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Editorial on the Research Topic

Neural Tracking: Closing the Gap Between Neurophysiology and Translational Medicine

Perception involves making sense of the world around us by processing a continuous flow of multi-
modal sensory information. In doing so, the human brain produces electrical activity that can
be measured in a variety of scenarios and tasks to shed light on the neural basis of continuous
perception. This work has shown that electrical brain activity synchronizes to particular properties
of sensory inputs, a phenomenon referred to as neural tracking (Obleser and Kayser, 2019). Recent
work demonstrated that both invasive and non-invasive electrophysiology recordings can robustly
detect neural tracking (Lalor et al., 2006; Ding and Simon, 2012; Gross et al., 2013; Zion Golumbic
et al., 2013), offering objective measurements to study perception in increasingly more complex
tasks involving continuous real-life stimuli, such as speech and music.

The case of auditory perception is particularly remarkable. The discovery that neural signals
reliably track the amplitude envelope of continuous sounds (envelope tracking) (Lalor et al., 2009)
has led to new research directions. In primis, envelope tracking measurements have enabled a range
of studies on auditory attention in realistic multi-talker scenarios (e.g., see COCOHA project,
H2020.2.1.1.4. ID = 644732), showing that signals recorded with invasive electrocorticography
(ECoG) as well as non-invasive electro- andmagneto-encephalography (EEG/MEG) track attended
and unattended sounds in a different manner (Ding and Simon, 2012; Zion Golumbic et al.,
2013; O’Sullivan et al., 2014, 2019). This pioneering discovery led to an entire new direction for
brain-computer interface research, with perspectives for novel devices such as brain-controlled
hearing-aids (Eyndhoven et al., 2017; O’Sullivan et al., 2017; Ceolini et al., 2020). A parallel line
of work demonstrated that multiple properties of the same stimulus are tracked simultaneously
(O’Sullivan et al., 2016; Di Liberto et al., 2021a; Gillis et al., 2021). In the context of speech
listening, cortical signals were shown to track progressively higher-level properties of the speech
signal, from acoustical features (Lalor and Foxe, 2010; Ding et al., 2014) to linguistic units (Di
Liberto et al., 2015, 2018b; Brodbeck et al., 2018; Lesenfants et al., 2019), prosody (Myers et al.,
2019; Teoh et al., 2019), and semantic content (Broderick et al., 2018, 2021; Weissbart et al.,
2020). As such, neural tracking measurements can offer a rich view into the hierarchical encoding
of speech by providing us with distinct objective indices referring to different processing stages.
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The outstanding advances in this domain have pushed
scientists to explore the potentialities of studying neural tracking
in translational research (Jessen et al., 2019; Dial et al.,
2021; Geirnaert et al., 2021; Palana et al., 2022). Indeed, the
unprecedented opportunity to assess the speech processing
hierarchy as a whole (as well as for other stimuli, such as music)
in a single experimental session is a very compelling reason that
encourages the exploration of translational research directions.
Furthermore, the possibility of using ecologically-valid tasks,
such as movie or cartoon watching, opens the door to cohorts
that would be difficult to assess otherwise (Di Liberto et al.,
2018a; Jessen et al., 2019; Attaheri et al., 2022). Nevertheless,
the feasibility for the translational applications of neural tracking
metrics remains to be determined, as the theoretical and
methodological challenges are yet to be uncovered.

In this special topic issue we have gathered contributions
from scientists working in diverse disciplines who have common
interests in the neural tracking phenomenon from various
research domains. The current issue includes studies on speech
(Alickovic, Ng, et al.) and music perception (Hausfeld et al.),
selective attention (Huet et al.), and aging in healthy individuals
(Mesik et al.). It also covers methodological considerations
for translational research (Crosse et al.) and for measuring
responses to different speech features (Bachmann et al.), as well
as theoretical and practical perspectives on hearing-impairment
(Alickovic, Ng, et al.), hearing-aid technology (Alickovic, Lunner,
et al.), and schizophrenia (Meyer et al.). Bringing together
work from a variety of research domains demonstrates the
extensive width of applications for neural tracking research, while
hopefully helping to build a new community of interdisciplinary
research. We were very fortunate to enlist a varied and talented
group of authors to contribute such a wide range of topics.
Thirty-five authors contributed to the eight papers included,
with a mixture of six original research articles, one review, and
one hypothesis and theory. Taken together these papers present
an overview of research on neural tracking from a range of
perspectives, indicating a promising research framework that can
greatly contribute to translational research questions, both from
theoretical and applied perspectives.

As typical for new lines of work, the literature offers a diverse
set of approaches and views regarding neural tracking. One issue
is the apparent inconsistency in the terminology used by different
research groups, leading to some confusion with terms such
as neural entrainment, synchronization, and tracking. Obleser
and Kayser (2019) have recently put forward an important
distinction between the concepts of neural entrainment in the
narrow and broad sense. In their view, neural entrainment in
the narrow sense refers to the concept of “synchronization,”
whereby endogenous self-sustained neural oscillators adjust their
temporal dynamics (“rhythms”) to that of the sensory input
(Schroeder and Lakatos, 2009). While this definition is specific to
a particular neural mechanism, we use the term neural tracking
to refer to neural entrainment in the broad sense, where the
neurophysiology measurements likely reflect a combination of
multiple phenomena. In fact, it is challenging (to say the least)
to make any claim on the specific neural mechanisms generating
such non-invasively recorded signals. Nevertheless, a somewhat

agnostic view on such underlying neural mechanisms would not
prevent us from making valuable theoretical and practical use
of such measurements. Work using such measures has already
contributed to our understanding of speech (Mesgarani et al.,
2014; Di Liberto et al., 2015, 2021a; Ding et al., 2015; Brodbeck
et al., 2018; Broderick et al., 2018) andmusic perception (Tal et al.,
2017; Di Liberto et al., 2020, 2021b; Marion et al., 2021; Zuk et al.,
2021), selective attention (O’Sullivan et al., 2014; Decruy et al.,
2020; Fuglsang et al., 2020), multisensory integration (Crosse
et al., 2016; Sullivan et al., 2021), and even abstract cognitive
processes such as arithmetic (Kulasingham et al., 2021). The work
in this Research Topic attempts to portray a wide set of findings
while using consistent terminology.

This Research Topic is a first attempt to put together
methodological, theoretical, and applied work with the common
aim of projecting the study of neural tracking toward
translational research. Recent reviews have discussed the neural
tracking phenomenon (Obleser and Kayser, 2019; Hamilton
and Huth, 2020), including specific applied research scenarios
involving atypical cohorts (Palana et al., 2022). From that work,
it is clear that we have only scraped the surface of a line of
work with great potential, and that much more is yet to come.
Neural tracking has a minimal presence in translational research
at present. One challenge is that the literature portrays a complex
research landscape, including many methodologies to evaluate
and report the results. As for more established methodologies
(e.g., ERPs), the definition of appropriate standardisations and
the development of appropriate tools to more rapidly and
effortlessly measure neural tracking are crucial to effectively
adopting these methodologies to translational research.

One paper in this article collection contributed to this debate,
presenting a set of precise guidelines on how to measure,
evaluate, and report neural tracking in applied research by using
one particular approach (the multivariate temporal response
function—mTRF) (Crosse et al.). Others have emerged from
discussions at conferences (e.g., ARO) and workshops (e.g., the
Telluride Neuromorphic Engineering workshop), with special
sessions revolving around neural tracking. The more specific
Cognition and Natural Sensory Processing (CNSP) initiative,
which has an educational focus, aims at bringing together
researchers interested in studying and using neural tracking
measurements, offering a workshop and online resources, such
as standardized datasets and analysis code. Other fields such
as genomics have demonstrated that resource sharing has the
potential to propel research fields extensively beyond state of
the art (Kaye et al., 2009; Captur et al., 2016). The benefits will
be greater if resource sharing is taken as a new opportunity to
answer the many open questions in our fields, rather than a
separate independent niche for computational scientists. Taking
inspiration from other fields could greatly help us in tackling the
potential challenges that come with new opportunities.
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