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Purpose: Early-stage glaucoma diagnosis has been a challenging problem in

ophthalmology. The current state-of-the-art glaucoma diagnosis techniques do not

completely leverage the functional measures’ such as electroretinogram’s immense

potential; instead, focus is on structural measures like optical coherence tomography.

The current study aims to take a foundational step toward the development of

a novel and reliable predictive framework for early detection of glaucoma using

machine-learning-based algorithm capable of leveraging medically relevant information

that ERG signals contain.

Methods: ERG signals from 60 eyes of DBA/2 mice were grouped for binary

classification based on age. The signals were also grouped based on intraocular pressure

(IOP) for multiclass classification. Statistical and wavelet-based features were engineered

and extracted. Important predictors (ERG tests and features) were determined, and the

performance of five machine learning-based methods were evaluated.

Results: Random forest (bagged trees) ensemble classifier provided the best

performance in both binary and multiclass classification of ERG signals. An accuracy

of 91.7 and 80% was achieved for binary and multiclass classification, respectively,

suggesting that machine-learning-based models can detect subtle changes in ERG

signals if trained using advanced features such as those based on wavelet analyses.

Conclusions: The present study describes a novel, machine-learning-based method

to analyze ERG signals providing additional information that may be used to detect

early-stage glaucoma. Based on promising performance metrics obtained using the

proposed machine-learning-based framework leveraging an established ERG data set,

we conclude that the novel framework allows for detection of functional deficits of

early/various stages of glaucoma in mice.
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1. INTRODUCTION

Glaucoma, a chronic neurodegenerative disease affecting the
retina and optic nerve, and a leading cause of blindness, is
characterized by a progressive, irreversible loss of vision. As
currently available treatment paradigms focus primarily on a
predisposing factor, elevated intraocular pressure (IOP), and do
not allow for repair of the retina and optic nerve once the
disease has progressed and damage has occurred, technologies
enabling an early diagnosis of glaucoma are needed urgently.
Consequently, such new diagnostic modalities enabling early
therapeutic intervention would significantly improve treatment
outcomes. Current methods of glaucoma diagnosis are based
on psychophysical techniques and the assessment of structural
changes to the retina and optic nerve (Bussel et al., 2014).
Standard automated perimetry testing, including the widely
used Humphrey visual field testing, currently represents the
most commonly utilized technique for glaucoma diagnosis and
monitoring of disease progression and therapy outcomes (Ernest
et al., 2012; Fidalgo et al., 2015). Recent efforts to employ
machine-learning (ML) approaches to improve the analysis
of behavioral psychophysical testing approaches produced
moderate improvements over conventional analysis algorithms
(Saeedi et al., 2021). However, significant damage to the retina
and optic nerve, including loss of retinal ganglion cells (RGCs)
has often already occurred before changes can be detected with
standard automated perimetry testing (Turalba and Grosskreutz,
2010).

Recently, automated retinal image analysis (ARIA) systems
have been developed for the diagnosis of complex diseases such
as diabetic retinopathy and glaucoma (Sim et al., 2015; Lee
et al., 2017). The development of these ARIA systems involved
ML-based methods to detect structural changes determined
with optical coherence tomography (OCT) imaging resulting
in high analytical accuracy in automatically classifying disease
phenotypes based on structural characteristics (Zhu et al., 2014;
Asaoka et al., 2016; An et al., 2019). Despite such significant
progress, early detection of glaucoma is still a challenge (Brandao
et al., 2017), given the highly significant limitations of early
detection of glaucoma based on structural methods. Systems
employing the analysis of structural changes for glaucoma
diagnosis are based onmeasuring retinal nerve fiber layer (RNFL)
thickness in OCT images of the retina, which is highly variable
and weakly correlated with RGC counts despite RNFL thickness
being a surrogate marker of RGC degeneration and optic nerve
fiber loss, hallmarks of glaucoma pathogenesis (Ledolter et al.,
2015). Further, RGC loss often occurs early during pathogenesis
in the absence of measurable RNFL thinning, prompting an
urgent clinical need for methods with higher sensitivity, such
as functional measures including ERG (Harwerth et al., 2002;
Fortune et al., 2003; Takagi et al., 2012; Ledolter et al., 2015;
Brandao et al., 2017). In contrast, functional measures such as
visual field and ERG are sensitive to subtle changes in RGC
function and RGC damage, which suggest a significant potential
to enable early detection of glaucoma, even in the absence of
elevated IOP, as seen in patients with normotensive glaucoma
(Fortune et al., 2003; Aldebasi et al., 2004; Brandao et al.,

2017). Therefore, this study aims to investigate such potential
considering ERG signals.

Consequently, interventions could be initiated before
irreversible damage occurs, allowing for the optimization
of treatment strategies based on the improvement of RGC
function (Ventura and Porciatti, 2006). This is of high
clinical importance as determining the efficacy of therapies
aimed at lowering IOP in open-angle glaucoma (Palmberg,
2002; Leske et al., 2007) requires early validation of therapy
success (An et al., 2019), but will also be of importance for
the development of novel alternative and complementary
glaucoma therapies based on neuroprotective strategies
(Rohowetz et al., 2018). Recently, in a study conducted by
Tang et al. (2020) photopic negative response (PhNR) was
used to assess the short-term changes in inner retinal function
following intraocular pressure (IOP) decrease in glaucoma
using eyedrops. Hui et al. (2020) showed that Nicotinamide
supplementation helps improve the function of the inner retina
in glaucoma.

Recent advances in the acquisition of complex neuroscience
data have a significant innovative potential to progress toward
more effective diagnostic systems (Kononenko, 2001). The
adequate, timely, and clinically relevant analysis of such data
has potentially high clinical impact (Lisboa, 2002). However,
while such data sets can be readily acquired and technologies
to further improve and simplify data acquisition continue to
emerge (McPadden et al., 2019), critical barriers to implement
the effective use of such novel data in clinical diagnostics and
therapy delivery remain (Lee and Yoon, 2017). While the analysis
of complex biomedical data is often part of medical diagnostics,
current expert analysis standards and algorithms are limited by
pattern recognition in few dimensions, which results in less than
optimal identification or even exclusion of potentially relevant
diagnostic features (Hannun et al., 2019). Machine learning could
significantly augment medical diagnostics and increase their
efficacy by analyzing aspects of complex and multi-dimensional
biomedical data that are either not being considered adequately
or that are not accessible to current analysis methods (Holzinger,
2014). Such machine-learning based diagnostic approaches have
been developed and are being actively used for the detection of
cardiovascular diseases (Al’Aref et al., 2019), and cancer (Cruz
and Wishart, 2006).

ERG data are one such type of complex and multi-
dimensional biomedical data that are potentially relevant to the
diagnosis of glaucoma, but are currently not considered during
routine clinical practice or in clinical research. Historically,
this is due to multiple barriers related to clinical ERG data
acquisition, such as limitations in reproducibility, high costs
of both equipment and of individual tests, long test duration
and complex test administration resulting in reduced patient
acceptance and compliance, and the need for highly trained
experts to administer tests. With the advent of novel ERG
technologies, most of these barriers related to clinical ERG
data acquisition have been removed (Nakamura et al., 2016;
Asakawa et al., 2017; Kato et al., 2017; Hobby et al., 2018; Liu
et al., 2018; Man et al., 2020), opening up the possibility to
effectively use ERG data for glaucoma diagnostics, calling the
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necessity for the development of novel approaches (e.g., M-L-
based ones) that is capable to quickly and thoroughly analyze
such data.

Machine learning is based on statistical techniques to
learn from data and develop predictive models (Jordan and
Mitchell, 2015). Recently, there has been a surge of interest in
machine learning as significant advancements in computational
hardware (Shi et al., 2016) facilitate the development of novel
machine learning approaches as solutions to problems in various
disciplines from financial forecasting to public transportation
and healthcare (Trafalis and Ince, 2000; Omrani, 2015; Ahmad
et al., 2018). There are several predictive techniques in machine
learning with various complexities, ranging from simple linear
models to advanced non-linear models such as those based on
deep learning algorithms (Shailaja et al., 2018; Khan et al., 2021;
Saxe et al., 2021). Currently, available ERG analysis methods,
such as those developed by Hood et al. (2000), Ventura and
Porciatti (2006), have contributed to a significantly improved
understanding of the relationship between ERG signals and
vision loss. These methods are limited to frequency domain
analysis (Miguel-Jiménez et al., 2010; Luo et al., 2011; Palmowski-
Wolfe et al., 2011; Ledolter et al., 2013) and the analyses of
differences in amplitude and latency of ERG (Fortune et al.,
2002; Thienprasiddhi et al., 2003; Stiefelmeyer et al., 2004;
Chu et al., 2007; Todorova and Palmowski-Wolfe, 2011; Ho
et al., 2012; Hori et al., 2012). In addition, these methods
are often time-consuming, labor-intensive, and focused on
parameters developed to address a small subset of mostly genetic
diseases of the eye affecting predominantly pediatric patient
populations (Frishman et al., 2000; Graham et al., 2000; Dale
et al., 2010). To achieve higher accuracy and a more detailed
understanding of disease progression and of the impact of
therapeutic intervention, more sophisticated features such as
those obtained from wavelet analysis are required (Forte et al.,
2008; Barraco et al., 2014). Additionally, currently available
methods are often not suitable for analyzing large data sets
and databases, rendering them incapable of taking advantage of
complex and rich datasets (Consejo et al., 2019; Armstrong and
Lorch, 2020). These drawbacks prompted others (Bowd et al.,
2014; Yousefi et al., 2015; Atalay et al., 2016; Verma et al.,
2017) and us to design and develop novel methods capable of
handling complex and large datasets and ultimately to provide a
unique approach for diagnosing early-stage glaucoma. However,
it should be noted that early detection of glaucoma is not
possible with currently available techniques during the early
stages of glaucoma pathogenesis, when cellular changes occur
that do not result in structural damage or visual impairment yet.
Such early-onset factors predisposing to glaucoma development
include processes preceding the onset of ocular hypertension,
for example, the onset of iris pigment dispersion preceding
IOP elevation in the DBA/2 mouse model. However, and
more importantly, we identified cellular changes resulting in
altered ERG signals, such as changes in oscillatory potentials,
that currently cannot be detected with other functional or
structural measures.

Boquete and colleagues developed a method to automate
glaucoma diagnosis based on ERG signals using neural

networks and structural pattern analysis (Boquete et al., 2012).
They utilized thirteen features (morphological and transitional
characteristics) for training the model and achieved a testing
accuracy of 80.7% (Boquete et al., 2012). This study was limited
to basic morphological characteristics of mfERG recordings
(Boquete et al., 2012). Miguel-Jiménez et al. (2015) also employed
neural networks for ERG-based glaucoma diagnosis but used
continuous wavelet transformed coefficients and achieved a
binary classification accuracy of 86.90% (Miguel-Jiménez et al.,
2015). Although a higher accuracy was achieved, this analysis
was limited to wavelet features only (Miguel-Jiménez et al.,
2015). Nevertheless, both studies showed that machine learning-
based methods trained even on compact data sets provide
powerful tools to analyze ERG signals and provide potentially
new information relevant for the early detection of glaucoma.
Sarossy and colleagues investigated the relationship between a
compact set of features and glaucoma that can be analyzed with
machine learning approaches; however, the study was limited to
the analysis of the photopic negative response (PhNR) and five
additional features (Sarossy et al., 2021).

The goal of the present study was to comprehensively
assess the capability of machine-learning-based methods to
detect early-stage glaucoma using time-series ERG signals.
In particular, the following points are addressed during
method development:

1. Develop a framework to extract and identify important
predictors (features) from ERG signals.

2. Compare the predictive capability of statistical and wavelet-
based features for binary and multiclass classification.

3. Develop a robust ML-based model to diagnose glaucoma
(binary classification).

4. Develop a robust ML-based model capable of distinguishing
various stages of glaucoma progression (multiclass
classification).

5. Develop a robust ML-based model to provide a quantitative
assessment of visual function by predicting retinal ganglion
cell count from ERG signals for the first time.

2. METHODS

2.1. Overview
ML based algorithms have been applied to Electrocardiogram
(ECG) signals in order to develop predictive models for
diagnosing heart diseases (Li et al., 2014; Al’Aref et al., 2019).
Recently machine learning-based Artificial Neural Networks
(ANN) have been applied to ERG signals for obesity diagnosis
(Yapici et al., 2021). However, to date, machine learning-based
methods have not been applied systematically to analyze ERG
signals for glaucoma detection. Therefore, the potential of ERG
signals in glaucoma diagnosis has not been fully utilized. The
present work aims to develop a predictive model for early
glaucoma diagnosis based on machine-learning algorithms by
utilizing advanced features from ERG signals as predictors. The
steps involved in developing amachine-learning-based predictive
model for ERG analysis are shown in Figure 1. Each of these steps
is explained in detail below.
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FIGURE 1 | Machine learning workflow using ERG signals. ERG Database: the ERG database contains the input ERG data used to train the predictive model.

Pre-processing of data: this step ensures data quality by transforming the data to a common baseline, accounting for missing data, and handling outliers. Feature

extraction: mathematical operations are performed on the data to extract features/parameters that indicate functional deficits in the eye. Predictive Model

Development: algorithms can determine trends and patterns in data from statistical analysis of extracted features during training; these models can predict either class

or value from the input data are called classifier and regression models, respectively. Deployment of Model into medical devices: successful predictive models can be

included with ERG testing devices to provide real-time prognosis and diagnosis.

2.2. ERG: A Biomarker
Electroretinographymeasures the electrical responses of different
types of cells in the retina, such as ganglion cells. These signals
are usually measured in microvolts. Oscillatory Potential (OP)
and Scotopic Threshold Response (STR) represent important
ERG components indicative of RGC cell function (Saszik
et al., 2002; Dong et al., 2004; Hancock and Kraft, 2004; Lei
et al., 2006). OPs are small rhythmic wavelets superimposed
on the ascending b-wave of the ERG and STR are negative
corneal deflection elicited in the fully dark-adapted eye to dim
stimuli. An International Society for Clinical Electrophysiology
of Vision (ISCEV) standardized ERG protocol (Marmor et al.,
2009) included several tests to measure the function of various
retinal cell types, including the rod response, standard rod-cone
response, Hi-intensity rods, and cones response, cone response,
Hi-intensity cone response, flicker, and Hi flicker (Grillo et al.,
2018). A visualization of nine ERG signals resulting from two
ERG components (OP and STR) and seven ERG test responses is
provided in Figure 2. The dynamics of ERG signals vary in people
with various conditions and can therefore aid in differentiating
individuals with glaucoma (Grillo et al., 2018), schizophrenia
(Demmin et al., 2018), obesity (Yapici et al., 2021), and bipolar
disorder (Hébert et al., 2020). ERG can also help in evaluating
the effectiveness of new or existing drugs and therapy modalities
(Lai et al., 2006, 2009; Nebbioso et al., 2009; da Silva et al., 2020).

2.3. Ganzfeld Flash Electroretinography
The development of pigmentary glaucomatous optic neuropathy
in the DBA/2 mouse model had several similarities to glaucoma
pathogenesis in human patients, including loss of vision and RGC
(McKinnon et al., 2009; Burroughs et al., 2011; Grillo et al., 2013;
de Lara et al., 2014; Kaja et al., 2014; Grillo and Koulen, 2015;
Montgomery et al., 2016). TheGanzfeld flash electroretinography
(fERG) procedures in mice were conducted under dim red light
that was followed by an overnight dark adaptation (>12 h).
Isoflurane at 3 and 1.5% was used respectively, to anesthetize
mice and maintain anesthesia. The pupils were dilated using 1
drop of 1% tropicamide and were allowed to dilate for 10 min.
Rectal temperature was monitored and maintained at 37◦C using
a heating pad. Silver-embedded thread electrodes were placed
over the cornea in 1% methylcellulose with mini-contact lenses
fitted preventing the corneal dehydration (Ocuscience LLC,
Henderson, NV). The head was placed inside the Ganzfeld dome,
and fERG with 2 recording channels was performed using an
HMsERG system (Ocuscience LLC) equipped with an amplifier

with a band pass from 0.3 to 300 Hz. Mice were subjected to
the International Society for Clinical Electrophysiology of Vision
(ISCEV) standardized ERG protocol [29], whose implementation
is described in detail in Marmor et al. (2009). ERGView 4.380V
software (OcuScience LLC) was used to perform statistical
analyses including averaging multiple flashes recorded at each
intensity and stored for further analysis. Additionally, mice were
tested using a scotopic flash intensity series in the range of−4.5 to
1.5 log cd s/m2. Further, a 1:1,000 neutral density filter (ND3) was
used to control the 7 lowest flash intensities; data were averaged
from 10 flashes (−4.5 to −3.5 log cd s/m2), 4 flashes (−3 to 0.5
log cd s/m2) at the lower intensities or measured from 1 flash
at the 2 highest intensities (1 to 1.5 log cd s/m2). Following the
light adaptation (1.5 log cd s/m2 for 10 min), responses from a
photopic series (−2 to 1.5 log cd s/m2; 32 flashes per intensity)
were recorded in a separate fashion. Further details about data
acquisition can be found in Grillo et al. (2018).

2.4. ERG Dataset
Ganzfeld fERG tests were performed on 4 months old (n = 15)
and 11 months old (n = 15) male DBA/2 mice. Each animal had
two sets of test data, one for each eye. Therefore, a total of 60
data sets for individual eyes were included in this study. Each
data set comprised of nine different ERG signals (OP, STR, and
seven signals from ERG testing protocols), as shown in Figure 2

(OPs are small rhythmic wavelets superimposed on the ascending
b-wave of the ERG and STR are negative corneal deflection
elicited in the fully dark-adapted eye to dim stimuli). Therefore,
540 recordings were utilized in this study. Intraocular pressure
(IOP) and retinal ganglion cell (RGC) count measurements were
also utilized in this study. Although IOP data was available
for all animals, RGC counts were only available for 10 (20
eyes). The animals were grouped in a binary group (healthy and
glaucomatous) based on age and multiclass group based on IOP
as (normal, <12 mm Hg; high, [≥12 mm Hg <17 mm Hg];
glaucomatous, ≥17 mm Hg). All the data used in this study was
well-balanced for respective groups.

2.5. Pre-processing of Data
ERG raw data may contain several anomalies such as different
start times, missing data, different sampling frequencies, noise,
and unequal lengths of the signal recordings. In Machine
learning-based modeling, the quality of the training data can
significantly impact the model performance. Therefore, pre-
processing (data preparation and screening) is crucial to ensure
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FIGURE 2 | Visualization of ERG Signals manifesting their complex nature. The blue lines correspond to healthy and red lines correspond to glaucomatous Signals.

Signals resulting from ERG tests include OP (Oscillatory Potential: small rhythmic wavelets superimposed on the ascending b-wave of the ERG), STR (Scotopic

Threshold Response: negative corneal deflection elicited in the fully dark-adapted eye to dim stimuli), Rods (rod response), Rods and cones (standard rod-cone

response), Hi Rods and cones (Hi-intensity rods and cones response), Cones (cone response), Hi cones (Hi-intensity cone response), Flicker (Flicker response), and Hi

flicker (Hi-intensity flicker response).

the quality of the training dataset (Jambukia et al., 2015). Pre-
processing steps considered in the present study include,

1. Baseline adjustment
2. Feature extraction
3. Handling missing data
4. Handling outliers
5. Feature scaling
6. Feature selection

The signal’s baseline (start time) can be different for different
animals and testing protocols. Therefore, all the measurements
were brought to a common baseline (start time was offset
to zero) during baseline adjustment (Jambukia et al., 2015).
Feature extraction involves computing a reduced set of values
from a high-dimensional signal capable of summarizing most
of the information contained in the signal (Khalid et al., 2014).
The missing data were replaced with mean values (Graham
et al., 2013). For handing outliers, values more than three
scaled median absolute deviations (MAD) away from the median
were detected as outliers and replaced with threshold values
used in outlier detection (Aguinis et al., 2013). The feature’s
values vary widely, even by orders of magnitude. Therefore,
it is important to bring the feature values to a similar range
(feature scaling), especially when using distance-based machine
learning algorithms (Wan, 2019). Feature selection is further

dimensionality reduction from the extracted features. It is
performed to reduce the computational cost of modeling,
to achieve a better generalized, high-performance model that
is simple and easy to understand (Aha and Bankert, 1996).
Feature extraction and selection are explained in detail in the
following sections.

2.6. Feature Extraction
ERG signals are complex high-dimensional data, and
training a model with many variables requires significant
computational resources. Feature extraction reduces the
dimensionality of the data by computing a reduced set of
values from a high-dimensional signal capable of summarizing
most of the information contained in the signal (Guyon
et al., 2008). In the present study, feature extraction
was performed in two phases. First, common statistical
features were extracted from the signal, followed by the
extraction of advanced wavelet-based features. Figure 3

provides an overview of the feature extraction process and is
explained below.

2.6.1. Statistical Feature Extraction
A total of 17 Statistical features capable of describing the general
behavior of ERG signals were extracted from the signal. These
features were grouped as follows.
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FIGURE 3 | Feature Extraction. During this process, mathematical operations are performed on the data to extract features. This step is crucial for discovering

features indicative of functional deficits in the eye. ERG test on each eye leads to nine signals, as shown in Figure 2. Two sets of features (Standard features and

advanced features) are extracted from each of the nine signals. The standard set of features include common statistical features such as mean, quartiles, and

entropies. In contrast, the advanced set of features include sophisticated features such as autoregressive coefficients, Shannon entropy, and wavelet features.

1. Measures of Central Tendency
2. Measures of Spread
3. Measures of Shape
4. Measures of Peaks
5. Measures of Derivatives
6. Measures of Correlation

Measures of central tendency included mean, median,
trimmed mean. Measures of spread included range,
standard deviation, variance, mean absolute deviation,
and interquartile range. Measures of the shape include
skewness, kurtosis, central moments of the second and
third-order, and aspect ratio. Measures of peaks included
the number of peaks and troughs in the signal. Measures
of derivatives include the first-order derivative of the signal
with respect to time. Measures of correlation included the
correlation coefficient of the signal with respect to time.
The equations for the computation of these quantities can
be found in Asgharzadeh-Bonab et al. (2020); Yapici et al.
(2021).

2.6.2. Advanced Feature Extraction
Advanced features capable of capturing subtle changes were
extracted from the signal. Each signal was split into 32
blocks (∼ 2000 samples/block) to further capture subtle
changes in the signal (Martis et al., 2014). Daubechies least-
asymmetric wavelet with four vanishing moments (Symlets 4)
was used as mother wavelet to derive the wavelet coefficients
(Daubechies, 1992). The following features (190 features in
total as shown in Figure 3) were extracted from each block of
the signal:

AR coefficients: The signal x[n] at time instant n in an AR
process of order p can be described as a linear combination of
p earlier values of the same signal. The procedure is modeled

as follows:

x[n] =

p
∑

i=1

a[i]x[n− i]+ e[n] (1)

where a[i] is the AR model’s ith coefficient, e[n] denotes white
noise with mean zero, and p denotes the AR order. The AR
coefficients for each block were estimated using the Burg method
(Zhao and Zhang, 2005); the order was determined using the
ARfit model order selection method (Neumaier and Schneider,
2001) as 4th order. Therefore a 4-order AR model is chosen to
represent each of the ERG signal components.

Wavelet based Shannon Entropy: The Shannon entropy
is an information-theoretic measure of a signal. Shannon
entropy (denoted as SE) values for the maximal overlap discrete
wavelet packet transform (MOD- PWT) using four-level wavelet
decomposition was computed on the terminal nodes of the
wavelet (Li and Zhou, 2016). Mathematical expression for
Shannon entropy using wavelet packet transform is as follows:

SEj = −

N
∑

k=1

pj,k ∗ log pj,k (2)

where N is the number of coefficients in the jth node and pj,k are
the normalized squares of the wavelet packet coefficients in the
jth terminal node of the wavelet.

Multifractal wavelet leader estimates andmultiscale wavelet

variance estimates: The multifractal measure of the ERG
signal was obtained using two wavelet methods (wavelet leader
and cumulant of the scaling exponents). Wavelet leaders are
time/space-localized suprema of the discrete wavelet coefficients’
absolute value. These suprema are used to calculate the Holder
exponents, which characterize the local regularity. In addition,
second cumulant of the scaling exponents were obtained. Scaling
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exponents are scale-dependent exponents that describe the
signal’s power-law behavior at various resolutions. The second
cumulant basically depicts the scaling exponents’ divergence
from linearity (Leonarduzzi et al., 2010). Wavelet variance of
ERG signals were also obtained as features. Wavelet variance
quantifies the degree of variability in a signal by scale, or more
precisely, the degree of variability in a signal between octave-band
frequency intervals (Maharaj and Alonso, 2014).

2.7. Feature Selection
Feature extraction discussed previously was performed in
order to reduce the dimensionality of the signals; however,
the resulting number of features was still higher than the
number of training data. Therefore, further reduction in the
dimensionality of the data was performed using the feature
selection method to identify relevant features for classification
and regression. It should be noted that feature selection was
necessary to reduce the computational cost of modeling, prevent
the generation of a complex and over-fitted model with high
generalization error, and generate a high-performance model
that is simple and easy to understand (Saeys et al., 2007).
In particular, the Minimum Redundancy Maximum Relevance
(MRMR) sequential feature selection algorithm was used in the
present study because this algorithm is specifically designed
to drop redundant features [see (Darbellay and Vajda, 1999;
Ding and Peng, 2005) for mathematical details/formulations],
which was required to design a compact and efficient machine-
learning-based model (Zhao et al., 2019). It is worth noting
that other available dimensionality reduction techniques such
as Principal component analysis (PCA) were not considered in
this study as such techniques do not allow for direct tracing and
understanding the relevance of each feature (Aha and Bankert,
1996).

2.8. Predictive Model Development
MLmodels are mathematical algorithms that provide predictions
based on an inference derived from the generalizable predictive
patterns of the training data (Bzdok et al., 2018). Several machine
learningmodels were employed and evaluated in order to identify
the best one to classify the ERG signals. These included decision
trees, discriminant, support vector machine, nearest neighbor,
and ensemble classifiers. Most of these models can perform both
classification and regression. Decision tree-based models predict
the target variable by learning simple decision rules (Navada
et al., 2011). Discriminant classifiers are based on the assumption
that each class has different Gaussian distributions of data, and
the classification is performed based on Gaussian distribution
parameters estimated by the fitting function (Cawley and Talbot,
2003). Support vector machine (SVM) is based on Vapnik–
Chervonenkis theory, where a hyperplane separating the classes
is determined. SVMs are efficient algorithms suitable for compact
datasets (Noble, 2006). The nearest neighbor algorithm is based
on the assumption that similar things exist nearby. It is a simple
yet versatile model with high computational cost (Zhang and
Zhou, 2007). Ensemble methods such as bagged trees (or random
forest) combine the predictions of several learning algorithms
with improving generalization. Although these methods are

also computationally expensive, they are unlikely to over-fit
(Dietterich, 2000). Regression analysis based on the above
techniques was also performed alongside classification.

2.9. Performance Evaluation
Various performance evaluationmetrics were utilized to compare
different machine learning algorithms. The metrics used in
this study include accuracy, sensitivity, specificity, precision,
recall, f-score, root mean squared error, and their corresponding
mathematical formulations are given below.

The abbreviations used in the following expressions include
True Positive (TP) which are the cases the model correctly
predicted the positive (glaucomatous) class. True Negative (TN)
are the cases the model correctly predicted the negative (non-
glaucomatous) class. False Positive (FP) are the cases the model
incorrectly predicted the positive (glaucomatous) class. False
Negative (FN) are the cases the model incorrectly predicted the
negative (non-glaucomatous) class.

2.9.1. Accuracy
Accuracy is the percentage of correctly classified observations, as
shown below.

Accuracy(%) =
TP+ FP

TP+ TN+ FP+ FN
(3)

2.9.2. Sensitivity
Sensitivity/Recall estimates the proportion of actual positives
(e.g., actual glaucomatous) was identified correctly.

Sensitivity/Recall (RE) =
TP

TP+ FN
(4)

2.9.3. Specificity
Recall estimates the model’s ability to correctly reject healthy
patients without a Glaucoma.

2.9.4. Precision
Precision estimates the proportion of positive predictions (e.g.,
glaucomatous predictions) that was actually correct.

Precision (PR) =
TP

TP+ FP
(5)

2.9.5. F-Score
The F-Score estimates the harmonic mean of the precision
and recall.

F- Score =
PR× RE

PR+ RE
(6)

2.9.6. Root Mean Square Error (RMSE)
The Root Mean Square Error (RMSE) was used as the
performance evaluation metric for regression analysis. RSME is
the standard deviation of the prediction errors (residuals).

RMSE =

√

∑N
i=1

(

Actual xi − Predicted x̂i
)2

N
(7)

Where N is the number of observations.
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3. RESULTS

A machine learning-based approach was developed and trained
using the balanced ERG data previously published by Grillo
et al. (2018). Although a compact dataset of 60 observations and
540 signals was used in this study, the current framework was
able to consistently detect features (Figures 6, 9) that are known
to be medically relevant such as OP, STR, Flicker reported in
various studies (Tyler, 1981; Saszik et al., 2002; de Lara et al.,
2014, 2015; Porciatti, 2015; Grillo et al., 2018). In particular,
studies conducted byWilsey and Fortune (2016), Hermas (2019),
Beykin et al. (2021) investigating the variability of PhNR in
glaucomatous and healthy subjects in PERG and fERG have
found that PhNR to be an important biomarkers for detection of
glaucoma. It is worth noting that in fERG analysis (ERG protocol
for this study), pSTR, nSTR, PhNR are extracted from STR.

Therefore, we were able to demonstrate that the proposed
framework for early-stage glaucoma diagnosis can be
reproducibly evaluated and validated even on such a compact
database. Furthermore, we would like to note that there are
other investigations that successfully applied ML-based method
in different fields, including biomedical (Seo et al., 2020) and
material science (Zhang and Ling, 2018) using compact datasets.
The procedure employed for the development of the predictive
modeling framework is summarized below.

• Data Split: Hold out (80% training, k-fold cross-validation,
20% testing).

• Dimensionality reduction: Feature Extraction.
• Feature selection:MRMR.
• Hyper-parameter tuning: k-fold cross-validation (k= 10).
• Model Evaluation: Performance metrics evaluated on the

unseen testing set.

The dataset was divided into two parts; 80% of the data was
used for training and validation, and the remaining 20% was
set aside for testing. The hold-out testing strategy ensured that
the test data was never a part of the training process (Yadav
and Shukla, 2016). Dimensionality reduction was performed
using feature extraction and feature selection. MRMR feature
selection algorithmwas used to identify the important predictors.
K-fold (K = 10) cross-validation was used for training and
hyper-parameter tuning (Duan et al., 2003). The cross-validation
technique significantly reduces bias when working with small
datasets (Varma and Simon, 2006). The loss function was
the objective minimization function for both classification
regressions during hyper-parameter optimization. The hyper-
parameters associated with corresponding ML algorithms
(Feurer and Hutter, 2019), as shown in Table 1, were optimized
through nested cross-validation. Next, the trained model with
optimized hyper-parameters was evaluated using test data that
was not a part of training. To further ensure that the machine
learning models compared in this investigation were not over-
fitted, given the compact dataset used in the present study, the
behavior of training and testing error vs. training cycles was
monitored. Different techniques, including Tree, Discriminant,
SVM, Naive Bayes, Tree Ensemble, and KNN, were applied,
and their performances were assessed. The performance of each

TABLE 1 | Hyperparameters tested/optimized.

Method Hyperparameter search

range

Optimized

hyperparameters

Ensemble Ensemble method: Bag,

GentleBoost,

LogitBoost, AdaBoost,

RUSBoost

Number of learners: 10–500

Learning rate: 0.001-1

Maximum number of splits:

1–47

Number of predictors to

sample: 1–5

Ensemble

method: Bag

Maximum

number of splits:

1

Number of

learners: 52

Number of

predictors-

to sample: 1

Knn Number of neighbors: 1-24

Distance metric: City block,

Chebyshev,

Correlation, Cosine, Euclidean,

Hamming,

Jaccard, Mahalanobis,

Minkowski (cubic),

Spearman

Distance weight: Equal,

Inverse,

Squared inverse

Standardize data: true, false

Number of

neighbors: 24

Distance metric:

Correlation

Distance weight:

Inverse

Standardize

data: true

NaiveBayes Distribution names: Gaussian,

Kernel

Kernel type: Gaussian, Box,

Epanechnikov, Triangle

Distribution

names: Gaussian

Kernel type:

Epanechnikov

Discriminant Discriminant type: Linear,

Quadratic,

Diagonal Linear, Diagonal

Quadratic

Discriminant

type:

Diagonal Linear

SVM Multiclass method:

One-vs-All, One-vs.-One

Box constraint level:

0.001-1000

Kernel scale: 0.001–1000

Kernel function: Gaussian,

Linear,

Quadratic,

Cubic Standardize data: true,

false

Kernel function:

Linear

Box constraint

level: 2.4185

Multiclass

method:

One-vs.-All

Standardize

data: false

Tree Maximum number of splits:

1–47

Split criterion: Gini’s diversity

index,

Maximum deviance reduction

Maximum

number of splits:

5

Split criterion:

Maximum

deviance reduction

technique was assessed based on the accuracy (discussed in
section 2.9) is tabulated in Table 2. Considering binary and
multiclass classifications, it can be seen that the Ensemble-
based technique (bagged tree) was consistently outperforming
other techniques. Additionally, other performance metrics for
ensemble bagged trees (discussed in section 2.9) are summarized
in Table 3.

3.1. Binary Classification
For binary classification (classifying animals with/without
glaucoma) based on statistical features, the correlation of cones,
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TABLE 2 | Testing accuracy obtained using various machine learning techniques.

Tree Discriminant SVM Naive Bayes Ensemble (Bagged) KNN

Binary Statistical 75 80 83.33 80 83.33 66.70

Wavelet 83.33 83.33 91.70 83.33 91.70 75

Multiclass Statistical 33.33 41.70 50 16.70 53.33 33.33

Wavelet 41.70 50 64.66 33.33 80 50

Values in bold font indicate the accuracies of best-performing classifier.

TABLE 3 | Performance metrics for ensemble classifier.

Accuracy F-measure Precision Sensitivity Specificity

Binary Statistical 80 80 80.36 80.36 80.36

Wavelet 91.67 91.61 92.86 91.67 91.67

Multi-class Statistical 53.33 50.74 53.18 51.67 75.48

Wavelet 80 79.63 83.81 83.333 90.30

mean of flicker, median, and skewness of Hi Rods and cones,
and standard deviation of cones were identified as important
among the statistical features as shown in Figure 4. Moreover,
the box plot demonstrates variations of each feature for each class
(with/without glaucoma), respectively. Several models, including
SVM and ensemble-based classifiers were used for training, and
their performances were assessed. It turned out that the SVM and
ensemble bagged tree provide the best performance with a testing
accuracy of 83.33%, as shown in Table 2.

Next, the binary classification was performed using wavelet-
based features. Among the extracted wavelet features, Shannon
Entropy Values for Maximal Overlap Discrete Wavelet Packet
Transform (MOD-PWT) were identified as important features
from Rods and cones, Rods, STR, and OP, as shown in Figure 5.
The utilization of the selected advanced features improved the
accuracy to 91.70% by the ensemble bagged tree algorithm.

It should be noted that the MRMR method selects features
based on statistical relevance while dropping redundant features
and thus, is computationally efficient (Darbellay and Vajda,
1999; Ding and Peng, 2005). Figure 6 demonstrates this for
binary classification. It can be observed that correlation feature
from cones, Moment of order three and trimmed mean feature
from Oscillatory Potentials (OP) and Range and aspect ratio
from Scotopic Threshold Response (STR) are highly correlated;
Therefore, only the feature cones correlation was picked by
the MRMR algorithm as inclusion of the other three did not
increase/decrease the models predictability.

Figure 7 compares the predictive importance scores obtained
based on the statistical and wavelet-based features. Predictive
importance scores describe the predictive capability of selected
features (Kuhn and Johnson, 2013). It can be observed that
wavelet-based features can distinguish healthy and glaucomatous
animals suggesting that they are more sensitive to subtle changes
in ERG signals due to glaucoma. It should be noted that the
feature selection algorithm MRMR (Maximum Relevance and
Minimum Redundancy) ignores highly correlated features for
model simplicity. Therefore, only uncorrelated sets of features

that improved predictability across the animals were chosen, i.e.,
for a set of correlated features, one representing the correlated
set gets picked by the algorithm. Figure 6 demonstrates the list of
important but highly correlated features that were dropped. The
scatter plot inside the Figure 6 shows the correlation coefficients
confirming the high degree of the correlation between them.

3.2. Multiclass Classification
For multiclass classification (classifying animals to different
stages, normal, high, and glaucomatous as mentioned in section
2.4) based on statistical features, the correlation of cones,
number of troughs in Hi cones, kurtosis of STR and mean
of flicker were identified as important among the statistical
features as shown in Figure 8. Several models, including SVM
and ensemble-based classifiers, were used for training, and their
performances were assessed. It turned out that the ensemble-
based classifiers, specifically the bagged trees model, provided the
best performance with a testing accuracy of 53.33%, as shown in
Table 2.

Next, the multiclass classification was performed using
wavelet-based features. Among the extracted wavelet features,
Wavelet variance of rods and Shannon Entropy Values and
AR coefficients for Maximal Overlap Discrete Wavelet Packet
Transform (MOD-PWT) were identified as important features
fromHi-Flicker, Flicker, Hi-cones, and STR as shown in Figure 9.
The identification of flicker as an important distinguishing
feature in diagnosing early-stage glaucoma was consistent with
previous studies (Tyler, 1981; Lachenmayr and Drance, 1992;
Horn et al., 1997; Yoshiyama and Johnson, 1997). In fact, flicker
measurements in eyes with early-stage glaucoma exhibited a loss
in sensitivity around 30–40 Hz (Tyler, 1981). It is worth noting
that the flicker measurements used in this study were recorded
using flashes at 30 Hz. The identification of the flicker ERG test
and the corresponding features, among other tests, reconfirmed
the capability of the current approach in identifying the relevant
features. Training the ensemble bagged trees model, utilizing the
selected advanced features, improved the multiclass classification
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FIGURE 4 | Boxplot of statistical features selected by Minimum Redundancy and Maximum Relevance (MRMR) feature selection algorithm for binary classification

(Std D, Standard Deviation). On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the “+” marker symbol.

FIGURE 5 | Box plot of wavelet-based features selected by Minimum Redundancy and Maximum Relevance (MRMR) feature selection algorithm for binary

classification (W-SE, Wavelet based Shannon Entropy; AR-COEF, Autoregressive Coefficient). On each box, the central mark indicates the median, and the bottom

and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the

outliers are plotted individually using the “+” marker symbol.
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FIGURE 6 | Boxplot of statistically important features for binary classification. The important features capable of distinguishing healthy and glaucomatous are

correlated feature from Cones, third order Moment and trimmed mean feature from Oscillatory Potentials (OP) and Range and aspect ratio from Scotopic Threshold

Response (STR). However, the high similarity between these features quantified by the correlation scores in the scatter plot create redundancy (inclusion

cones(correlation) feature alone vs inclusion all five features does not improve accuracy). Therefore, utilizing the cones correlation feature alone captures the behavior of

the other four features. This dropping of redundant features and choosing Cones (correlation) feature alone is achieved by using Minimum Redundancy and Maximum

Relevance (MRMR) algorithm (On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the “+” marker symbol.).

FIGURE 7 | Comparison of predictive importance scores for binary classification using (A) statistical features and (B) wavelet-based features. This bar chart illustrates

the superior predictive capability of wavelet-based features. Std D, Standard Deviation; W-SE, Wavelet based Shannon entropy; AR-COEF, Autoregressive coefficient.

accuracy to 80%, as shown in Table 2. This improvement in
accuracy indicated that wavelet-based features can distinguish
healthy and glaucomatous animals suggesting that they are more
sensitive to subtle changes in ERG signals due to glaucoma.
The multiclass classification ability of this framework reaffirmed
the rich and complex nature of ERG signals in assessing the
disease progression.

3.3. RGC Regression
Regression analysis was performed to predict retinal ganglion
cell count from ERG signals. Feature selection for regression
was performed using MRMR sequential feature selection. RGC
values of the animals ranged between 8 and 120. RSME for RGC
regression was 15.64 and 11.20 for models trained with statistical
features and wavelet-based features, respectively. Regression
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FIGURE 8 | Boxplot of statistical features selected by Minimum Redundancy and Maximum Relevance (MRMR) feature selection algorithm for multiclass

classification. STR, Scotopic Threshold Response. On each box, the central mark corresponds to the median, and the bottom and top edges of the box correspond

to the 25th and 75th percentiles, respectively. The dashed lines (whiskers) extend to the most extreme data points not considered outliers, and the outliers are plotted

individually using the “+” marker symbol.

FIGURE 9 | Boxplot of wavelet-based features selected by Minimum Redundancy and Maximum Relevance (MRMR) feature selection algorithm for multiclass

classification. STR, Scotopic Threshold Response; W-SE, Wavelet based Shannon Entropy; AR-COEF, Autoregressive Coefficient. On each box, the central mark

indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data

points not considered outliers, and the outliers are plotted individually using the “+” marker symbol.

results using wavelet-based features are shown in Figure 10.
The results in Grillo et al. (2018) indicate that RGC counts
had a strong correlation with STR and OPs. The dominant

features selected for RGC regression (from STR and OP) were
in agreement with the findings in Grillo et al. (2018). Table 4
compares performance of various ML based regression models
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FIGURE 10 | RGC count regression plot. This plot contains the ground truth and predicted response of RGC count predicted using Gaussian Process Regression

(GPR). The squared exponential GPR model was trained using both standard and advanced features. The RGC count of the animals ranged between 8 and 120, and

the root mean squared error in the prediction of RGC was 11.2. The line in this plot denotes when the predicted values are equal to ground truth values.

TABLE 4 | Performance metrics for retinal ganglion cells (RGCs) Regression.

Machine learning algorithm RSME

Statistical Wavelet

Tree 31.716 17.852

SVM 17.177 13.82

Ensemble (Bagged) 29.129 24.387

Logistic regression 44.622 24.873

Gaussian process regression 15.644 11.201

Bold font indicate the best performing regression model and its corresponding RSME.

in predicting retinal ganglion cells (RGCs) counts: The higher
error (RSME) with statistical features compared with the wavelet-
based advanced features emphasized the need for sophisticated
features to predict RGC count accurately. SVM- and GPR-based
models provided the most accurate prediction of RGC numbers
from ERG signals. Specifically, squared exponential and rational
quadratic models of GPR provided the least error.

4. DISCUSSION

Our goal was to determine the feasibility of applying ML-based
methods to the analysis of ERG signals for glaucoma detection
at different stages of the disease. In the present study, we
systematically applied machine-learning-based methods for the
first time to detect glaucoma and predict RGC loss based on
ERG signals. The present study utilized ERGs measured in mice

rather than from human patients, because the use of data from
a preclinical model allowed us to validate “ground truth” data
sets with a range of complimentary and alternative experimental
strategies, which is not possible in human clinical studies. These
include histology, biochemical, and immunochemical assays,
as well as optomotor reflex measurements. We were able to
determine for the first time that advanced features (wavelet-based
features) are capable of detecting subtle changes in the ERG signal
and perform multiclass classification based on the progression
level of the disease with 80% accuracy. In particular, we found
that Shannon Entropy Values for Maximal Overlap Discrete
Wavelet Packet Transform (MOD-PWT) and AR coefficients
represent important features capable of detecting early-stage
glaucoma. Among the nine available ERG signals, Flicker, STR,
OP, and Rod-Cone appear integral for such successful detection.
This is in agreement with the results published in Lei et al. (2006).
However, given that these features are highly correlated, the ML-
based algorithm picks only one for each set of highly correlated
features to reduce the model complexity as shown in Figure 6.

In addition, the method proposed here performs ERG analysis
in a wavelet domain instead of a frequency domain, which
allows to capture subtle changes in the signals. In addition,
various intricate features such as multiscale wavelet variance
estimates, Shannon entropy, and autoregressive coefficients are
incorporated in the method, compared to basic features such as
differences in amplitude and latency in previous studies (Hood
et al., 2000; Fortune et al., 2002; Thienprasiddhi et al., 2003;
Stiefelmeyer et al., 2004; Ventura and Porciatti, 2006; Chu et al.,
2007; Miguel-Jiménez et al., 2010; Luo et al., 2011; Palmowski-
Wolfe et al., 2011; Todorova and Palmowski-Wolfe, 2011; Ho
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et al., 2012; Hori et al., 2012; Ledolter et al., 2013; Consejo et al.,
2019). The results strongly suggest that such advanced features
in the wavelet domain are necessary for detection of early-stage
glaucoma.Moreover, in contrast to the recent study that leverages
ML-based technique to analyze ERG using solely the photopic
negative response (PhNR) component (Armstrong and Lorch,
2020), the current method uses all ERG components in the
analysis to fully utilize the capability of the ML-based technique
to crunch large data sets and draw complicated relationships.
Therefore, the proposed framework is not limited to a small
subset of genetic eye diseases like previous studies (Fortune
et al., 2002; Thienprasiddhi et al., 2003; Stiefelmeyer et al., 2004;
Chu et al., 2007; Miguel-Jiménez et al., 2010; Luo et al., 2011;
Palmowski-Wolfe et al., 2011; Todorova and Palmowski-Wolfe,
2011; Ho et al., 2012; Hori et al., 2012; Ledolter et al., 2013;
Consejo et al., 2019); instead, it is capable ofmapping ERG signals
to various eye diseases.

5. CONCLUSION

Results obtained in the present study strongly suggest that
the methods employed can reproducibly identify dominant
features for classification and regression from STR, Oscillatory
potentials (OPs), and other ERG tests consistent with the
results reported in previously published work on the sensitivity
of and OPs and flicker to subtle changes in RGC function
and viability (Tyler, 1981; Brandao et al., 2017). Further, our
approach identified additional dominant distinguishing features
such as Shannon Entropy Values for Maximal Overlap Discrete
Wavelet Packet Transform (MOD-PWT) and AR coefficients,
which are not distinguishable by traditional methods used in
Grillo et al. (2018). This strongly suggests that the current
machine-learning-based algorithm has significant potential in
distinguishing subtle changes in ERG signals corresponding
to different stages of glaucoma disease development. This
capability of the technique could be used as a foundational
step to create a reliable framework for the early detection of
glaucoma and to monitor efficacy of therapeutic intervention
in both clinical practice and novel drug development for

glaucoma. In addition, the inclusion of various ERG protocols

in this framework, such as cones, rods and cones, STR, and
oscillatory potentials, represent responses from different cell
types in the eye. Therefore, ERG response can be mapped
to diseases specific to those cell types. It should be noted
that this study was based on mice and with 12 h of dark
adaptation. The promising results obtained here suggest the
great potential for this method to help detect early stage,
pre-symptomatic glaucoma. However, an additional study on
adaptation requirements would be required before extending this
framework to humans.
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