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Purpose: We present a novel approach that allows the estimation of morphological
features of axonal fibers from data acquired in vivo in humans. This approach allows
the assessment of white matter microscopic properties non-invasively with improved
specificity.

Theory: The proposed approach is based on a biophysical model of Magnetic
Resonance Imaging (MRI) data and of axonal conduction velocity estimates obtained
with Electroencephalography (EEG). In a white matter tract of interest, these data
depend on (1) the distribution of axonal radius [P(r)] and (2) the g-ratio of the individual
axons that compose this tract [g (r)]. P(r) is assumed to follow a Gamma distribution
with mode and scale parameters, M and θ, and g(r) is described by a power law with
parameters α and β .

Methods: MRI and EEG data were recorded from 14 healthy volunteers. MRI data
were collected with a 3T scanner. MRI-measured g-ratio maps were computed and
sampled along the visual transcallosal tract. EEG data were recorded using a 128-
lead system with a visual Poffenberg paradigm. The interhemispheric transfer time
and axonal conduction velocity were computed from the EEG current density at the
group level. Using the MRI and EEG measures and the proposed model, we estimated
morphological properties of axons in the visual transcallosal tract.

Results: The estimated interhemispheric transfer time was 11.72 ± 2.87 ms, leading to
an average conduction velocity across subjects of 13.22 ± 1.18 m/s. Out of the 4 free
parameters of the proposed model, we estimated θ – the width of the right tail of the
axonal radius distribution – and β – the scaling factor of the axonal g-ratio, a measure
of fiber myelination. Across subjects, the parameter θ was 0.40 ± 0.07 µm and the
parameter β was 0.67 ± 0.02 µm −α.
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Conclusion: The estimates of axonal radius and myelination are consistent with
histological findings, illustrating the feasibility of this approach. The proposed method
allows the measurement of the distribution of axonal radius and myelination within a
white matter tract, opening new avenues for the combined study of brain structure and
function, and for in vivo histological studies of the human brain.

Keywords: MRI, EEG, axonal morphology, IHTT, in vivo histology

INTRODUCTION

The characterization of microscopic brain changes in vivo in
clinical populations is essential to the understanding of brain
disease. Magnetic Resonance Imaging (MRI) is non-invasive and
the primary technique for the assessment of brain structure
in vivo (Weiskopf et al., 2015; Kiselev and Novikov, 2018). MRI
is sensitive to a large array of microscopic properties of brain
tissue such as cell density, fiber radius and directionality, myelin,
and iron concentration (Fukunaga et al., 2010; Lutti et al., 2014;
Weiskopf et al., 2015; Jelescu et al., 2020). Biophysical models
of the relationship between tissue microstructure and the MRI
signal allow the assessment of microscopic properties of brain
tissue from in vivo MRI data (“in vivo histology”) (Weiskopf
et al., 2015; Edwards et al., 2018; Kiselev and Novikov, 2018;
Jelescu et al., 2020). Since MRI gives rise to a variety of image
contrasts, each contrast being differentially sensitive to multiple
microscopic properties of brain tissue, such biophysical models
are intrinsically tuned to specific types of MR images (MacKay
and Laule, 2016; Does, 2018; Kiselev and Novikov, 2018; Jelescu
et al., 2020). Here, we focus on axonal radius and myelination and
on the main biophysical models that allow their measurement
from in vivo data.

Axonal radius is a key property of neurons and is the main
determinant of the speed of conduction of action potentials
along axonal fibers (Rushton, 1951; Waxman and Bennett,
1972). Axonal radius plays an essential role in neuronal
communications and is an instrumental structural underpinning
of brain function (Liewald et al., 2014). Axonal radius estimates
have been used as measures of functional connectivity in
generative models of brain function, e.g., using dynamic causal
modeling (Stephan et al., 2009; Honey et al., 2010). Moreover,
axonal radius is a biomarker of brain development and healthy
aging (Weiskopf et al., 2015) and is of high clinical relevance for
a range of disorders such as autism (Wegiel et al., 2018), multiple
sclerosis (Evangelou et al., 2001) and motor-neuron disease
(Cluskey and Ramsden, 2001). Diffusion contrast is the main type
of MRI data used for the measurement of axonal radius in vivo.
Suitable biophysical models include AxCaliber (Assaf et al., 2008;
Barazany et al., 2009), which enables the estimation of the full
distribution of axonal radius. ActiveAx is an alternative model
that enables the estimation of axonal radius in all white matter
tracts without a priori knowledge of fiber orientation (Alexander
et al., 2010). However, this model provides a single summary
index of axonal radius distribution, weighted toward larger axons
(Jones et al., 2018; Veraart et al., 2020). Axonal radius estimates
obtained in vivo from diffusion MRI data are often overestimated
compared to histological values (Aboitiz et al., 1992; Liewald

et al., 2014) due to the limited gradient strength of MRI scanners
and other confounding factors, such as the dominance of the
extra-axonal signal (Burcaw et al., 2015; Nilsson et al., 2017; Jones
et al., 2018; Lee et al., 2018; Jelescu et al., 2020; Veraart et al.,
2020).

Besides axonal radius, axonal fiber myelination is also a
crucial factor in the transmission of neuronal information and
brain function (MacKay and Laule, 2016). The non-invasive
assessment of myelination enables the study of brain plasticity in
healthy individuals and brain changes in a range of neurological
disorders (Lazari and Lipp, 2021). Relaxometry MRI data are
in vivo biomarkers of bulk myelin concentration within brain
tissue (Lutti et al., 2014; Stüber et al., 2014). While their
validity is supported by a large array of empirical evidence,
these biomarkers lack an explicit link with the underlying
histological properties of brain tissue, consequently hindering
the interpretability of results (Weiskopf et al., 2015). Further
specificity may be gained from MRI measures of the fraction of
water embedded within the myelin sheath (Feintuch et al., 2007;
MacKay and Laule, 2016; Does, 2018). Nonetheless, important
aspects pertaining to exchange between compartments and
suitable MRI acquisition sequences remain unclear (Dortch et al.,
2013). Another effort toward improved specificity lies in MRI
measures of the g-ratio, the relative thickness of the myelin sheath
around axons (Stikov et al., 2011, 2015). MRI-measured g-ratio
estimates are aggregate measures of the axonal g-ratio, across all
fibers present in each voxel of an MR image (West et al., 2016).

In summary, current MRI markers of axonal radius and fiber
myelination are averages across populations of axons present in
each voxel of an MR image. To date, estimating the distribution
of these morphological features across axonal populations remain
largely out of reach. To address this limitation, we propose a novel
approach that enables the estimation, from in vivo data, of the
radius and myelination of axonal fibers, across the distribution
of axonal populations in a white matter tract. This approach
is based on the combination of electroencephalography (EEG)
measures of signal conduction velocity along a white matter
tract of interest, and of MRI measures of the g-ratio, sampled
along the same tract. MRI and EEG have been jointly used in
brain connectivity studies and for the combined study of brain
structure and function (Westerhausen et al., 2006; Sui et al.,
2014; Helbling et al., 2015; Horowitz et al., 2015; Deslauriers-
Gauthier et al., 2019). In particular, the high temporal resolution
of EEG allows the estimation of the interhemispheric transfer
time (IHTT) (Saron and Davidson, 1989; Marzi, 1999) using the
established visual Poffenberger paradigm (Westerhausen et al.,
2006; Whitford et al., 2011; Friedrich et al., 2017; Chaumillon
et al., 2018). Subsequently, an estimate of axonal conduction
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velocity can be computed (Caminiti et al., 2013; Horowitz
et al., 2015). The dominant contributions of axonal radius
and myelination to conduction velocity (Drakesmith et al.,
2019) underline the complementarity of this EEG measure
with the MRI measures described above. In the first part of
this paper, we present the biophysical model underlying the
proposed approach (Figure 1). Numerical simulations are then
conducted to illustrate the plausibility of our results in light of
the histology literature and to assess the variability and accuracy
of the morphological estimates. To illustrate the feasibility of the
proposed approach, we present estimates of axonal morphology
obtained using in vivo data from the visual transcallosal white
matter tract of healthy volunteers.

THEORY—BIOPHYSICAL MODEL

Axon Morphological Properties
With the proposed model (Figure 1), both the MRI and EEG
data are described as a function of the distribution of axonal
radius [P (r)] and of the axonal g-ratio [g (r)] within a given white
matter tract. The axonal radius distribution is assumed to be a
Gamma distribution (Sepehrband et al., 2016):

P (r) = P (r|M, θ) = 1

0
(M

θ
+1
)
θ
M
θ
+1
r
M
θ e
−r
θ (1)

where r is the axonal radius. M represents the mode, i.e., the peak
of the axonal radius distribution and the parameter θ represents
the width of the right tail of the axonal radius distribution, a
measure of the number of large axons in a white matter fiber tract.

Histological studies have shown that larger axons exhibit
comparatively thinner myelin sheaths, i.e., larger g-ratios (Ikeda
and Oka, 2012; Gibson et al., 2014). From data obtained in the
peripheral nervous system of the rat, the radius dependence
of the g-ratio was shown to follow (Ikeda and Oka, 2012):
gREF(r) = 0.22 log(2r)+ 0.508. However, to facilitate the
mathematical manipulation of the biophysical model (Eqs. 3 and
5 below), we write the radius dependence of the axonal g-ratio as:

g(r) = β∗rα (2)

With this power law, the exponent α represents the slope of the
radius dependence of the axonal g-ratio, while the parameter β is
a scaling factor. Unlike the mathematical expression for gREF , this
power law does not include an offset term. To verify its validity,
we fitted this power law with the reference relationship (gREF)
of Ikeda and Oka (2012). The result shows an excellent level of
agreement between both expressions (R2= 0.99), with α = 0.18
and β = 0.57 (Figure 2A). We also verified the applicability of
the power law in the human central nervous system, where the
higher axonal g-ratio requires the addition of a systematic offset
to gREF . We estimated this offset to be 0.14, assuming a g-ratio
of 0.7 for an axonal radius of 0.9 µm, based on studies showing
g-ratio estimates between 0.65 and 0.79 (Mohammadi et al., 2015;
Stikov et al., 2015) across the range of axonal radius observed
in the human brain (Aboitiz et al., 1992; Caminiti et al., 2009;
Liewald et al., 2014). Fitting of the power law (Eq. 2) with the

reference relationship (gREF) after addition of this offset leads to
an excellent agreement (R2= 0.99), with α = 0.14 and β = 0.71
(Figure 2B). The latter values will be used when the parameters α

and β are set constant to allow for the estimation of other model
parameters (see section “Model Parameters”).

Modeling of the in vivo Data
In agreement with West et al. (2016), the MRI-measured g-ratio
is written as an ensemble average of the axonal g-ratios within
each image voxel, weighted by the axons’ cross-sectional area:

gMRI
2
=

∫
∞

0 R2g(r)2P(r)dr∫
∞

0 R2P(r)dr
=

∫
∞

0 r2P(r)dr∫
∞

0
r2

g(r)2 P(r)dr
(3)

where R is the fiber radius [R = r/g(r)]. From Eqs. (1) and (2),
Eq. (3) becomes (see Supplementary Appendix A):
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2
= β2θ2α
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) ∗ M+3θ+2 θ2
M
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(4)

As described in Waxman and Bennett (1972), axonal
conduction velocity (v) can be derived from the morphological
properties of axons using: v [m/s] = p d [µm]

g , where p (∼5.5–
6.0) represents the contribution of additional axonal factors to the
propagation of action potentials (e.g., length of Ranvier nodes,
electrical properties of the myelin membranes). Assuming an
equal contribution from all axons to the conduction velocity V
measured with EEG, we obtain:

V = 5.5
∫
∞

0
2r P(r)
g(r) dr (5)

From Eqs. (1) and (2), Eq. (5) becomes (see Supplementary
Appendix A):

V = 11θ1−α

β
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θ
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θ
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)
(6)

Model Parameters
The proposed model (Eqs. 4 and 6) includes 4 free parameters,
pertaining to the distribution of axonal radius (M and θ) and
to the radius-dependent axonal g-ratio (α and β). However, our
proposed model uses only two data types acquired in vivo (MRI-
measured g-ratio and EEG-based axonal conduction velocity). It
is therefore necessary to set two parameters to reference values.

In general terms, the choice of model parameters to
estimate should take into consideration the neural mechanisms
underlying each application study of this model. The exponent α

of the power law g(r) represents the rate of change in thickness
of the myelin sheath with axonal radius and may be a parameter
of interest when considering changes in neuronal shape that
differentially affect axons of different sizes. In contrast, the
scale parameter β equally affects axons of all sizes. Concerning
the distribution of axonal radius, we highlight that histological
studies across white matter tracts and animal species have
reported that, for reasons pertaining to brain size limitations
and metabolism, the mode M of the axonal radius distribution
remains largely constant (Tomasi et al., 2012; Liewald et al.,
2014). This motivates setting M to a constant value from the
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FIGURE 1 | Estimation of microscopic morphological properties of axons from in vivo MRI and EEG data. (A) Maps of MTsat, viso and vic are computed from the raw
MRI data and subsequently used to compute maps of the MRI-measured g-ratio (gMRI ) (left). The MRI-measured g-ratio maps are sampled along the visual
transcallosal tract using the streamlines obtained with diffusion MRI tractography. Estimation of the IHTT is performed after source reconstruction of the EEG data,
based on the difference in latency between the two maxima of activation at the two hemispheres observed on the group-averaged current source time course (right).
(B) The gMRI and IHTT estimates are used to estimate morphological properties of axons within the visual transcallosal tract axonal radius distribution [P(r), left] and
axonal g-ratio [g(r), right].

histological literature and estimating the tail parameter θ from
the in vivo data.

The choice of constant model parameters may also be guided
by the impact of inaccurate constant values on the estimated
morphological features. The bias of the parameter estimates
arising from inaccuracies of 10% in α, M or β was evaluated
using numerical simulations (with the procedure described in
methods section “Estimation of Axonal Morphology From in vivo
Data”). Across a range of plausible gMRI and V , an inaccuracy
of 10% in α leads to an average bias of ∼10 and ∼15% on the
estimated M and θ, respectively (Supplementary Figure 1A).
Similarly, an inaccuracy of 10% in M leads to an average bias
of ∼1 and ∼22% for β and θ, respectively (Supplementary
Figure 1B). However, an inaccuracy of 10% in β leads to an
average bias of ∼155% and ∼92% for M and θ, respectively
(Supplementary Figure 1C).

From the biological and numerical considerations above,
in this study, we chose to set α to 0.14 (see section “Axon
Morphological Properties”) and M to 0.40 µm (Tomasi et al.,
2012; Liewald et al., 2014) and to estimate the parameters β and θ.

MATERIALS AND METHODS

Numerical Simulations
Numerical simulations were conducted using Eqs. (4) and (6),
to examine the values of the model parameters (M, θ, α, and
β) obtained from combinations of the in vivo data (gMRI and V)
using the procedure described in methods section “Estimation of
Axon Morphology From in vivo Data”, and vice versa.

In order to highlight the range of in vivo data values
compatible with the proposed model, estimates of M and θ were
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FIGURE 2 | Radius dependence of the g-ratio. (A) An excellent agreement (R2= 0.99) is found between the proposed power law (green line) and reference
histological measures of the g-ratio [gREF (Ikeda and Oka, 2012), dashed line], with α = 0.18 and β = 0.57 µm−α. (B) The higher axonal g-ratios in the human
central nervous system were accounted for by adding an offset of 0.14 to the reference peripherical nervous system data. The agreement between the proposed
power law and the reference gREF remains very high (R2= 0.99), with α = 0.14 and β = 0.71 µm−α.

computed across a large range of gMRI and V values, setting
α = 0.14 and β = 0.71 (section “Axon Morphological
Properties”). The range of in vivo data values compatible with the
proposed model was determined by comparison of the M and θ

estimates against reference literature values.
Subsequent numerical simulations were conducted by

estimating the parameters β and θ across the range of compatible
in vivo data values, setting α = 0.14 and M to 0.40 µm (section
“Model Parameters”). In particular, we examined the range of
the parameters β and θ across values of gMRI and V reported
in the literature.

The variability of the model parameter estimates in the
presence of noise was also investigated. Simulated estimates of
the in vivo data gMRI and V were computed from combinations
of θ and β values using Eqs. (4) and (6). Noise was added to
the computed gMRI and V values with a standard deviation of
0.03 for gMRI and 0.50 m/s for V , representative of intra-subject
variability in in vivo data. To replicate in vivo conditions, 700
samples of gMRI and one sample of V were taken from the
resulting distributions of gMRI and V , and estimates of θ and β

from noisy data were calculated. This process was repeated 2,000
times and the standard deviation of the θ and β estimates across
repetitions was computed as a measure of their variability.

Finally, we set out to investigate the effect of using a
group averaged conduction velocity rather than subject-specific
velocities. We selected 15 samples of gMRI and V values from
distributions with means of 0.70 and 10 m/s and standard
deviations of 0.05 and 0.80 m/s, respectively, representative of
inter-subject variability in in vivo data. From these simulated
in vivo data, reference values of β and θ were calculated. Estimates
of β and θ were also computed from the average of the 15 samples
of V . We then estimated the bias between the reference β and θ

values and those obtained from the average value of V .

In vivo Data
We acquired data from 17 right-handed healthy volunteers.
All participants had normal or corrected-to-normal vision

and hearing and had no history of psychiatric or neurological
disorders. Participant handedness was evaluated with the
Edinburgh Handedness Inventory (Oldfield, 1971). All
participants gave written informed consent and received
80 Swiss Francs as monetary compensation. The study was
approved by the local ethics committee.

MRI data quality was assessed using the Motion Degradation
Index (MDI) described in Castella et al. (2018) and Lutti et al.
(2022). MDI values were . 4 s−1 for the PD- and T1-weighted
raw images, and . 5 s−1 MT-weighted raw images, indicative
of good quality images (Lutti et al., 2022; see Supplementary
Figure 2). Three participants were excluded due to artifacted
EEG recordings. The final sample consisted of 14 participants (6
females; age = 27.14 ± 3.86 years). Three participants had left
eye dominance, as determined by the eye viewing an object at
a distance when the participant looks through a small opening
(Miles, 1930). An overview of the data processing pipeline of the
in vivo data is shown in Figure 1A.

Magnetic Resonance Imaging-Based Estimation of
the G-Ratio
MRI data were collected on a whole-body 3T MRI system
(Magnetom Prisma; Siemens Medical Systems, Erlangen,
Germany) using a 64-channel receive head coil at the Laboratory
for Neuroimaging Research, Lausanne University Hospital.

Structural Magnetic Resonance Imaging Acquisition
A 3D structural T1-weighted Magnetization-Prepared Rapid
Gradient-Echo (MPRAGE) image was acquired with a 1 mm3

isotropic voxel size and a matrix size of 176 × 232 × 256.
TR/TE = 2,000/2.39 ms. TI/α = 920 ms/9◦. Parallel imaging
(acceleration factor 2, GRAPPA reconstruction) was used along
the phase-encoding direction (Griswold et al., 2002). The total
acquisition time was 4 min.

Relaxometry Magnetic Resonance Imaging Acquisition
The relaxometry MRI protocol consisted of multi-echo 3D
fast low angle shot (FLASH) acquisitions with magnetization
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transfer-weighted (TR/α = 24.5 ms/6◦, 6 echos), proton density-
weighted (TR/α = 24.5 ms/6◦, 8 echos) and T1-weighted
(TR/α = 24.5 ms/21◦, 8 echos) (Melie-Garcia et al., 2018)
image contrasts (Figure 1A). The echo spacing and minimal
echo time were both 2.34 ms. The MR images had a 1 mm3

isotropic voxel size. Parallel imaging (acceleration factor 2,
GRAPPA reconstruction) was used along the phase-encoding
direction (Griswold et al., 2002) and Partial Fourier (acceleration
factor 6/8) was used along the partition direction. B1-field
mapping data was acquired to correct for RF transmit field
inhomogeneities (Lutti et al., 2010, 2012): 4 mm3 voxel size,
TR/TE = 500/39.1 ms. B0-field mapping data was acquired to
correct for image distortions in the B1 mapping data: 2D double-
echo FLASH, TR/ α = 1,020 ms/90◦, TE1/TE2 = 10/12.46 ms,
BW = 260 Hz/pixel, slice thickness = 2 mm. The total acquisition
time was 27 min.

Diffusion-Weighted Imaging
Diffusion-weighted imaging (DWI) data were acquired using a
2D echo-planar imaging sequence (TR/TE = 7,420/69 ms) along
15, 30, and 60 diffusion directions with b = 650/1,000/2,000
s/mm2, respectively (Figure 1A). 13 images with b = 0 were
acquired, interleaved throughout the acquisition (Slater et al.,
2019), making a total of 118 isotropically distributed directions.
Images had a 2 mm2 isotropic voxel size and a matrix size of
96 × 106, with 70 axial slices. Parallel imaging was used along
the phase-encoding direction (acceleration factor 2, GRAPPA
reconstruction). The total acquisition time was 15 min.

Estimation of Magnetic Resonance Imaging Quantitative
Maps
Maps of Magnetization Transfer (MTsat) were computed from
the raw FLASH images as in Helms et al. (2008a,b) (Figure 1A).
The map computation was conducted using the hMRI toolbox
(Tabelow et al., 2019) and included corrections for local RF
transmit field inhomogeneities (Helms et al., 2008a) and for
imperfect RF spoiling (Preibisch and Deichmann, 2009).

DWI data were corrected for geometrical distortions,
using eddy from FMRIB’s Diffusion Toolbox (Andersson and
Sotiropoulos, 2016), and for echo-planar imaging susceptibility
distortions using the SPM12 fieldmap toolbox (Hutton et al.,
2002). DWI images were aligned to the MTsat map using SPM12
and a rigid body transformation. Finally, maps of the isotropic
diffusion (viso) and intracellular (vic) compartments volume
fractions were computed from the DWI data using the NODDI
model (Zhang et al., 2012) and the AMICO toolbox (Daducci
et al., 2015; Figure 1A).

Maps of the MRI-measured g-ratio were estimated from:
gMRI =

√
1/(1+MVF/AVF), where MVF and AVF are the

myelin and the axonal volume fractions, respectively (Stikov
et al., 2015; Figure 1A). The MVF maps were estimated from the
MTsat maps according to: MVF = αMTsat , where the calibration
factor α was set by assuming a median gMRI value of 0.70 in
the splenium of the CC of 11 subjects of a separate cohort
(α = 0.23) (Campbell et al., 2018; Slater et al., 2019). The AVF
maps were estimated as: AVF = (1− αMTsat) (1− viso)vic
(Stikov et al., 2015).

The Freesurfer 6.0 software (Schiffler et al., 2017) was used to
delineate each subject’s Brodmann areas 17 and 18 (Fischl et al.,
2008) from their MPRAGE image, corresponding to the primary
(V1) and secondary (V2) visual cortical areas, respectively.
These regions of interest (ROIs), henceforth called “V1V2”, were
grouped and registered to the diffusion data using FMRIB’s
Linear Image Registration Tool (Jenkinson and Smith, 2001).

Tractography analysis was conducted using the mrTrix
software (Tournier et al., 2019): whole-brain anatomically
constrained tractography was performed using the iFOD2
algorithm, with dynamic seeding to improve the distribution of
reconstructed streamlines density, a maximum of 45◦ between
successive steps, a cut-off of 0.05 in the fiber orientation
distribution amplitude, backtrack and streamlines cropping in
the gray-white matter interface. A total of 20 million streamlines
between 5 and 250 mm in length were selected and submitted
to SIFT2 to penalize streamlines with a reduced agreement with
diffusion data. The visual transcallosal tract was isolated by
selecting the streamlines connecting the V1V2 ROIs in each
hemisphere across the CC. This tract was used to extract samples
from the MRI-measured g-ratio maps (Figure 1A).

Electroencephalography-Based Estimation of the
Interhemispheric Transfer Time
Experimental Paradigm
We implemented the visual Poffenberger paradigm on a 61 cm
widescreen (60 Hz refreshing rate), in line with the literature
(Westerhausen et al., 2006; Whitford et al., 2011; Friedrich
et al., 2017; Chaumillon et al., 2018). The experiment was
administered using Psychtoolbox-3.0.16 in MATLAB (R2019b,
The Mathworks, Natick, MA). Participants were comfortably
seated on a chair in a dimly lit room, at a standardized distance
of 80 cm from the screen, thus 1 cm on the screen represented
0.72◦ of the visual angle. Each trial consisted of the presentation
of a black and white circular checkerboard with a pattern
reversal of 15 Hz on a gray background (20 cd/m2) and with a
duration of 100 ms. The stimuli were of 4◦ diameter and their
outer edge appeared at 6◦ horizontal and 6◦ vertical distance
from the centrally-located fixation cross (0.8◦ size) to the lower
left or right visual hemifield. The acquisition was structured
in 6 blocks with an approximate duration of 6 min each;
a short break was allowed between each experimental block.
Each block consisted of 205 trials (95 for right visual field,
95 for left visual field, and 15 where no stimulus appeared),
presented in a pseudorandom order and with inter-trial intervals
randomly assigned between 1.0 and 2.0 s. Participants were
instructed to avoid unnecessary movements and to press a
button as quickly as possible after the appearance of a stimulus
while keeping their gaze on the fixation cross. Responses were
given with the index finger via a keyboard button press placed
centrally to the subject’s body. The administered blocks alternated
between left and right-hand index finger button presses (three
blocks per hand).

Electroencephalography Data Acquisition
Continuous 128-channel EEG was recorded using the Micromed
recording system (Micromed SystemPlus Evolution, Mogliano
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Veneto, Italy) and an Ag/AgCl electrode cap (waveguardTM

original, ANT Neuro, Hengelo, Netherlands) at a sampling
rate of 1,024 Hz with FPz as the reference electrode and
AFFz as the ground electrode. Two additional horizontal EOG
electrodes were attached to the outer canthi of each eye. Electrode
impedance was kept below 20 k�. Electrode positions and head
shape were acquired for each participant using the xensorTM

digitizer (ANT Neuro, Hengelo, Netherlands).

Electroencephalography Data Analysis
EEG data analysis utilized custom-made MATLAB (R2021a,
The Mathworks, Natick, MA) scripts and open-source toolboxes
Fieldtrip (version 20191206, Oostenveld et al., 2011), EEGLAB
(version 13.4.4b, Delorme and Makeig, 2004), and Brainstorm
(Tadel et al., 2011). Continuous raw EEG was bandpass-
filtered between 0.1 and 40 Hz (digital filters). EEG epochs
were extracted from the filtered data ranging from -100 to
300 ms relative to visual stimulus onset. Artifact trials were
removed based first, on visual inspection. Next, we identified and
removed components containing eye movement related artifacts
by running an Independent Component Analysis based on the
runica algorithm (Bell and Sejnowski, 1995). Epochs containing
additional artifacts were identified based on a threshold of 80
µV and excluded from further analysis. Across participants, an
average of 20.5% (SD: 10.1%, range: 43–220 trials) and 21.3%
(SD: 11.0%, range: 42–206 trials) of the trials were rejected for
the left and right visual field stimulation, respectively. Artifact
electrodes were identified based on a threshold of 80 µV and
were interpolated using the nearest neighbors. On average, 5.9%
of electrodes (SD: 2.4%, range 3–14 electrodes) were interpolated
across participants. Epoched data were re-referenced to the
average reference. We removed DC drift by subtracting the
average within each epoch.

Source reconstruction was performed to identify the neural
origins underlying the visual evoked response to the left and
right hemifield visual stimuli (Figure 1A). Virtual sensors from
artifact-free EEG data were calculated using the minimum-norm
current density method (Hämäläinen and Ilmoniemi, 1994) as
implemented in Brainstorm. The MRI image of each subject was
registered to the electrode positions using an iterative algorithm
that finds the best fit between the head shape obtained using
the MRI data and that obtained via EEG digitization. Surface
reconstructions were obtained using a 3-layer Boundary Element
Method (Kybic et al., 2005; Gramfort et al., 2010) model on
each subject’s MRI image. The source grid was defined with
15,000 points on the gray matter. This way, we estimated the
current densities (CD, pA.m) for each condition, source, and
time point within each subject. The CDs were extracted for
the V1V2 ROI defined in section “MRI-Based Estimation of
the G-Ratio” — for the left and right brain hemisphere —
for each trial and each subject. Next, V1V2 ROI CDs were
averaged across trials within each subject. Given that cortical
anatomies vary considerably across participants due to the
folding patterns of each individual, current source density maps
have ambiguous signs on the group level. Consequently, we took
the absolute value of the CDs of each subject before computing
a group average.

Estimation of the Interhemispheric Transfer Time and
Conduction Velocity
We assumed that lateralized visual stimuli would induce first,
a contralateral activation of the visual cortex, followed by an
activation of the ipsilateral cortex. This visual information
transfer is assumed to be achieved through the CC (Marzi, 1999).

For the IHTT estimation, we identified the first peaks of
activation in each hemisphere based on the maximum of the
average current density value at the group level (Figure 1A).
IHTT was calculated as the latency difference between the
ipsilateral and contralateral activation peaks on the group
average CDs within the V1V2 ROI. A Wilcoxon signed-rank test
(p < 0.05; signrank, in MATLAB) comparing the CDs across
participants at these two maxima to the time-average baseline
values was used to evaluate the significance of these activations
as evoked activity in response to the visual stimuli.

To obtain a confidence interval on the computed IHTT,
we subdivided the artifact-free EEG trials available for each
participant into four non-overlapping splits. We then repeated
four times the CD estimation at group-level where each subject
contributed with data coming from one of the split in order to
obtain four independent estimations of the IHTT. This allowed
us to obtain a standard deviation on the IHTT estimation, which
we used to define a confidence interval on the IHTT estimation:
[IHTT-standard deviation; IHTT+standard deviation].

Of note, we assumed that the right eye dominance of the
majority of the included participants elicited a more reliable
estimation of the evoked activity following the left visual stimuli
in comparison to the right. For this reason, here, we used the
IHTT estimation following the left hemifield visual stimuli.

At the individual level, we extracted the visual transcallosal
tract length as the tractography-based mean streamline length. V
was calculated by dividing the tract length by the IHTT.

Estimation of Axonal Morphology From
in vivo Data
Estimation of axonal morphological features from the in vivo
MRI and EEG data was implemented using MATLAB-based
custom-made analysis scripts. The MRI-measured g-ratio
samples along the visual transcallosal tract and the estimate
of the IHTT were used to estimate model parameter values
using Eqs. (4) and (6) (see section “Axon Morphological
Properties”, Figure 1B). This was achieved using MATLAB’s non-
linear least-square routine (lsqnonl) with a trust-region-reflective
minimization, which minimizes the sum of the squares of the
residuals. The initial conditions used to ensure convergence of
the fitting routine were set to β = 0.70 µm−α and θ = 0.10
µm.

All codes are available on our online repository: https://github.
com/LREN-physics/AxonalMorphology.

RESULTS

Numerical Simulations
We investigated the range of in vivo data compatible with
the proposed model by considering the values of the model
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parameters M and θ computed from each combination of gMRI
and V (Figure 3). Combinations of large values of gMRI and
low values of V lead to unrealistically low values of M (∼10−14

µm). Conversely, small values of gMRI and large values of V lead
to excessively large values of M (∼1 µm) and low values of θ

(∼0.001 µm) (Aboitiz et al., 1992; Caminiti et al., 2009, 2013;
Tomasi et al., 2012; Liewald et al., 2014).

Figure 4 shows the range of the model parameters θ and
β across a large range of gMRI and V values. According to
the literature, frontal transcallosal white matter exhibits MRI-
measured g-ratio values of∼0.62 (Mohammadi et al., 2015; Slater
et al., 2019) and conduction velocities of ∼8 m/s (Caminiti et al.,
2013; see red cross in Figure 4A). The proposed model yields
θ ∼0.05 µm for such combination of gMRI and V , equivalent
to a mean axonal radius of 0.45 µm (Figure 4B). This value
is consistent with histological analyses of such white matter
fibers, with a narrow range of axonal radius (mean∼0.48 µm;
Caminiti et al., 2009). For visual transcallosal white matter (MRI-
measured g-ratio ∼0.72; conduction velocity ∼10 m/s; Caminiti
et al., 2013; Mohammadi et al., 2015; Slater et al., 2019), the
proposed model yields θ ∼0.23µm (see black cross in Figure 4A),
leading to a mean axonal radius of ∼0.63 µm (Figure 4B). This
value is also consistent with histological analyses of such white
matter fibers, with a broad range of axonal radius (mean∼0.62
µm; Caminiti et al., 2009). For both types of white matter
tracts, fibers with a radius above 1.5 µm represent less than
4% of the total number of fibers, consistently with previous
histological studies (Aboitiz et al., 1992; Caminiti et al., 2009;
Liewald et al., 2014). The value of the model parameter β for
frontal and visual transcallosal white matter were 0.68 and 0.73
µm−α, respectively (Figures 4C,D), in line with histological
analyses of the axonal g-ratio in the genu and splenium of the
CC (Stikov et al., 2015).

Figure 5 shows the variability of the θ and β estimates
in the presence of noise in the in vivo data, computed from
combinations of conduction velocity and MRI-measured g-ratio
across a plausible range with 700 gMRI samples and one V sample.

The highest errors in θ (∼35%) are found for the smallest values
of θ, with only a small effect of the parameter β. The highest
errors in β (∼1%) are obtained from a combination of small
values of θ and large values of β. Supplementary Figure 3 shows
the dependence of the variability of the θ and β estimates on
the number of samples of V and gMRI (β = 0.71 µm−α and
θ = 0.22 µm). With only one estimate of V , as was the
case in this study, errors of up to 11% on the θ estimates are
observed. The errors on the β estimates are mostly driven by
the number of gMRI samples included in the estimation: for 100
gMRI samples or more, these errors are below 1% regardless of the
number of V samples.

Figure 6 shows the bias in the θ and β estimates arising
from an estimation of conduction velocity from a cohort of
participants. The bias in θ and β is on average 12 and 0.90% across
participants, reaching up to 40 and 3%, respectively.

Estimation of the Interhemispheric
Transfer Time and Conduction Velocity
At the sensor level, the group-averaged visual evoked response
revealed a positive peak activation, between 115 and 134 ms
post-stimulus onset, contralaterally to the stimulus presentation
(Figure 7, top). The latency of this positive activation
corresponds to the expected latency of the P100 component
(Di Russo et al., 2001) and was followed by asymmetrically
distributed voltage topographies with maximal voltage values at
posterior sites at latencies starting at approximately 153 ms post-
stimulus onset (Figure 7, bottom). After approximately 180 ms,
post-stimulus onset voltage topographies showed an ipsilateral
positivity to the stimulus presentation, suggesting that the P100
activation has traveled to the opposite hemisphere.

Qualitative observations at the electrode-level were confirmed
by the source reconstruction results. Group-averaged absolute
CD exhibited a sharp increase at approximately 100 ms post-
stimulus onset in the right hemisphere compared to the baseline,
peaking at 141 ms (Figure 8B for an overview of the spatial

FIGURE 3 | Range of in vivo data compatible with the proposed model. Combinations of gMRI and V that lead to biologically plausible values of the model
parameters (0.05 < M <0.9 µm and 0.01 < θ<0.9 µm) are located between the two red contour lines.
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FIGURE 4 | Range of the model parameters θ and β. (A) Range of the model parameter θ, computed from combinations of simulated in vivo gMRI and V. (B) Axonal
radius distributions representative of frontal and visual transcallosal white matter (θ = 0.05 and 0.23 µm). (C) Range of the model parameter β, computed from
combinations of simulated in vivo gMRI and V. (D) Dependence of the fiber g-ratio on the axonal radius, representative of frontal and visual transcallosal white matter
(β = 0.68 and 0.73 µm−α). In (A,C), the red and black crosses illustrate values of gMRI and V for frontal and visual transcallosal tracts, taken from the literature
(Caminiti et al., 2013; Mohammadi et al., 2015; Slater et al., 2019).

distribution of the CD for an exemplar subject). The group-
averaged absolute CD on the left visual hemisphere followed the
right visual hemisphere, peaking later on at 152 ms.

The IHTT group estimation yielded a value of 11.72 ms
with a standard deviation of 2.87 ms. The identified peaks were
statistically significantly larger upon visual stimulation when
compared to the baseline with p-values of p < 0.01.

Using the estimated group IHTT, we calculated the conduction
velocity for the visual transcallosal tract using each participant’s
tract length. The average conduction velocity was 13.22 ± 1.18
m/s across participants (Table 1).

Estimation of Axonal Morphology From
in vivo Data
Estimates of the model parameters θ and β were computed
using the proposed model, from the in vivo samples of the
MRI-measured g-ratio along the visual transcallosal tract and

estimates of conduction velocity (Table 1). The average value
of θ was 0.40 ± 0.07 µm across all subjects and ranged
between 0.31 and 0.54 µm (Figure 9A). A θ value of 0.40
µm is equivalent to a mean axonal radius of 0.80 µm, inline
with previous estimates from histological studies (0.62 µm;
Caminiti et al., 2009). For such a value of θ, axons with a
radius above 2 µm represent only < 5% of the total fiber
count, in agreement with histological studies that show that
axonal radius does not exceed ∼1.5–3 µm in the human brain
(Aboitiz et al., 1992; Caminiti et al., 2009; Liewald et al., 2014).
The average value of β was 0.67 ± 0.02 µm−α across all
subjects, and ranged between 0.64 and 0.70 µm−α (Figure 9B).
Figure 9C shows the axonal radius distribution P (r) for
a representative subject (θ = 0.43 µm), with a confidence
interval of 0.27–0.69 µm obtained from the IHTT estimation.
The estimated value of β for this subject was 0.68 µm−α,
with a confidence interval between 0.64 and 0.71 µm−α

(Figure 9D).
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FIGURE 5 | Variability of the θ (left) and β (right) parameter estimates due to noise in the in vivo samples of gMRI and V. The highest errors in θ (∼35%) are found for
the smallest values of θ, with only a small effect of the parameter β. The highest errors in β (∼1%) are obtained from a combination of small values of θ and large
values of β.

FIGURE 6 | Bias of the θ (left) and the β (right) parameter estimates arising from the computation of axonal conduction velocity across a group of subjects (N = 15).
The error bars indicate the standard deviation on the parameter estimates. The bias of θ and β reaches up to 40 and 3%, respectively.

DISCUSSION

In this paper, we propose a novel method that allows the
non-invasive estimation of morphological properties of white
matter axons from in vivo human data. This approach requires
MRI-measured g-ratio and EEG-based measures of axonal
conduction velocity computed from estimates of the IHTT.
From these measures, we estimated the axonal radius and
myelination of axonal fibers, distinct histological features of white
matter. These morphological features were assessed across the
distribution of axons in the visual transcallosal tract, providing
a detailed insight into the microscopic properties of these
white matter fibers.

Estimation of Axonal Morphology From
in vivo Data
The proposed model is based on an explicit link between the
data acquired in vivo and a limited set of histological properties
of white matter axons. The MRI-measured g-ratio is expressed
as a function of the axonal radius distribution [P(r)] and the
g-ratio of axonal fibers [g(r)], inline with recent studies conducted
using MRI and histology data (Stikov et al., 2011, 2015; West
et al., 2016). Similarly, axonal conduction velocity — computed
from the IHTT estimates — is an ensemble average across the
same distribution P(r), assuming an equal contribution of all
axons to the EEG data. As a result, both types of in vivo data
depend on the same properties of axonal fibers: P(r) and g(r). This

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 874023

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-874023 April 15, 2022 Time: 9:3 # 11

Oliveira et al. In vivo Estimation of Axonal Morphology

FIGURE 7 | Group sensor space results. Grand-average evoked response (top) and corresponding voltage topographic maps (bottom) after left visual field
stimulation. Topographic maps are shown on a flattened electrode layout with anterior regions at the top and posterior regions at the bottom. Time 0 ms identifies
the onset of the stimulus presentation. Positive amplitudes (yellow) were observed in the hemisphere contralateral to the stimulus presentation between 115 and
134 ms, followed by a bilateral positivity starting at approximately 153 ms.

approach is supported by recent findings which show that from
the numerous histological determinants of conduction velocity
(e.g., axonal radius, g-ratio, the conductance of ion channels,
diameter and length of Ranvier nodes and internodes), the
properties of axons that bring the largest contribution to the
determination of conduction velocity are measurable with MRI
(Drakesmith et al., 2019).

The mathematical definitions of P(r) and g(r) are grounded
on well-established histological findings. P(r) is assumed to
follow a gamma distribution, as commonly posited by models of
axonal radius distribution (Assaf et al., 2008; Sepehrband et al.,
2016). g(r), expressed using a power law, shows a high level
of agreement with histological studies (Ikeda and Oka, 2012;
Gibson et al., 2014; Figure 2). Besides supporting the proposed
model, the histological basis for the expressions of P(r) and g(r)
allows freedom in the choice of the model parameters estimated
from the data, because they reflect different properties of axon
populations that can be set constant or variable according to their
relevance in a neuroscience application of this model.

From the set of 4 model parameters, we opted to set
the mode M of the axonal radius distribution to a constant
value, based on the histological literature (Tomasi et al., 2012;
Liewald et al., 2014). Similarly, the parameter α was set
from a calibration with histological findings (gREF) (Ikeda and
Oka, 2012; see section “Axon Morphological Properties”). The

estimated parameters — θ, the right tail of P(r) and β, the
scaling parameter of g(r) — enabled the simultaneous assessment
of axonal radius and myelination, across the distribution of
axons in the visual transcallosal white matter tract. The average
value of θ was 0.40 µm across participants, leading to a mean
axonal radius of 0.80 µm, inline with previous estimates from
histological studies (0.62 µm; Caminiti et al., 2009). The average
value of β was 0.67 µm −α across participants, consistent with
histological measures of the axonal g-ratio in the splenium of the
CC (Jung et al., 2018).

The proposed approach inherits the limitations of the MRI
methodologies used to estimate the intra-cellular and myelin
volume fractions, and subsequently the MRI-measured g-ratio.
In the current application, the NODDI model was used to
estimate the intra-cellular volume fraction (Zhang et al., 2012).
This model assumes identical parallel diffusivity in the extra-
and intra-cellular spaces, set to 1.7 µm2/ms (Zhang et al., 2012).
This simplifying assumption might lead to potential bias of
the parameter estimates (Jelescu et al., 2015). We estimated
that a change in diffusivity within a realistic range (1.5–1.9
µm2/ms, Guerrero et al., 2019) leads to a change of 4–5%
and 1–2% for θ and β, respectively, smaller than the bias
arising from the use of group-averaged conduction velocities
(12% for θ and 0.90% for β). Alternatives models (e.g., Assaf
and Basser, 2005; Fieremans et al., 2011; Campbell et al., 2018;
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FIGURE 8 | Source space results. (A) Group averaged CD for the left visual field stimulation (left panel). The mean activation in the V1V2 ROI on the left and right
hemispheres are shown in dashed and solid lines, respectively. Time 0 ms identifies the onset of the stimulus presentation. A first peak on the right hemisphere is
observed between 100 and 145 ms, followed by a peak on the left hemisphere after 145 ms. Vertical lines identify the peaks of activation in both hemispheres. IHTT
was calculated as the difference between the peak of activation on the hemisphere ipsilateral (left) and contralateral (right) to the stimulation visual field: 11.72 ms.
The grand-average sensor level topographic voltage maps corresponding to the identified peaks are shown on the right panel. (B) Spatial distribution of the CDs of
one exemplar subject projected on this subject’s cortex for the left visual field stimulation during the post-stimulus period. Highlighted in white is the V1V2 ROI of
interest. For the sake of clarity, we show only groups of source values that contained more than 30 vertices and were 36% above minimal activation. L: Left; S:
Superior; A: Anterior.

Ellerbrock and Mohammadi, 2018) may be considered in light
of their assumptions, as well as their applicability given
the available data.

Estimation of the Interhemispheric
Transfer Time and Conduction Velocity
The IHTT was estimated from the group averaged CDs, which
allowed for easy identification of the first two maxima of
activation in the two hemispheres (Figure 8). The IHTT derived
as a result of the time interval separating the peaks of CDs at the
group level (11.72 ± 2.87 ms) falls within the range (i.e., 8 and

30 ms) of previous IHTT estimates based on a priori selection of
voltage measurement at electrodes at occipital sites (e.g., Saron
and Foxe, 2003; Westerhausen et al., 2006; Whitford et al., 2011;
Friedrich et al., 2017; Chaumillon et al., 2018). In our study,
we opted for a CD-based estimation of the IHTT as the closest
reflection of the evoked neural activity in the regions of interest,
consistent with the corresponding white matter tract selection
(section “MRI-Based Estimation of the g-ratio”). In addition, this
approach helps to overcome the ambiguity of electrode selection
in electrode-based IHTT estimations. The resulting estimates of
conduction velocity are in agreement with the values reported by
Caminiti and colleagues (10 m/s, Caminiti et al., 2013), obtained
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TABLE 1 | MRI-measured g-ratios, measured tract length, and estimated
conduction velocity with corresponding confidence interval, for each subject in the
visual transcallosal tract.

gMRI Tract length
(mm)

Velocity
(m/s)

Velocity confidence
interval (m/s)

0.69 ± 0.03 155.03 13.23 [10.63; 17.52]

0.71 ± 0.03 149.38 12.75 [10.20; 16.88]

0.71 ± 0.04 133.43 11.38 [9.15; 15.08]

0.69 ± 0.04 136.25 11.63 [9.34; 15.40]

0.67 ± 0.04 154.32 13.17 [10.58; 17.44]

0.69 ± 0.03 171.41 14.63 [11.75; 19.37]

0.71 ± 0.04 157.94 13.48 [10.83; 17.85]

0.71 ± 0.03 149.95 12.79 [10.28; 16.94]

0.69 ± 0.04 152.98 13.05 [10.49; 17.29]

0.68 ± 0.03 142.29 12.14 [9.75; 16.08]

0.68 ± 0.04 155.49 13.27 [10.66; 17.57]

0.69 ± 0.03 172.32 14.70 [11.81; 19.47]

0.69 ± 0.03 184.48 15.74 [12.64; 20.85]

0.69 ± 0.04 154.40 13.17 [10.58; 17.45]

from human histological samples of the same fiber tract. Our
results are also consistent with a more recent report that uses
a different approach based on Bayesian networks to map the
flow of information following left visual stimulation (Deslauriers-
Gauthier et al., 2019). The authors observed a transfer of
information from the right to the left occipital cortex, between
140 and 160 ms (Deslauriers-Gauthier et al., 2019), in agreement
with the latencies of the right and left activations observed
in our analysis.

Ideally, IHTT estimates should be performed at the single-
subject level to provide microstructure measures specific to each
subject. However, the presence of multiple peaks of activation in
some individual datasets and the resulting ambiguity in defining
the maxima of activation consistently across subjects prevented
the estimation of individual IHTT values. These singularities
might arise from differences in brain morphology (Saron and
Foxe, 2003), inaccurate estimation of the sources, or from the
lack of an objective criterion for selecting subjects fulfilling our
assumptions on the expected pattern of activations. The difficulty
in estimating the IHTT at the subject level has been pointed
out in many other studies that showed inconsistent IHTT values
across participants and counterintuitively, even negative values
in some cases (e.g., Saron and Davidson, 1989; Marzi et al., 1991;
Westerhausen et al., 2006; Friedrich et al., 2017). Estimation of
the IHTT might be improved with further development on the
computation of the inverse solution (Plomp et al., 2010; Mahjoory
et al., 2017), and by introducing priors to constrain the time
courses of the activations.

Anatomical Substrate for the
Interhemispheric Transfer
The proposed model is based on the combination of a structural
measure of white matter (MRI-measured g-ratio) and a measure
of brain function (axonal conduction velocity). The validity of
this model relies on the assumption that both measures may be

obtained for a given white matter tract. Anatomical delineation
of a white matter tract is generally a routine procedure thanks
to MRI tractography techniques (Caminiti et al., 2013; Horowitz
et al., 2015; Tournier et al., 2019), allowing the sampling of the
MRI-measured g-ratio data along this tract (Schiavi et al., 2022).
On the other hand, the underlying mechanisms and anatomy of
the inter-hemispheric transfer of the evoked visual activity with
Poffenberger’s paradigm are still under investigation. Previous
literature has used this paradigm to demonstrate an increase
in IHTT in acallosal subjects, highlighting the primary role of
the CC in visual interhemispheric transfer (Marzi et al., 1991;
Di Stefano et al., 1992; Aglioti et al., 1993; Tassinari et al.,
1994). In addition, Westerhausen et al. (2006) showed that
IHTT is significantly correlated with the structural integrity of
the posterior CC, suggesting splenium fibers as the most likely
pathway for visual interhemispheric transfer.

The source and target cortical areas of the visual
interhemispheric transfer remain to be fully identified. Previous
studies have demonstrated the existence of a small patch of
transcallosal axons between visual areas 17 and 18 (Clarke and
Miklossy, 1990; Aboitiz and Montiel, 2003). This motivated
our choice of source and target cortical areas, which led to
conduction velocity estimates consistent with previous studies
(Caminiti et al., 2013). However, it has been suggested that these
connections alone might be insufficient to produce an effective
interhemispheric transfer (Innocenti et al., 2015) and higher
visual processing areas might be involved.

Future Prospects
The proposed model requires a measure of the MRI-measured
g-ratio and axonal conduction velocity in a specific white matter
tract of interest. Since measurements of conduction velocity
may only be conducted for a limited set of white matter tracts
in the human brain, this model, in its current form, cannot
be extended to the entire white matter in contrast to other
models (e.g., Assaf et al., 2008; Zhang et al., 2011). Instead,
this model is geared toward the detailed characterization of
a restricted set of white matter tracts. In its proposed form,
two parameters relating to the morphology of white matter
axons may be estimated from a total of four. Extending the
number of estimated parameters requires the use of additional
data integrated into the proposed framework. The nature of
this data needs to be carefully considered. Alternatively, as was
outlined in this work, a subset of the model parameters may be
set to a constant value based on histological studies. A prime
candidate is the mode of the axonal radius distribution (M),
preserved between white matter tracts, individuals, and animal
species (Tomasi et al., 2012; Liewald et al., 2014). This choice
may need to be reconsidered for the study of brain pathologies
that might differentially affect axons of different sizes. Other
potential candidates are the parameters α or β that describe the
dependence of the fiber g-ratio on axonal radius. In this study, we
opted to set α to a constant in expectation of fiber myelination
differences identical for all radii. Alternatively, setting β to a
constant value may be preferred to allow for the estimation of
α, in cases where myelin thickness differences are expected to
depend on axonal radius.
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FIGURE 9 | Estimates of axonal morphology obtained from the in vivo gMRI and IHTT samples. (A) Estimates of the model parameter θ — the width of the right tail of
the axonal radius distribution — in the visual transcallosal tract across all study participants. (B) Estimates of the model parameter θ — the scaling factor of the
axonal g-ratio — in the visual transcallosal tract across all study participants. The error bars indicate the confidence intervals on the parameter estimates.
(C) Exemplar axonal radius distribution in the visual transcallosal tract for a representative subject (θ = 0.43 µm; confidence interval: 0.27–0.69 µm, shaded area).
(D) Exemplar dependence of the fiber g-ratio on the axonal radius for the same subject (β = 0.68 µm−α, confidence interval: 0.64–0.71 µm−α, shaded area).

In the current study, the estimate of the IHTT was
calculated from the average of the EEG-based CD across
participants. This led to an average bias in θ and β of
12% and 0.90% across participants, reaching up to 40
and 3%, respectively (Figure 6). While small compared to
differences between tracts (∼350% for θ and ∼7% for β,
see Figure 4), this is of the order of the inter-subject
differences for these parameters (Figure 9) and prevents the
estimation of axonal morphological features at the individual
level. This limitation represents the primary avenue for
future improvements. The question of the accuracy of the
parameter estimates and their comparison with histological
data might arise subsequently. Estimation of the IHTT from
alternative techniques such as transcranial magnetic stimulation
might also be considered (Lo and Fook-Chong, 2004; Spitzer
et al., 2004; Basso et al., 2006; Deftereos et al., 2008;
Marzi et al., 2009). We highlight that the parameters of the
proposed model touch on properties of brain tissue that have
received little attention in histological studies to date. These

include the radius dependence of the axonal g-ratio and the
radius dependence of fiber myelination change in health and
disease. Validation of the proposed model may therefore bring
opportunities for new research avenues for histological studies of
the human brain.

CONCLUSION

In summary, we present a novel method that allows the
estimation of morphological properties of axons from MRI
and EEG data acquired in vivo in healthy volunteers. This
method enables the combined estimation of axonal radius
and myelin thickness and opens the way for improved
specificity in studies of the brain conducted from in vivo
data. The method enables the assessment of the distribution
of morphological features across axons and represents
a significant step toward in vivo histological studies in
the human brain.
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