memory is

called the “item memory,” “cleanup memory,” or “codebook.”

Because a superposition vector is formed by the addition

operation, a characteristic of systems that store information

in a superposition vector is that the minimum width of the

superposition vector is inextricably linked to the number of

items that the system can store with a given level of reliability.

That is, the more items that must be stored, the wider the

superposition vectormust be. Another characteristic is that since

representations are of fixed width, the width of the superposition

vector determines the width of all other vectors including those

in the item memory. Thus, even for moderately sized item

memories, if the item memory is explicitly represented, most of

the storage required to implement the system will be used by

the item memory (but in certain scenarios hashing might help,

see Thomas et al., 2022).

Nevertheless, if only a small number of items are to be stored

in the superposition vector, these two characteristics could have

a minimal effect on the total storage required for the system

because all the vectors must be a minimal width to facilitate

HD computing and the increase in vector width needed for

storing items in the superposition vector will be relatively small.

However, if there are many items that should be stored, the

additional width required for the superposition vector to allow

reliable storage will increase greatly the total storage required to

implement the system.

At a high level of abstraction, one can think about the

examples above in terms of using the superposition vector

either as short-term or long-term memory. Thus, we suggest

to only consider the superposition vector for short-term

memory and look for alternative solutions to implement the

long-term memory.
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To investigate how the storage of key-values pairs might

be stored more efficiently for HD computing, we experimented

with using an associative memory (Gritsenko et al., 2017) for

vectors and compare that to using a superposition vector. The

associative memory that we used in these experiments is the

Sparse DistributedMemory (SDM) (Kanerva, 1984, 1988, 1993).

With the SDM, the capacity of the memory is not determined by

the width of the vectors, but instead, by the number of memory

locations that are included in the SDM. This decoupling of

vector width from memory capacity allows creating a system

which has an arbitrarily large capacity, without requiring the

width of vectors in the item memory to increase.

To do the experiments we compared the computational

resources (storage space and computations) required to store a

large finite-state automaton with the same recall error rate using

two variations of the superposition vector memory and four

variations of the SDM. Different variations of the superposition

vector and SDM were used because each variant requires

different computational resources to attain the same recall error

rate so considering different variations allows making a more

general conclusion regarding the comparison of a superposition

vector and an associative memory. Also, some variations (those

that threshold—or binarize—thememory, i.e., make into vectors

of 0s and 1s, or 1s and −1s, as appropriate) are only suitable if

changes to the memory are not needed after the data is stored,

while those that do not binarize the memory are suitable for

continual learning.

The article is organized as follows: Section 2 describes the

superposition vector and associative memories, and the finite-

state automata. It also gives equations used to predict the

error rate of the memories. Section 3 gives the dimensions

of the different types of memories required to store a large

finite-state automaton at different error rates, then uses those

dimensions to compare the performance of the superposition

vector and associative memories with respect to the space (bits)

and computations required for recall. Section 4 summarizes the

results and describes some of the broader implications.

2. Materials and methods

2.1. Superposition vector memory

Two types of superposition vector memory were used in the

experiments. The first, called here “S1,” used a binary vector to

store the data, while the second (called “S2”) used a vector of

8-bit integer values to store the data. The implementation of S1

is described first, followed by the description of S2. It is worth

noting that throughout the article, we consider two well-known

models of HD computing: Binary Spatter Codes (Kanerva,

1996) andMultiply-Add-Permute (Gayler, 1998) that use binary

and bipolar vectors, respectively. Under some assumptions,

these models are interchangeable. We will actively use this fact

below when introducing memory models investigated in this

study. Note that the family of HD computing includes many

other models, for example, those computing with sparse binary

vectors (Rachkovskij, 2001; Laiho et al., 2015; Kleyko et al., 2016;

Frady et al., 2021b). This topic is, however, outside the scope of

this article but we refer interested readers to Schlegel et al. (2022)

and Kleyko et al. (2022c) that treat the topic in detail.

2.1.1. Variant S1

The implementation of S1matches the description provided

in Kanerva (1997).

• Binary vectors (of width ns) are used for both vectors in the

item memory and the superposition vector. The vectors in

the item memory are initialized to random 0s and 1s.

• The superposition vector is created as follows: First,

an array of integer counters of the same width as the

superposition vector is initialized to zeros. The range of

each counter is limited to [−127, 127] so each counter can

be stored using 8 bits. For each bit in each vector stored

in the memory, the counter aligned to the position of the

bit is incremented if the bit is one or decremented if the

bit is zero. The counters are then binarized to {0, 1}. To

do that, first, if an even number of vectors are stored, a

random binary vector is included so that the number of

stored vectors is odd. Then bits in the binary superposition

vector are set to 1 if the sum in the corresponding counters

are positive, and to 0 if they are negative. Note that since

an odd number of vectors are stored, the counter sums can

never be zero.

• A key-value pair is stored in the superposition vector

memory by binding the key and value vectors using

component-wise XOR and then storing the resulting vector

in the memory as described above (incrementing or

decrementing the counters).

• The recall of a value associated with a key is accomplished

by computing the XOR of the key with the superposition

vector. This result is compared to vectors in the item

memory using the Hamming distance and the vector which

most closely matches is selected as the recalled value. If

there are more than one vector that have the same smallest

Hamming distance, then either one of them is selected at

random, or this could be counted as an error in recall. In

this study, the latter was done.

2.1.2. Variant S2

The S2 Superposition vector operates similarly to S1, with

the following changes:

• Bipolar vectors {−1,+1} are used for the item memory

instead of binary vectors.
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TABLE 1 Variations of superposition vector memory and the SDM.

Name Binarized memory Threshold sum

S1 Yes –

S2 No –

A1 No Yes

A2 Yes Yes

A3 Yes No

A4 No No

The superposition vector memories do not sum counters, so the last column is not

applicable to those.

• Binding between the key and value vectors is done by

component-wise multiplication instead of XOR. (As with

S1, the result—a bipolar vector—is added to the counters).

• The superposition vector is set to the vector of counters

after the data vectors are stored (the counters are

not binarized).

• The recall of a value is performed by component-wise

multiplication of a key and the superposition vector and

the resulting vector is then compared with vectors in the

item memory using the dot product; the vector in the item

memory which has the largest dot product is selected as the

matching value.

A result of these changes is that the superposition vector

used for S2 has 8 bits per component, whereas the superposition

vector used in S1 has only one bit per component. As will be

shown in Section 3, this difference causes the two variations to

require different amounts of storage space and computation to

have the same reliability. The two variations are summarized in

the first two rows of Table 1.

2.2. Sparse distributed memory

We evaluate four variations of the SDM, which we refer

to as “A1,” “A2,” “A3,” and “A4.” All of these variations

operate the same way during the data storage phase. Unlike

the superposition vector memory, which takes single vectors

as input (and stores them by adding them together using the

addition operation), the SDM takes pairs of vectors as input.

Each pair consists of an “address vector” and a “data vector.”

Recall is done by presenting an address vector, then recalling the

data vector, which should be associated with that address, using

the corresponding SDM’s algorithm. In essence, the address

vector is a key, and the data vector is a value. Figure 1 illustrates

the organization of the SDM.

The storage of data in the SDM is similar to the storage of

data in a superposition vector in that there are integer counters

in the SDM that are initialized to zero and incremented or

decremented according to the value of the corresponding bit of

the data vector being stored.1 However, instead of there being

just one row of counters (as is the case with the superposition

vector), there is a matrix of counters (the “contents matrix”).

Each row in the matrix is a storage location and only a small

fraction of them are activated to store and recall the data vector

associated with a particular address vector. To determine which

rows of counters are activated by an address vector, each row

in the memory, referred to as a “hard location,” is associated

with a fixed random label that is a row in the “address matrix”

A (see Figure 1). The hard locations whose labels most closely

match the address vector are activated. This selection can be

done by choosing those within a certain Hamming distance, or

by choosing a fixed number of rows with the smallest Hamming

distance. In the experiments reported in this article, the latter

method is used.

Storage of the data vector in an address–data pair is

accomplished by incrementing or decrementing the counters

in all the activated storage locations according to the value

of the corresponding bits in the data vector as done with the

superposition vector.

Up to this point, all of the SDM variations (A1-A4) operate

in the same manner. The computations performed to read data

from the SDM and find the closest matching vector in the item

memory are, however, different for each variant so we specify

them below.

2.2.1. Variant A1

This is the most commonly described variant of the SDM.

During the recall phase, the corresponding counters in the

activated rows are added together and thresholded at zero, so

that each bit in the returned data is one if the corresponding

counter sum is greater than zero, and zero otherwise. The search

in the item memory is done using the Hamming distance.

2.2.2. Variant A2

This variant operates in the same way as A1, but before the

recall phase, each counter in the contents matrix is binarized

to {−1,+1} by a procedure similar to that used to binarize

the counters in variant S1 of the superposition vector (see

Section 2.1.1).

2.2.3. Variant A3

A binarized contents matrix is used (as in variant A2),

however, the sums of the counters are not thresholded, and the

search in the item memory is done by finding the vector in the

item memory that has the largest dot product with the recalled

vector as is done with variant S2 of the superposition vector (see

Section 2.1.2).

1 In fact, a superposition vector could be considered as the special case

of SDM with only one storage location that is always activated.
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FIGURE 1

An outline of the organization of the SDM. The memory locations activated for storage or recall phases (shaded rows) are those with the

smallest Hamming distance between the address vector and addresses (labels) in the address matrix. To store data, counters in the activated

rows (hard locations) in the contents matrix are incremented or decremented according to the bits in the data vector. For variations A2 and A3

the counters are binarized before recall. The recall is done by column-wise superposition (adding) the counters in activated rows and

thresholding at zero for variations A1 and A2.

2.2.4. Variant A4

The contents matrix counters are not binarized and the sums

are not thresholded. As with variant A3, the search in item

memory is done using the dot product.

2.2.5. Comparison of SDM variations

For both A3 and A4, components of the vectors in item

memory are bipolar to enable the dot product to be used to

find the closest match to the non-thresholded recalled vector,

and components of the address matrix are also bipolar to allow

calculating the Hamming distance between location labels and

bipolar vectors. An overview of the SDM operation is given in

Figure 1. The different variations of the SDM are summarized

in Table 1.

In our experiments, the number of hard locations activated

by each address vector used for storing or recalling data is

set to:

ma = ⌊m / ((2 k m)(1/3))⌉, (1)

where m is the number of locations (rows) in the SDM

and k is the number of items (data vectors) to be stored in

the SDM and ⌊·⌉ indicates rounding to the nearest positive

integer for variations A1, A3 and A4; and to the nearest

odd integer for variant A2. This value is used because it

was shown to be optimal for variant A1 (Kanerva, 1988,

1993).2 An odd value for ma is used for variant A2 since

with this variant the recalled vector is the superposition

of ma bipolar vectors. Thus, an odd ma is useful for

preventing zeros in the recalled vector before thresholding

because a zero provides no information about the recalled

bit value. To select the ma hard locations for an address

vector, the Hamming distance to all of the hard location

labels is found and the locations corresponding to the ma

closest matches are activated. If there are multiple sets of

locations that have the closest matches, one of them is

selected deterministically so that the same address always

activates the same set of ma locations. For the results given

in Section 3, the Python NumPy argpartition function with

introselect as the selection algorithm was used to select the ma

closest matches.

For all variations, the width of the vectors (nc) was

set to 512 because that is wide enough to ensure clean

separability when matching vectors to the item memory,

2 This formula might not give the optimal value of ma for other

variations. If so, with a more optimal value, the SDM may perform even

better than what was reported in the experiments described in Section 3.
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but not so wide that the item memory would take up too

much space.

2.3. Finite-state automata

HD computing has been used in various application

domains. Some examples are classification (Rahimi et al., 2019;

Diao et al., 2021; Osipov et al., 2022), clustering (Bandaragoda

et al., 2019; Imani et al., 2019), communications (Jakimovski

et al., 2012; Kleyko et al., 2012; Kim, 2018), cognitive

architectures (Plate, 1994b; Rachkovskij, 2004; Eliasmith, 2013),

and approximation of kernel-basedmethods (Frady et al., 2021a,

2022). In the scope of this article, we focus on studying various

memory variations rather than on a particular application

scenario. Therefore, to compare the performance of the different

memory variations, we store in each system a large finite-state

automaton that has been shown before to be represented via

HD computing. In this section, we describe what finite-state

automata are and how they can be stored using a superposition

vector and SDM.

A deterministic finite-state automaton is an abstract

computational model that is specified via a finite set of allowed

input symbols, a finite set of states, a transition function, the

start state, and a finite set of accepting states. The automaton

is always in one of its possible states. The current state can

change in response to an input. The current state and input

symbol together uniquely determine the next state of the

automaton. Changing from one state to another is called a

transition. All possible transitions in the automaton are defined

by the transition function. To illustrate the concept of finite-

state automaton, an intuitive example of controlling logic of a

turnstile is presented in Figure 2. The set of states is {“Locked”,

“Unlocked”} and the set of input symbols is {“Push”, “Token”}

and the transition function can be easily derived from the

state diagram.

FIGURE 2

An example of a state diagram of a finite-state automaton

modeling the control logic of a turnstile. It has two states and

two possible inputs. The start state is depicted by the arrow

pointing from the black circle.

HD computing-based implementations of finite-state

automata were proposed in Osipov et al. (2017) and Yerxa et al.

(2018). The transformation involves all three HD computing

operations and uses two item memories. One item memory

stores random vectors corresponding to the set of states

(denoted as l for “Locked” and u for “Unlocked”). Another

item memory stores random vectors corresponding to the set of

input symbols (denoted as p for “Push” and t for “Token”). The

vectors from the item memories are used to form a vector which

represents the transition. For example, the transition from

“Locked” state to “Unlocked” state, contingent on receiving

“Token,” is represented as:

t ◦ l ◦ ρ(u).

2.3.1. Storing a finite-state automaton using a
superposition vector

Given the vector representations of all transitions of

the automaton, the transition function of the automaton

is represented by the superposition (denoted as s) of the

individual transitions:

s = p ◦ l ◦ ρ(l)+ t ◦ l ◦ ρ(u)+ p ◦ u ◦ ρ(l)+ t ◦ u ◦ ρ(u). (2)

Depending on the variant of the superposition vector

memory, s can be either binarized (variant S1) or kept as

is (variant S2). In order to execute the automaton, we need

to query the vector of the transition function for the next

state given the current state and input. Therefore, we query

s with the binding of the vectors of the current state and

input symbol followed by the inverse permutation operation

applied to the result. Calculated in this way, the result is the

noisy version of the vector representing the next state. For

example, if the current state is l and the input symbol is p then

we have:

ρ−1(s ◦ p ◦ l) = l+ noise.

Finally, this vector should be passed to the item memory in

order to retrieve the noiseless vector l.

This example can be generalized as follows: Each transition

to be stored consists of an initial state (si), an input (pj), and

a next state (sk). To store each transition in the superposition

vector s, a vector formed by si ◦ pj ◦ ρ(sk) is added to the

superposition vector s. To recall from the superposition vector

given a state si and input pj, the recalled (noisy) next state (r)

is obtained by: r = ρ−1(s ◦ si ◦ pj). The recalled vector r must

then be used to retrieve the noiseless next state (sk) from the

item memory.
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2.3.2. Storing a finite-state automaton using a
SDM

To store each transition in the SDM, the address vector (aij)

is set to aij = si◦pj and the data vector is set to aij◦ρ (sk). During

the recall phase, given a state and input vector, the address

vector is formed as above. Once the data vector (denoted as d)

is recalled from the SDM, the noisy next state is computed by

r = ρ−1(aij ◦d). The reason the address vector is bound to form

the data vector before storing is to reduce interference between

the same next state being stored from different transitions in

the SDM contents matrix. Finally, the noisy vector r of the next

state is then used to select the noiseless next state (sk) using the

item memory.

2.3.3. Interference between terms

In this section, we describe a potential shortcoming of

the method described in Section 2.3.1 for storing a finite-

state automaton in a superposition vector. In particular, the

method of creating the vectors stored into the superposition

vector may introduce dependencies between the vectors that

reduces the reliability of the recall. This shortcoming did

not affect the experiments reported in this article but could

be significant in other situations. To describe the potential

shortcoming (below), we will assume that variant S1 is

being used which has binarized counters. The interference

would also occur in variant S2 but the analysis would

be different.

The example given in Section 2.3.1 creates the superposition

vector s by superimposing together four vectors, each of which

encodes a single transition. Since this is an even number of

vectors, a random vector will be added to the superposition

vector to break ties before it is used for recall. So, for a specific

vector stored, there are four other vectors added (which we

will call “overlaps”). As will be described in Section 2.4.4.1,

if all of the vectors are independent, then the probability of

error in one bit when recalling a vector is the probability

that none or one out of the four overlaps matches the value

of the bit stored. This probability is
(4
0

)

/24 = 1/16 (for zero

matching) plus
(4
1

)

/24 = 4/16 (for 1 matching). The total

is 5/16 = 0.3125. However, the actual probability of error

when recalling a vector formed using Equation (2) is higher

(0.375) because the terms are not independent, as is shown

below.

The terms in Equation (2) can be rearranged by collecting

common terms as:

a = p ◦ l ◦ ρ(l)+ t ◦ l ◦ ρ(u)+ p ◦ u ◦ ρ(l)+ t ◦ u ◦ ρ(u)

= (p ◦ ρ(l)) ◦ (l+ u)+ (t ◦ ρ(u)) ◦ (l+ u)

= (p ◦ ρ(l)+ t ◦ ρ(u)) ◦ (l+ u)

(3)

The first expression in the above equation (p◦ρ(l)+t◦ρ(u))

must be either −2, 0, or +2 because it is the sum of two bipolar

values {−1,+1}. The possible combinations forming the sum

are: 1+ 1 = 2, 1− 1 = 0,−1+ 1 = 0,−1− 1 = −2. From the

possible combinations, it can be seen that the probability of each

value is: 2 (1/4), 0 (2/4), and −2 (1/4). These same properties

hold for the second expression in the last line of Equation (3),

that is: (l + u). Since the result is the product of these two

expression, the product must be either −4, 0 or +4. There are

two ways the product can equal four: 2 · 2 and (−2) · (−2). The

chance of each of these is (1/4) · (1/4) = 1/16, so the total

probability is 2/16. The probability of the product being −4 is

the same (2/16). So the probability that the product is either

+4 or −4 is 4/16 and, thus, the probability that the product

is zero is 12/16 or 3/4. If the product is zero, then the chance

of error is 0.5 because a random vector is added to break ties.

So the overall probability of the error is 3/4 · 1/2 = 3/8 =

0.375.

For the experiments described in this article, this reduction

in accuracy did not seem to be significant, probably because the

state change combinations that cause the interference occurred

infrequently relative to other state transitions that did not

cause interference. Such interference could be prevented by

using a unique permutation to encode each input instead of

a vector.

2.4. Predicting the error rate

As described in Sections 2.3.1 and 2.3.2, for both

superposition and SDM-based memories the final step of

recalling a transition is to compare the recalled noisy next state

vector (r) to the vectors in the item memory to select the

state associated with the vector in the item memory with the

closest match. In this section, we present methods we used to

predict the error rate of this match, that is the rate for which an

incorrect state is selected as the next state. The methods work by

calculating the probability of correct recall (pcorr) then the error

rate is given by 1− pcorr .

2.4.1. High-level equations for probability of
correct recall

For all of the memory variations (superposition vector and

SDM) the probability of correct recall given a key vector is the

probability that the vector obtained from the memory during

the recall phase more closely matches the value associated with

that key (the matching vector) in the item memory and not

one of the other vectors (distractor vectors). Let us assume that

r is the noisy vector recalled from the memory, I is the item

memory (an array of vectors), Im is the matching vector in the

item memory, Id is any distractor vector, D(a, b) is a function

returning the distance between two vectors a and b, and there are

i vectors in the item memory. The probability of correct recall is
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then expressed mathematically (adapted from Equation 2.10 in

Frady et al., 2018) as:

pcorr = p
(

D(r, Im) < D(r, Id) ∀d 6= m
)

=

∫ ∞

−∞
p(D(r, Im) = h)

[

p(D(r, Id) > h))
]i−1

dh
(4)

2.4.2. Predicting error rate of Hamming
distance match memories

If the distance function D in Equation (4) is the Hamming

distance, then the equation can be re-written as:

pcorr =

n
∑

h=0

p(H(r, Im) = h)
[

p(H(r, Id) > h))
]i−1

(5)

where H(·, ·) is the Hamming distance between two vectors and

n is the width of the vectors. In Equation (5), the expression:

p(H(r, Im) = h) is the “match Hamming distribution” which

is the probability mass function for the “match Hamming

distance,” that is, the Hamming distance between the vector

recalled from the memory (r) and the matching vector in

item memory (Im). Similarly, expression p(H(r, Id) > h) is

CCDFd(h) where CCDFd is the complementary cumulative

distribution function for the “distractor Hamming distribution”

(the distribution of Hamming distances between r and

distractor vectors).

For all of the memories using the Hamming distance match,

the distractor Hamming distribution is just the distribution

of Hamming distances between two random binary vectors of

width ns (for the superposition vector memory) or nc (for the

SDM variations). This distribution is a binomial distribution

B(n, p) with n being the vector width and p = 0.5, so the

mean is µ = p n = 0.5 n and variance is ρ = p (1 −

p) n = 0.25 n. So, the distractor Hamming distribution used

to calculate p(H(r, Id) > h) in Equation (5) is known (given

by the binomial distribution just described). What is still

needed is the match Hamming distribution, p(H(r, Im) = h)

for Hamming distances (h), in range 0 ≤ h ≤ n. The

determination of this for the different memory variations that

use the Hamming distance as the similarity measure are given

below in Section 2.4.4.

2.4.3. Predicting error rate for dot product
match memories

Memories that use the dot product to determine the

similarity between the recalled vector and vectors in item

memory use a different representation of vectors and a different

operation for the binding. Instead of binary vectors and XOR

being used for binding as for the memory variations using

the Hamming distance, bipolar vectors are used and binding

is implemented by component-wise multiplication. The reason

these different methods are used is that the recalled vector

in memory variations using the dot product contains integer

values (non-binarized counters for the superposition vector

or the non-thresholded recalled vector for SDM) and XOR

cannot be used as the binding operation with non-binary

vectors, but component-wise multiplication with bipolar vectors

can.

If the dot product is used as ameasure of similarity, Equation

(4) can be expressed as:

pcorr =

∫ ∞

−∞
p(〈r, Im〉 = h)

[

p(〈r, Id〉 < h)
]i−1

dh (6)

Where 〈·, ·〉 is the dot product between the vector recalled

from the memory (r) and the vector (either matching or

distractor) in item memory. To calculate the error for memories

that use the dot product match, it is necessary to calculate

the distributions for the dot products for both the case in

which the vector in item memory is the correct match to the

recalled vector (the match distribution, p(〈r, Im〉 = h)) and

also for the case in which the vector in item memory is not the

correct match to the recalled vector (the distractor distribution,

p(〈r, Id〉 = h)). Equations (5) and (6) cannot be solved

analytically but can be calculated numerically if the distributions

are known.

2.4.4. Predicting the error rate for each
memory variant

Here, we describe how the error rate for each memory

variant can be predicted using Equations (5) and (6) and the

analysis given above.

2.4.4.1. S1

Superposition vector memory S1 uses the Hamming

distance between the recalled binary vector and the vectors

in item memory to select the closest match. To calculate the

probability mass function for the match Hamming distance,

the binomial distribution is used twice: first to calculate the

probability of error in a single bit in the recalled vector,

and second, to calculate the distribution for the match

Hamming distance.

If there are k vectors added to form the superposition

vector (k is always odd as described in Section 2.1.1), then the

probability that an individual component (bit) in the recalled

vector r will be in error (that is, not match the corresponding

bit of the stored vector being recalled) is the probability that

fewer than (k − 1)/2 of the other values added to form the

superposition match the target value. This probability (which is

the expected value of the normalized Hamming distance, symbol
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δs) is the CDF of the binomial distribution B(n, p) with n = k−1,

p = 0.5 evaluated at (k−1)/2−1. It is approximated by Kanerva

(1997):

δs = 0.5− 0.4/
√

k− 0.44. (7)

The expected normalized Hamming distance (δs) is the

chance that one bit in the recalled vector will not match the

corresponding bit in the matching item memory vector. The

probabilities of each of the possible Hamming distances to

the match vector (that is, the match Hamming distribution in

Equation 5) is a binomial distribution, B(n, p) with n = ns,

p = δs. The mean of the distribution is µ = p n = δs ns

and variance ρ = p (1 − p) n = δs (1 − δs) ns. Since n is

large, both the match and the distractor Hamming distributions

may be approximated by normal distributions and integration

(Equation 4) can be used instead of summation (Equation 5).

2.4.4.2. S2

Superposition vector S2 uses non-binarized components in

the superposition vector and the similarity between the recalled

vector and vectors in item memory is found using the dot

product. As described in Section 2.4.3, in order to calculate the

recall error rate it is necessary to calculate the distributions for

the distance from the recalled vector to both the matching vector

in the item memory and a distractor vector. Once obtained,

these distributions can be used to calculate the error rate using

Equation (6).

To determine these distributions we follow the analysis

presented in the Appendix of Gallant and Okaywe (2013). This

analysis uses the property that the sum of independent random

variables is a random variable with mean equal to the sum of the

means and variance equal to the sum of the variances. Since the

counter sum consists of the bit for the matching vector {−1,+1}

plus the sum of k−1 bits from other vectors, the mean will be the

bit value from the matching vector since the mean of the other

values is zero. The variance will be k − 1 since the variance of

the data bit is zero and the variance of the others is 1. The value

of the product of the sum with a bit in the matching vector will

have mean 1 (since if the bit is 1 or −1, the product will be 1)

and the same variance (k− 1). The sum forming the dot product

will have mean ns and variance ns (k − 1) since it is the sum

of ns random variables, each with mean 1 and variance k − 1.

Since it is formed by the sum of independent random variables,

the central limit theorem applies so the match distribution can

be approximated by a normal distribution with mean ns and

variance ns (k − 1). The distribution for the distractor distance

is determined using the same reasoning, except since the dot

product is with a random vector, the mean of the counter sum

times a random bit will be zero, and the variance is k; so the

distribution for the distractor distance is a normal distribution

with mean 0 and variance ns k.

2.4.4.3. Memories A1-A4

To predict the accuracy of the SDM variations A1, A2,

and A4 (but not A3) we used computational methods, which

calculate the probabilities of different numbers of overlaps onto

activated rows in the SDM’s contents matrix and from these

estimate the match and distractor distributions which can be

used in Equations (5) and (6). We did not find a method to

predict the accuracy of variant A3. However, we discovered that

empirically, for the same number of rows in the SDM’s contents

matrix, memory variationsA1 andA3 had very close to the same

error rate. So we used the prediction of error rate for A1 as also

the predicted error rate for A3. The details of the methods we

used to predict the accuracy of the SDM variations are given in

the Supplementary material.

3. Results

3.1. Memory dimensions for di�erent
error rates

The error rates of the different memory variations when

storing and recalling a fixed number of vectors is determined

by the dimension of the memory, where the dimension of

superposition vectors is the width of the vectors (ns) and the

dimension of the SDM variations is the number of rows (m)

in the SDM. To compare the efficiency of the different memory

variations for storing data we estimated the dimension required

for each variant to store and recall the transitions in a random

large finite-state automaton at nine different error rates. Each

finite-state automaton was randomly generated and contains

100 states, 10 inputs, and 10 transitions per state. This makes

the total number of transitions equal to 1,000 which is the

number of vectors that must be stored and recalled from a

memory (either superposition vector or SDM). Each automaton

has two item memories, one containing vectors corresponding

to each state (100 vectors), and one containing a vector for each

input symbol (10 vectors). There are a total of 110 vectors in

item memory. The error rates that we used for comparing the

memory variations were inverse powers of ten, (10−r) where r is

an integer in the range 1 to 9 inclusive.

To estimate the dimension of each memory variant that

resulted in each of the different error rates when storing

the finite-state automaton, we used the methods described in

Section 2.4 to predict the error rate of a memory variant of

a particular dimension, and we varied the dimension using a

binary search to find the dimension that resulted in the closest

match to each of the desired error rates. The results of this

process are shown in Table 2.

To test if the estimated dimensions for the different memory

variations resulted in the error rate that was predicted for

storing the large finite-state automaton, we implemented these
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TABLE 2 Estimated memory dimensions to achieve di�erent error rates.

Error rate S1 S2 A1 A2 A3 A4

10−1 24002 15221 51;1 50;1 51;1 31;1

10−2 40503 25717 86;2 97;1 86;2 57;1

10−3 55649 35352 125;2 158;3 125;2 82;1

10−4 70239 44633 168;2 208;3 168;2 101;2

10−5 84572 53750 196;3 262;3 196;3 129;2

10−6 98790 62795 238;3 322;3 238;3 160;2

10−7 112965 71812 285;3 368;5 285;3 177;3

10−8 127134 80825 311;4 425;5 311;4 205;3

10−9 141311 89843 357;4 486;5 357;4 238;3

The error rate is the probability that an incorrect vector is selected as the matching vector in the item memory when a vector is recalled from the memory variant. The dimensions for the

superposition vector memories (S1 and S2) are the vector widths (ns). The dimensions for the SDM variations (A1–A4) are the number of rows in the SDM (m), then a semicolon and the

number of rows activated (ma) during the storage and recall phases.

memory variations and simulated storage and recall phases,

which allowed measuring the error rate empirically.

Two measurements of error rate were made. The first, which

we call the “empirical count error rate” is the number of errors

(incorrect state selected in the itemmemory) per recalled vector.

This is the most direct measure, but requires a large number

of trials in order to create enough errors if the error rate is

small. Tomatch the error rate predicted by Equations (5) and (6)

(which have a strict inequality) if there were multiple closest

matches in item memory to the recalled vector, this was counted

as an error even if the correct matching vector was among the

closest matches.

The second method, called the “empirical PMF error rate”

empirically determines the probability mass function (PMF) for

the distance to the matching vector in the item memory and

also to the closest distractor. These distributions are then used

to calculate what the empirical error rate would be assuming

that the distributions do not change between each recall. The

accuracy of the PMF error rate can be determined by comparing

the PMF error rate to the count error rate in the range for which

enough errors occur to allow accurate estimation of the count

error rate.

The results of these empirical tests are shown in Figure 3. For

the superposition vector experiments (Figure 3A), the empirical

count error was obtained through an error rate of 10−6 and

closely matched the predicted error rate. At smaller error rates,

it took too long to run the necessary number of simulations to

get an accurate count error estimate. However, for these and all

error rates the empirical PMF error is in good agreement with

the predicted error rate. For the SDM variations (Figure 3B),

the empirical count error was obtained through an error rate

of 10−7. For memory variations A1 and A3, there was a good

agreement between the empirical count and the predicted error

rates. The A1 empirical PMF error rate closely matched the

predicted value for all error rates but the A3 PMF error rate was

slightly higher than the predicted values. The A2 empirical PMF

and empirical count error rates agreed, but for error rates less

than 10−3 they were slightly higher than the predicted value, but

still close to it. Variant A4 had the biggest difference between the

predicted and empirically found error rates—both the empirical

count and empirical PMF were lower than the predicted error

rate for error rates less than 10−4. Despite this, the predicted

dimensions for A4 were always less than 10% different from the

empirically found dimension for the same error rate, thus, the

predicted dimensions are sufficiently accurate for the purpose of

comparing the performance of the different memory variations.

3.2. Storage required

In this section, we use the estimated dimensions of the

different memory variations required to attain particular error

rates (cf. Table 2) to compare the storage (number of bits)

required for each memory variant to store the large finite-state

automaton at each error rate. For each memory variant, the

storage required consists of two types of bits: “fixed bits” that

contain fixed random values that are compared to vectors being

stored or recalled, and “counter bits” that contain counters or

the result of binarizing counters. For the superposition vector

memories, the fixed bits are the item memories and the counter

bits are the superposition vector itself. For the SDM variations,

the fixed bits are the address matrix and the item memories, and

the counter bits are the SDM’s contents matrix.

Depending on how a memory is implemented, the fixed

bits may, or may not, be completely present. For example,

because vectors in the item memories and SDM’s address

matrix consist of fixed random bits, it would be possible

to implement them in a manner that does not store them

explicitly, but instead generates them when needed using a

pseudorandom number generator (Kleyko and Osipov, 2017;

Schmuck et al., 2019; Eggimann et al., 2021; Kleyko et al.,

2022b).

Since (depending on the implementation) the fraction of

the fixed bits physically present could range from zero (none
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A B

FIGURE 3

Predicted and empirical error rate vs. dimensions for memory variations. (A) Superposition vectors (S1 and S2). (B) SDM variations A1-A4. The

dimensions of each memory variation for each error rate are given in Table 1.

physically present) to one (all physically present), to facilitate

comparing the memory with different fractions present, we

define a variable named “fimp” (stands for “fraction of the item

memory present”) which is in [0, 1] and has the fraction of

fixed bits present. We use this variable to compare the storage

required for the different memory variations in three cases: if

no fixed bits are present (fimp = 0), if all fixed bits are present

(fimp = 1) and for a particular error rate (10−6) if the fraction

of fixed bits present ranges from none to all (0 ≤ fimp ≤ 1).

To calculate the storage for each superposition vector

memory the following formula is used:

ss = ns (fimp it + bc), (8)

where ss is the total storage (in bits) of the superposition vector

memory, it is the total number of vectors in the item memories

(that is 110), bc is the number of bits per component in the

superposition vector (1 for S1 and 8 for S2) and ns is the width

(number of components) of all of the vectors (see Table 2).

The storage of the SDM variations is calculated using:

sa = m nc (bc + fimp)+ it fimp nc, (9)

where sa is the total storage (bits) taken up by the SDM; m

is the number of address locations; nc is the width of rows in

the address and contents matrices as well as vectors in the item

memories; and bc is the number of bits in each counter of the

contents matrix. For memory variations using the non-binarized

contents matrix (A1 and A4) bc was set to 8 (each counter was

one byte) and for variations using the binarized contents matrix

(A2 and A3) bc was set to 1 because bipolar values {−1, 1} could

be stored using one bit, e.g., {0, 1} with 0 representing −1. For

all memory variations nc was set to 512.

The comparison of storage required for the different

memory variations is shown in Figure 4. The case of fixed bits

(itemmemory and SDM’s address matrix) not physically present

is shown in Figures 4A, B. The three memory variations that

use binarized counters (S1, A3, and A2) use the least amount of

storage, with S1 using the least followed byA3 andA2. The three

memory variations that use non-binarized counters (A1, A4 and

S2) require the most amount of storage, with A1 using the most.

There is a clear separation between the three using the least, and

the three using the most.

The storage required for the different memory variations

if the fixed bits are fully present (fimp = 1) is shown in
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FIGURE 4

Storage required for di�erent memory variations when di�erent fractions of fixed bits (item memory and SDM’s address memory) are present. (A,

C, E) Top row shows the storage required. (B, D, F) Bottom row shows the ratio between the storage required by each variant and that used by

the variant occupying minimal storage. Left column: fixed bits (item memory and SDM’s address memory) are not present (fimp = 0). Middle

column: fixed bits are fully present (fimp = 1). Right column: Storage required for di�erent memory variations for error rate of 10−6 when fraction

of fixed bits present ranges from 0 to 1 (0 ≤ fimp ≤ 1).

Figures 4C, D. The SDM variations (A3, A2, A4 and A1) use

the least amount of storage in that order. The superposition

vectors (S1 and S2) require the most storage with S1 requiring

substantially more than S2. Both of the superposition vectors

require much more storage than the SDM variations. The

storage used by superposition vector memories S1 and S2 are,

respectively: 25 to 35, and 15 to 25 times larger than that used

by the smallest SDM variant (A3), while the storage used by the

other SDM variations is less than five times that used by A3. The

largest SDM variant (A1) uses less than a fifth of the storage used

by the smallest superposition vector (S2).

For a specific error rate (10−6) the storage required for

the different memory variations as the fraction of the fixed

bits present varied from zero (no fixed bits present) to one

(all fixed bits present), i.e., 0 ≤ fimp ≤ 1, is shown in

Figures 4E, F. On the left side of the graphs, when fimp = 0 the

superposition vector memory S1 uses less storage than the other

memory variations and S2 uses less storage than two of the SDM

variations (A1 and A4). As the fraction of the fixed bits present

increases (toward the right of Figures 4E, F) the increase in the

storage required by the SDM variations is minimal compared

to the increase in the storage for the superposition vectors

causing all of the SDM variations to be much smaller than the

superposition vector sizes on the right side of the graphs.

A zoomed in view of the lower left corner of Figure 4E

is shown in Figure 5. The size of superposition vector S1 is

FIGURE 5

A zoomed view of lower left of Figure 4E. The storage required

for di�erent memory variations when fraction of fixed bits (item

memory and SDM’s address memory) present ranges as

0 ≤ fimp ≤ 0.14.

smaller than all other memory variations only when fimp is less

than about 0.005 (0.5%). When fimp is about 0.01 (1%), the

SDM variations A2 and A3 already require less space than S1

and when fimp is about 0.08, the largest associative memory

variant (A1) approximately matches the size of the smallest
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superposition vector (S1), and for fimp larger than that, all

of the sizes of the SDM variations are smaller than all of the

superposition vector sizes.

Note that while the graphs in Figures 4E, 5 are for the error

rate 10−6, the graphs for all other error rates look very similar to

these except for a change in the scale of the y-axis.

3.3. Computations required

The previous Section (3.2) compared the storage (number of

bits) required to store a fixed amount of data using eachmemory

variant so that it can be recalled at different error rates. In this

section, we compare the number of computations required to

recall a vector from each memory variant at the different error

rates. To do this we first derive equations giving the approximate

number of computations (operations on vector components, i.e.,

addition, XOR, multiplication and permutation) that must be

performed for recalling a vector from each memory variant as a

function of the memory dimension.We then use the dimensions

given in Table 2 as input to the derived equations to estimate

the number of operations required for each memory variant to

recall a vector from the stored large finite-state automaton at

the specific error rate. We also compare the estimated number

of operations to the empirically observed computation time

required to recall vectors in a software implementations of

the memory variations. Lastly, we compare the number of

computations required to recall vectors for the different memory

variations if operations that are performed on vectors are done

in parallel.

To derive the equations for the number of operations, each

computation that is performed on a scalar value is assumed

to require one operation, except for the computations used to

search for the closest match in the state item memory, which

is done using either the Hamming distance or the dot product.

The computations performed to find the Hamming distance are

thresholding a counter and computing the XOR between the

thresholded value and the corresponding bit of the vector in

item memory. The computations performed for the dot product

are to multiply the counter sum by the bit {−1,+1} in the item

memory. It was determined empirically that the computation

required for the dot product (multiplication) require about 3.4

more time than the computations required for the Hamming

distance. To allow a single equation to be given for both

cases, we incorporate a variable q which equals 1 for the

Hamming distance calculation and 3.4 for the dot product

calculation.

For the superposition vector memories, the computations

performed when recalling the next state vector are (i) release the

state and input vectors from the superposition vector (assumed

number of operations: 2 ns); (ii) permute the result of binding

(assumed number of operations: ns); (iii) compute theHamming

distances (S1) or dot products (S2) between the result vector

and each vector in the state item memory (assumed number of

operations: (q ns+ns) is, where is is the number of vectors in the

state itemmemory, i.e., 100)3; and (iv) select the closest match to

the result vector (assumed is operations). Thus, the total number

of operations is:

cs = 2 ns + ns + (q ns + ns) is + is

= ns (3+ is (q+ 1))+ is (10)

where cs is the number of operations for recalling a vector and

finding the closest match in item memory for variant S1 (q = 1)

and S2 (q = 3.4). This equation does not include operations that

could be used to generate the item memory if the item memory

is created when needed instead of being stored (fimp < 1, as

described in Section 3.2).

For the SDM variations, the computations performed when

recalling a vector are: (i) compute the address vector a by

binding the current state and input vectors (assumed number

of operations: nc); (ii) find the Hamming distance between the

address vector and each hard location label in the SDM (assumed

number of operations: mnc); (iii) select the ma locations with

the smallest Hamming distance (assumed number of operations:

mma)
4; (iv) compute the sum of counters in each column of the

ma activated rows (assumed number of operations: ma nc); (v)

release the address vector a from the sum to form the permuted

noisy next state vector (assumed number of operations: nc);

(vi) inverse permute the permuted noisy next state vector to

form the recalled vector (assumed number of operations: nc);

(vii) compute the Hamming distances (for variants A1 and A2)

or dot products (variants A3 and A4) between the recalled

vector and vectors in the item memory (assumed number of

operations: (q nc + nc) is); and (viii) select the closest match to

the result vector (assumed is operations). Thus, the total number

of operations is:

ca = nc +mnc +mma +ma nc + nc + nc + (q nc + nc) is + is

= nc (3+m+ma + is (q+ 1))+mma + is

(11)

where ca is the number of operations for recalling a vector and

finding the closest match in itemmemory for memory variations

A1 and A2 (q = 1) as well as variations A3 and A4 (q = 3.4).

3.3.1. Serial computations required

The result of using the dimensions of the memory

variations for the different error rates (see Table 2) as input to

Equations (10) and (11) to calculate the number of operations

3 The second ns in the expression is present because the result of the

ns component-wise operations—either XOR or multiplication—must be

added using approximately ns sums to calculate the similarity.

4 If ma > 1, the actual number of operations will be less than this

depending on the algorithm used. For example, if the ma smallest values

found so far were maintained using a heap, the number of operations

would be aboutm log(ma), since the time to insert a new value into a heap

of size ma is order log(ma).
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required to recall a vector for the different memory variations

and the corresponding empirically found computation times

are shown in Figure 6A. The empirical times were scaled so

that the time for variant S1 at error rate 10−1 corresponds

to the number of operations of S1 at that error rate.

There was a good qualitative agreement between the number

of operations calculated for each memory variant and the

empirical computation time. The time required for both of the

superposition vectors (S1 and S2) was always much higher and

increased much faster as the error rate was reduced than that for

every SDM variant, which all required a comparatively constant

time for the different error rates.

The ratios between the number of operations for each

variant to the number of operations used by the most efficient

variant (A1) is shown in Figure 6B. On the left side of the graph

(error rate 10−1), the superposition vectors S1 and S2 required

respectively about 37 and 51 times as many operations as did

variant A1. As the error rate was reduced (direction to the right

of the graph), the difference between the computations required

for the superposition vectors and SDM variations increased.

At the lowest error rate (10−9), the number of computations

required by S1 and S2 were, respectively, about 100 and 135

times higher than that of A1.

3.3.2. Parallel computations required

The empirical computation times shown in Figure 6A were

obtained from a program running on a computer that was not

performing vector operations in parallel. Here we estimate how

much faster the computations could be done if the operations

that are performed on multiple vectors were done in parallel, so

that the time required to perform the operation on a group of

vectors was equal to the time required to perform the operation

on a single vector.

To do this, we derive alternatives to Equations (10) and (11)

(which give the number of operations required to recall a

vector from the different memory variations) by replacing each

assumed number of operations that is a computation on a group

of vectors with the number of operations used for a single vector.

For the superposition vector, the specific change is in step (iii):

find the distance between the result vector and each vector in

itemmemory. The assumed number of operations ((q ns+ns) is)

is changed to: (q ns + ns) (all matches to item memory are done

in parallel). For the SDM variations, the specific changes are in

steps: (ii) find the Hamming distance between the address and

each hard location label in the SDM; the assumed number of

operations (mnc) is changed to nc; (iv) compute the sum of

counters in each column of the ma activated rows; the assumed

number of operations (ma nc) is changed to ma; (vii) compute

the Hamming distances (A1 and A2) or dot products (A3 and

A4) between the recalled vector and vectors in item memory.

The assumed number of operations ((q nc+ nc) is) is changed to

(q nc + nc).

With the above changes, the modified equations, which give

the number of operations required if operations performed on

more than one vector are counted as a single operation, are:

c′s = 2 ns + ns + q ns + ns + is

= ns (4+ q)+ is; (12)

c′a = nc + nc +mma +ma + nc + nc + q nc + nc + is

= nc (5+ q)+ma (m+ 1)+ is, (13)

where c′s and c′a are, respectively, the number of parallel

operations (operations that are in parallel if possible) for

recall using the superposition and SDM variations. The plot of

the number of operations using these equations is shown in

Figure 6C. Having parallel operations reduces the number of

operations required (as evident in the change in scale between

Figures 6A, C), but the slopes of the curves remain similar, which

means that the SDM variations still use far fewer operations than

the superposition vector memories.

The ratios of number of operations are shown in Figure 6D.

At error rate 10−1 the superposition vectors required about

35 times as many operations as did variant A1. This factor

increased as the error rate was reduced, so at error rate 10−9,

the superposition vector memories require about 150 times the

number of computations required by variant A1.

4. Discussion

4.1. General discussion

Computing with vectors is based on three operations:

addition, component-wise multiplication (XOR for binary

vectors) and permutation of vector components. They allow

multiple vectors to be combined “holographically” and

superimposed in a single vector of the same width, and to

decode such composite vectors.

Such a vector can be used as a memory for values that

are accessed with keys (their vectors, that is). The memory is

formed by binding the keys to their values with multiplication

and adding together the vectors for the key-value pairs. The sum

vector is then queried with a vector for a key, and the answer

is the value vector for that key, plus noise that can make the

memory unreliable.

When using a superposition vector to store key-value pairs

in this way, the more pairs that are stored, the greater the

chance that individual components of the vector recalled will be

different from the corresponding bits in the value. This can be

seen easily when analyzing the probability of agreement between

the individual components of the superposition vector and its

input vectors (see Kleyko et al., 2017 for an example of such

analysis).

To overcome the increased probability of mismatch for each

bit, the width of the superposition vector and the vectors in the
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A C

B D

FIGURE 6

Comparison of operations and run time. Left: operations are serial; Right: operations are parallel. (A) Number of operations (solid line, left axis)

and empirical time (dashed line, right axis). (B) Ratio of number of operations to operations of variant using the fewest operations. (C) Number of

parallel operations. (D) Ratio of number of parallel operations to variant using fewest operations.

item memory must be increased. This results in more resources

(storage space and computations) being required to implement

the system.

We investigated how an alternative method for storing

and recalling vectors compares to a superposition vector when

performing the same task. The alternative method that we

used is an associative memory for vectors, specifically variations

of the Sparse Distributed Memory (Kanerva, 1988, 1993).

Although the idea that the superposition vector shall be used

as a working memory while the Sparse Distributed Memory is

suitable to implement the long-termmemory has been expressed

previously, e.g., by Emruli et al. (2015), no studies have been

done to quantitatively compare these two alternatives. Also

in a vein similar to this study, Steinberg and Sompolinsky

(2022) examined how sets of key-value pairs represented with

HD computing can be stored in associative memories using

a Hopfield network. In Steinberg and Sompolinsky, however,

the main focus was on the aspect of using HD computing for

flexibly forming fixed-length distributed representations. This

aspect can, nevertheless, be interpreted as a way of using the

superposition vector to form a working memory.

We compared the storage space and computations required

by two variations of a superposition vector memory (S1, and

S2) and four variations of Sparse Distributed Memory (A1-

A4) in the storage and retrieval of a finite-state automaton

containing 1,000 vectors with 110 vectors in item memory. All

of the memory variations store data by adding bipolar vectors

to vectors of counters. In the superposition vector memories,

there is only one vector of counters, while the Sparse Distributed

Memory variations have multiple vectors of counters. In half

of the memory variations (S1, A2 and A3), the counters are

binarized (converted to 1-bit) after the data is stored and before

recall; in the others, the counters are not binarized. Two of the

associative memory variations (A1 and A2) threshold the sums

of counters before the match to item memory, the other two

do not.

In order to compare the memory variations, we first devised

methods to predict the error rate of recall of each variant

given the number of items stored and the dimensions of the

memory (width of the superposition vectors and number of

locations in the associative memories) and the item memory

size. We used these methods to estimate the dimensions of the

memory needed to store and recall the finite-state automaton at

different levels of reliability. These dimensions were then used

to compare the storage space and computations required of the

memory variations at the different error rates. When devising
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the methods, we found that the dimensions for associative

memory variations A1 and A3 were approximately the same for

the same error rate. In variant A1, the counters are not binarized

but the sums are thresholded; in variant A3 the counters are

binarized but the sums are not thresholded.

The storage space required by each memory variant depends

on the fraction of item memory (and address locations in the

Sparse Distributed Memory) that is explicitly represented and

the recall error rate. If none of the item memory is explicitly

represented, the three memory variations that use binarized

vectors to store data use much less space than the others, with

S1 using the least. As the fraction of item memory explicitly

represented increases, the space required by the superposition

vectors increases much faster than the space required by the

Sparse Distributed Memory variations, so that when just 10%

of the item memory is explicitly represented, all of the Sparse

Distributed Memory variations use less storage space than the

two superposition vector variations. When the item memory is

fully present, the superposition vectors memories require from

15 to 35 times the space used by the smallest associative memory

and all associativememories use less than a fifth of the space than

either of the superposition vector memories.

The comparison of computations showed that the

superposition vector memories required about 37 and 51 times

as many operations to recall a vector as the most efficient

associative memory when the error rate of recall was high

(0.1). As the error rate is reduced, the superposition vector

memories become even less efficient relative to the associative

memories. At recall error rate 10−9 the superposition vector

memories require 100 and 135 times the number of operations

of the most efficient associative memory. If the computations

were implemented using operations that work on multiple

vectors in parallel, the number of operation is reduced but the

associative memory variations still use far fewer operations than

the superposition vector memories.

The reason that the Sparse Distributed Memory performs

better than a superposition vector for the recall of key-value

pairs is due to the difference in how the vector that is compared

to the vectors in the item memory (to find the matching

value) is generated. For the superposition vector, this vector

is generated by multiplying the superposition vector with the

key. This generates a vector which is similar to the value, but

the probability of a component in this vector matching the

corresponding bit in the value is reduced as more key-value

pairs are superimposed, and there is no way to improve the

probability. With the Sparse Distributed Memory, the vector

that is compared to the item memory is generated by summing

the activated hard locations in the Sparse Distributed Memory’s

contents matrix. As with a superposition vector, the probability

of a component in this vector matching the corresponding bit

in the value is reduced as more key-value pairs are stored in the

Sparse Distributed Memory. However, unlike the superposition

vector, the probability that each component will match the

corresponding bit in the value can be increased by increasing

Sparse Distributed Memory capacity (that is, increasing the

number of rows in the Sparse Distributed Memory’s contents

matrix). This allows the width of vectors in the Sparse

Distributed Memory to be shorter than the superposition vector

while still correctly finding the matching value vector in the item

memory. The shorter vectors used with the Sparse Distributed

Memory reduces the space required to store the item memory

and reduces the number of operations needed for comparison

during recall which improves the performance of the Sparse

Distributed Memory as compared to a superposition vector.

The performance improvements we describe do not mean

that it is always advantageous to use a Sparse Distributed

Memory instead of a superposition vector. There are some

situations where certain manipulations can be performed using

a superposition vector that cannot easily be done with a Sparse

Distributed Memory. The most prominent example of such a

manipulation is the formation of hierarchical representations

(that are also called sketches in some context) when the

representation of some compositional data structure (e.g., a set

of key-value pairs) is used to form a representation of a larger

structure that subsumes the compositional data structure as

its part at some level of hierarchy (Plate, 1994a; Rachkovskij

et al., 2013; Ghazi et al., 2019). It is straightforward to use the

superposition vector to form such hierarchical representations

while in the case of a Sparse Distributed Memory one first

needs to design a procedure that will convert the relevant part

of the memory into a vector representation that can be further

manipulated with HD computing.

There were two sets of item memories used to encode the

finite-state automaton: one for states and the other for inputs.

The vectors recalled from the memories were compared to the

state item memory contents, but not the input item memory.

If there were multiple item memories, and the vectors recalled

had to be compared selectively to vectors in a particular item

memory, there would need to be some mechanism to identify

which itemmemory was appropriate to use and circuitry to route

recalled vectors to the proper itemmemory for comparison. The

identification of the itemmemorymight be done using codes (bit

patterns) that could be included in the vectors to identify them

as being of a particular type of itemmemory. We did not include

such methods in the analysis presented in this article.

4.2. Connection to psychology and
neuroscience

Cognitive psychology likens brains to computers: to physical

devices that manipulate information (e.g., Miller, 1956). The

encoding of information by brains and the organization of

memory have been described in computer-like terms since

the 1960s and ’70s (e.g., Anderson and Bower, 1967; Bower,

1967; Neisser, 1967; Atkinson and Shiffrin, 1968). For example,

information is encoded into chunks in working memory and the

chunks are used both as cues to long-term memory and as data
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to be stored. The data can then be retrieved if the chunks used

as the cue are the same as when the data were stored. This has

been called “encoding specificity” and has been demonstrated

in psychological experiments (Tulving and Thomson, 1973). In

computer terms it simply means that stored data can be recalled

by knowing the address.

While human long-term memory seems boundless, human

short-termmemory—referred to here as the working memory—

is limited to a mere seven or so items (Miller, 1956). This

suggests a two-tier memory organization similar to that of

a computer. The computer’s working memory comprises an

Arithmetic–Logic Unit (ALU) and a handful of registers that are

wired for arithmetic and Boolean operations. The computer’s

long-term memory is an array of registers addressed by their

position in the array—it is the RAM (Random Access Memory)

that today’s computers have billions of bytes of. The contents of

the ALU—the working memory—turn over completely millions

of times a second whereas the contents of the RAM change

hardly at all in comparison. This raises the question, are

there brain structures and processes suggestive of computer-like

memory and processing? The answer for the long-term memory

is “yes” and for the working memory “possibly.”

A computer RAM is a simple and highly regular circuit

that has over half the computer’s transistors. Among the

brain’s circuits, the cortex of the cerebellum has over half

the brain’s neurons (and 5 trillion modifiable synapses). It

was interpreted as an associative memory by Marr (1969).

Furthermore, its three-dimensional structure corresponds to

how an engineer would build a RAM-like memory from neuron-

like components (Albus, 1971; Kanerva, 1993): mossy fibers

(200 million) as address lines, granule cells (50 billion) as

memory locations, climbing fibers (15 million) as data-input

lines, and Purkinje cells (15 million) providing the output—

the numbers in parentheses are estimates for the human

cerebellum. A recent study shows that the small number

inputs to a cerebellar granule cell, and the large number

of inputs to a Purkinje cell, are optimal for an associative

memory (Litwin-Kumar et al., 2017). Brains may have other

long-term memory structures as well, including the fly olfactory

system (Dasgupta et al., 2017), but none that is as large and

equally well-understood.

The issue with working memory is more complicated

because no brain structure is an obvious candidate. However, we

can conjecture its nature by analogy to the computer’s working

memory (the ALU). The ALU takes a pair of numbers as input

and outputs their sum or product or some other arithmetic

function, and it operates similarly with logical bit strings. The

inputs and the outputs are stored in the RAM. Complex relations

and structures can thus be expressed in the long-term memory

by combining their constituent parts, piece by piece, in the

working memory.

This manner of representing relations and structure is

possible also when we compute with high-dimensional vectors

(Plate, 1994a), and presumably possible for brains. Three

simple operations on vectors are sufficient, besides being readily

realizable in neurons. The working memory needs to combine

a few vectors at a time and store the result in the long-

term memory, and to decode vectors stored therein. The

superposition vector provides such amechanism and its capacity

is limited by its width, as discussed above.

The item memory, however, is an engineering artifact. It

is long-term, and a (neural) associative memory can fulfill

the functions of both the item memory and the more

general long-term memory. The engineering of a high-capacity

associative memory, however, is a major challenge. We have

modeled it here with the Sparse Distributed Memory, but

its circuit for selecting memory locations is inefficient and

quite different from the cerebellum’s. This is clearly an

area where a more complete understanding and modeling

of the cerebellum can lead to a more efficient engineering

design.

Finally, it is worth noting that the finite-state automata

that were stored in our experiments could be seen as a

model for biological reflexive response to sensory stimuli

and also for robotics (Osipov et al., 2017; Neubert et al.,

2019).
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